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ABSTRACT

To date there are few researches on the semantic information
of passwords, which leaves a gap preventing us from fully
understanding the passwords characteristic and security. We
propose a new password probability model for semantic in-
formation based on Markov Chain, called WordMarkov, that
can capture the semantic essence of password samples. Fur-
ther, we evaluate our design via password guessing attacks,
on six real-world datasets, and we show that WordMarkov ob-
tains 24.29%–67.37% improvement over the state-of-the-art
password probability models. We also reveal some interest-
ing password habits from the semantics on “long” passwords.
Based on those findings, WordMarkov achieves 75.35%–
96.34% attack improvement.

Index Terms— Markov Chain, password probability
model, word segmentation, semantic information of pass-
word

1. INTRODUCTION

Password probability model is one of the cornerstones for
password systems, and academia and industry have drawn
their attentions to yield practical and secure designs over a
decade, e.g., [1, 2, 3, 4, 5, 6]. The model has been widely
investigated under the umbrella of password security, such as
password guessing attack [1, 2, 7], password-strength meters
[4, 8], honeywords [9], honeyvaults [10]. To provide strong
password security one should fully capture a throughout and
structural understanding on passwords [11]. Some research
works may be only limited to superficial investigations on
patterns [8, 12]. For example, they mainly focus on password
length and the presence of printable characters via such as
PCFG [1], Markov [2] and LSTM [4]. However, the “in-depth
patterns”, in particular the ones associated with the semantic
information, should be further explored.
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To address the problem, a few studies have been proposed
in the literature, e.g., [3, 6]. But the most recent semantic
password probability models may suffer from some practi-
cal shortcomings. In [3], Veras et al. used external corpus
to investigate the semantic information. Unlike natural lan-
guages, passwords do not have a regular grammatical struc-
ture [13]. And this makes one difficult to accurately describe
the semantic information of passwords from natural language
dictionary. As for [6], Cheng et al. extracted password se-
mantic information by a Chinese word extraction approach.
Although they did not use external corpus, their PCFG model
still cannot provide generalization [2]. It is impossible to cal-
culate or sample structures that are not included in the training
set.

1.1. Our Contributions

We propose a new password probability model based on
the Markov Chain, called WordMarkov. The Markov model
(hereafter we call it Markov) is one of the mainstream tools
used to study password distribution in the context of password
security. In the design of Markov, a password is treated as
a whole, in which we only consider the association between
characters. With the help of the word extraction method
proposed in [6], we divide the password into independent
semantic segments (also called words) and regard a password
as multiple words connected. Due to the special features
of Markov, our WordMarkov can identify the semantic in-
formation in the passwords more accurately (than the current
research works), but also inherit the advantages of the Markov
to provide superior generalization.

We further find some interesting password habits. Lan-
guage words or names (e.g., “swan”,“4ever”, “Carlos”) are
more frequently used in long passwords, than keyboard pat-
terns (e.g., “qwer”, “1q2w3e”). Note by long passwords we
here mean those with the length > 12 characters. This indi-
cates that using words/names pattern may help one to perform
password guessing attacks. But the phenomenon for short
passwords is the other way round.

Then we perform an empirical evaluation of the Word-
Markov under the password guessing attack on six practical
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datasets, and the experimental results show that the Word-
Markov is able to achieve 24.29%–67.37% improvement over
the current models. In particular, for long password guessing,
its improvement can reach 75.35%–96.34%.

2. PASSWORD PROBABILITY MODEL

Password probability models usually assign a probability
value to each string [2]. They may help one to under-
stand what makes users choose strong or weak passwords.
And well-design models can further be applied in password
strength meters [4], password cracking utilities [1] and honey
encryption [14]. Generally speaking, there are two types of
models to describe password distribution: one is char-based
model [2, 4, 12, 14] and the other is template-based model
[1, 3, 5, 10].

The char-based model is built on an intuitive idea that the
probability of a user entering the current character only de-
pends on his/her historical inputs (e.g., previously input char-
acters). The password probability is calculated as the product
of the probabilities on all the characters from a given pass-
word. Narayanan et al. [12] first used Markov to guess pass-
words in the char-based model. And later Ma et al. [2] pro-
posed a more comprehensive study. A series of improvements
have been proposed to optimize Markov, such as Length nor-
malization, End-symbol normalization and Laplace smooth-
ing. In 2016, Melicher et al. [4] applied deep learning to
the password probability model and proposed LSTM of pass-
word. The overall framework is still based on Markov Chain.
The difference is that when calculating the character proba-
bility, the model obtains the probability of the next character
by inputting the prefix into the neural network, rather than
simply counting the frequency of the string in the training set.
The char-based model can provide good generalization, and it
is possible to generate any passwords in the password space.
However, because char-based model only focuses on charac-
ters, it is hard to reveal the semantics from passwords in the
model .

The core assumption of template-based model is users ha-
bitually choose several different meaning segments and group
them together as a password [6]. A password’s probability
is now the probability of its structure multiplied by those of
its segments. Weir et al. [1] propose the first PCFG model for
passwords, which divides a password into three types (namely
letter, digit, special-symbol) of segments and marks the length
for each segment. Cheng et al. [6] proposed WordPCFG in
2021, introducing the concept of word in PCFG by a Chi-
nese word extraction approach. More specifically, the words
are independent semantic segments of passwords. They in-
troduced a new type of segments, word, to the original PCFG,
which significantly improves the accuracy of capturing pass-
word distributions. The template-based model assumes that
the each segment and template in the password are indepen-
dent, and it is unable to generate those segments and tem-

plates which do not exist in the training set.
To get rid of this shortcoming, we investigate the seman-

tic information in passwords based on Markov Chain, and fur-
ther propose a semantic password probability model with both
generalization and accuracy.

love4ever
love1990
superstar123
1q2w3e4444
...

cb love cs 4ever ce
cb love cs 1990 ce
cb superstar cs123 ce
cb 1q2w3e cs 4444 ce
...

love
4ever
superstar
123
1q2w3e
…

WordMarkov

extract

preprocess

train

ModelTraining Set

Passwords Dictionary

Fig. 1. The training process by WordMarkov

3. OUR APPROACH

3.1. Word Segmentation Method

Passwords do not have a regular grammatical structure [13]
and thus, the word extraction method in natural language is
not applicable here. We leverage the word extraction method
proposed in [6] to extract the word dictionary from pass-
words. The words of a password are multiple independent
semantic segments. We use the default configuration in the
research [6], but we set the maximum and minimum length
of each word in order to achieve practical performance (after
several attempts): min length = 3, and max length = 8.
In word segmentation, we recognize words in a password
by Positive Maximum Matching, and the rest parts are also
regarded as words even if they are not extracted into words.

3.2. The Design of WordMarkov

We first segment password into multiple independent seman-
tic segments, calculate the probability of each segment, and
finally multiply them to obtain the probability of password.
Recall that the probability of a user entering the current char-
acter only depends on the historical characters, in the Markov
Chain [12, 2]. The core assumption of Markov Chain is de-
fined as:

Pr (xi | xi−1, . . . , x1) = Pr (xi | xi−1, . . . , xi−k) (1)

For example, 2-order Markov calculates the probability of
string c1c2 . . . cn−1cn as:

Pr (s) = Pr (c2 | c1) · Pr (c3 | c1c2) . . .Pr (cn | cn−2cn−1) (2)
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We use the Laplace Smoothing method to compensate for
overfitting and improve the generalization. Then the transi-
tion probability of the Markov Chain is defined as follows:

Pr (ck+1 | c1c2 . . . ck) =

count (c1 . . . ckck+1) + σ∑
c
′
k+1∈Ω

(
count

(
c1 . . . ckc

′
k+1

)
+ σ

) (3)

where Ω is the set of all characters, and σ is the parameter
for Laplace Smooth.

However, Markov does not consider the semantics of the
password [3]. For example, for the password “password123”,
it is easy to recognize that the password is composed of two
segments. But Markov believes that the probability of char-
acter “1” is strongly related to its previous three characters
“ord”. This clearly contradicts to common sense.

To solve this problem, we introduce a Split-Symbol which
divides password into independent semantic segments—
words. The Split-Symbol clears the historical information
of the previous word, and the new word can be generated
from the Split-Symbol without relying on the historical infor-
mation. We then have the core idea of WordMarkov:

Prpw (password) =
n∏
1

Prw (wordi) (4)

As shown in Fig. 1, in the training phase of WordMarkov,
we add a Begin-Symbol to the head and a End-Symbol to the
tail of each password. The Begin-Symbol, End-Symbol and
Split-Symbol are regarded as ordinary characters. For readers’
convenience, we use the “cb, cs, ce” to represent the Begin-
Symbol, Split-Symbol and End-Symbol in the following.

J o h n 1 9 9 6

John@1996

Cb Cs Cs Ce@Cs Cs

Fig. 2. An example of WordMarkov processing password

In Fig. 2, the password “John@1996” is divided into three
words “John”, “@” and “1996”, and the WordMarkov can be
regarded as a chain of multiple independent sub-chains. The
probability of “John@1996” is calculated by 1-order Word-
Markov as follows (for demonstration purposes, the order
here is 1):

Prpw (John1996) = Prw (John) · Prw (@) · Prw (1996)

Prw (John) = P (J | cb) P (o | J) P (h | o) P (n | h) P (cs | n)

Prw (@) = P (@ | cs) P (cs | @)

Prw (1996) = P (1 | cs) P (9 | 1) P (9 | 9) P (6 | 9) P (ce | 6)

(5)

Table 1. Information of the leaked password datasets
Dataset Language Total >12 chars Percentage
Rockyou English 32,581,870 1,143,282 3.50%
000Webhost English 15,250,725 2,512,525 16.47%
Clixsense English 2,222,046 150,631 6.77%
Tianya Chinese 30,901,241 1,272,043 4.11%
Dodonew Chinese 16,258,891 371,830 2.28%
CSDN Chinese 6,428,277 467,985 7.28%

Table 2. Word count of the datasets
Dataset Total >12 chars Percentage
Rockyou 7,510,232 754,568 10.04%
000Webhost 5,932,846 1,839,758 31.01%
Clixsense 948,363 126,135 13.30%
Tianya 6,362,217 886,940 13.94%
Dodonew 4,929,769 210,781 4.27%
CSDN 2,122,924 358,838 16.90%

Table 3. Cracking rate under the guesses
Dataset Model Total >12 chars

109 1012 109 1012

000Webhost

WordMarkov 42.17% 68.22% 21.03% 34.04%
Markov 27.84% 55.36% 2.84% 10.69%
LSTM 21.29% 49.93% 2.39% 6.55%
WordPCFG 36.21% 53.78% 3.72% 12.73%
PCFG 38.19% 53.47% 16.82% 25.94%

CSDN

WordMarkov 64.31% 88.04% 35.42% 58.38%
Markov 51.74% 82.50% 9.15% 31.91%
LSTM 48.49% 80.47% 8.72% 26.26%
WordPCFG 51.40% 77.49% 8.44% 26.17%
PCFG 46.89% 53.27% 18.04% 24.43%

Rockyou

WordMarkov 76.10% 93.15% 28.52% 47.89%
Markov 70.20% 90.68% 4.81% 22.11%
LSTM 65.58% 88.68% 6.12% 18.82%
WordPCFG 73.68% 88.33% 11.07% 27.31%
PCFG 70.69% 75.15% 19.50% 24.00%

Dodonew

WordMarkov 68.73% 94.73% 42.92% 70.84%
Markov 58.16% 92.66% 25.52% 56.49%
LSTM 52.52% 91.15% 22.96% 51.39%
WordPCFG 58.15% 85.83% 16.24% 45.06%
PCFG 56.73% 64.14% 28.45% 32.81%

Clixsense

WordMarkov 64.90% 85.63% 31.82% 47.06%
Markov 51.84% 78.44% 3.86% 14.97%
LSTM 49.19% 82.33% 6.09% 22.17%
WordPCFG 45.40% 67.32% 7.98% 23.57%
PCFG 36.74% 52.27% 16.44% 20.43%

Tianya

WordMarkov 77.96% 93.75% 32.26% 56.05%
Markov 71.73% 90.97% 7.24% 29.42%
LSTM 63.82% 86.78% 7.02% 20.28%
WordPCFG 69.71% 82.13% 12.97% 26.55%
PCFG 69.88% 73.50% 17.25% 23.33%

4. EXPERIMENTS AND RESULTS

4.1. Datasets

As is shown in Table 1, we collect over 103 million plain-
text passwords from the public datasets [5, 15, 16] to simulate
password guessing attacks. Our experiments thus can present

“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, 
in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, 

for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.” 
 https://ieeexplore.ieee.org/document/9746203



(a) CSDN (b) Dodonew (c) 000Webhost (d) Rockyou

Fig. 3. The performance of WordMarkov on password guessing attack

(a) CSDN->12 chars (b) Dodonew->12 chars (c) 000Webhost->12 chars (d) Rockyou->12 chars

Fig. 4. The performance of WordMarkov on long password guessing attack

a scalable and comprehensive view of password habits in the
real-world applications. In Table 2, the distribution of words
in passwords is not uniform. The proportion of words in long
passwords is relatively high, which indicates that long pass-
words contain more semantic information (i.e. more words).
We state that the datasets have been widely used and studied
in the previous works [4, 2, 6, 5, 15, 17]. And our research
does not violate any ethical practice and privacy guidance,
because we only exploit attacks on the public known datasets,
which does not harm user privacy and application security.

4.2. Experiment Setup

We evaluate the efficiency of WordMarkov via offline guess-
ing on the datasets given in Table 1. It is generally accepted
that the more precise probability a password model can pro-
vide, the more efficient the attack can be [1, 2, 4, 6]. To pre-
clude the impact of non-uniformly training data, we employ
a random sampling; and then we adopt a cross-validation ap-
proach of k-fold (where k = 4). Specifically, we randomly
split passwords into four-folds, and adopt any three of them
as the training data and the last one for the testing data. In the
evaluation, we use the Monte Carlo method [17] to show the
results for the large number of guesses.

4.3. Evaluation of WordMarkov

We use the curve of cracking rate vs. guesses to show the
performance of the WordMarkov model. As Fig. 3 and
Table 3 shown, in the large-scale datasets (e.g., Dodonew,
Rockyou), the performances of other models are close, and
WordMarkov obtains 8.99%–24.29% improvement over oth-
ers. For the small-scale sets (e.g., CSDN, 000Webhost), our
improvement can reach 31.22%–67.30%, as compared to
others. We further perform a series of experiments on long
passwords in Fig. 4 and Table 3. The WordMarkov obtains
75.35%–96.34% improvement, outperforming other models
in long password guessing.

5. CONCLUSION

We propose WordMarkov that is a novel semantic password
probability model. We perform the experiments on the
real-world datasets and the results show that WordMarkov
achieves a significant improvement on password guessing
and outperforms the state-of-the-art models’ accuracy and
generalization. And WordMarkov performs particularly ex-
cellent under long password guessing. We state that Word-
Markov may be used in other models which are based on
Markov Chain. The improvement for the word segmentation
approach could be left as an interesting open problem.
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