
PASSTRANS: AN IMPROVED PASSWORD REUSE MODEL BASED ON TRANSFORMER

Xiaoxi He¶ Haibo Cheng¶* Jiahong Xie¶ Ping Wang¶* Kaitai Liang§

¶Peking University
{hxx2019, hbcheng, xjhshare, pwang}@pku.edu.cn

§Delft University of Technology
kaitai.liang@tudelft.nl

ABSTRACT
Passwords have been widely used in online authentication,
and they form the front line that protects our data security and
privacy. But the security of password may be easily harmed
by insecure password generator. Massive reports state that
users are always keen to generate new passwords by reusing
or fine-tuning old secrets. Once an old password is leaked, the
users may suffer from credential tweaking attacks. We pro-
pose a password reuse model PassTrans and simulate creden-
tial tweaking attacks. We evaluate the performance in leaked
password datasets, and the results show that 67.51% of ac-
counts is breakable under 1,000 guesses, indicating our model
is accurate in capturing password reuse behavior.

Index Terms— credential tweaking attack, password
model, password reuse, similarity

1. INTRODUCTION

Online authentication is of extreme importance in safeguard-
ing valid Internet users’ resource and service access rights.
There have been various authentication methods so far [1, 2].
But password-based approach is still the mainstream due to
its advantages on fast deployment and handy usability. Pass-
word may be regarded as the front-line protection for Internet
users’ digital assets and meanwhile, its security may easily
get on our nerves [3]. Reports said that users always keen
to reuse or slightly modify the old password to generate new
credentials due to their limit human memory [4]. This frag-
ile password generation may bring potential leakage risk to
the new passwords once the old credentials are compromised,
which is known as credential tweaking attack. The attack is il-
lustrated in Fig. 1. Specifically, an attacker collects the leaked
accounts from websites A, then launches possible guessing by
tweaking the obtained passwords, and finally attacks website
B by login attempts.

*Corresponding author.
This research is supported by National Key R&D Program of China

(2020YFB1805400), China Postdoctoral Science Foundation National
(2021M700215), Natural Science Foundation of China (62072010) and Eu-
ropean Union’s Horizon 2020 research and innovation programme under
grant agreement No. 952697 (ASSURED) and No. 101021727 (IRIS).

Fig. 1. Credential tweaking attack

In 2014, Das et al. [5] first studied the threat of password
reuse and proposed a cross-site password guessing algorithm.
They assumed that a user’s new password can be generated
by modifying its old password via some transformation rules,
such as reverse (e.g., “123456” → “654321”). But the pri-
ority of the rules is fixed in the algorithm and they did not
consider mixing multiple rules. In 2016, Wang et al. [6] pro-
posed Targuess II, which is also a cross-site password guess-
ing model based on transformation rules. They trained the
probability of each rule to obtain the probability of a guess-
ing password. In their design, one can attack a user’s account
according to the decreasing probability. Later on, Pal et al. [7]
introduced a password similarity model based on deep learn-
ing: Pass2path. The output of their model is the transforma-
tion path of leaked passwords to targeted passwords. How-
ever, there are multiple transformation paths for a pair of pass-
words, in which one of them may be invalid. As a result, the
number of unique passwords does not match to transforma-
tion path, which limits their attack performance.

The aforementioned models may not yet practical enough
to be used. This is so because their reuse rules are defined arti-
ficially and limited; and standing at the viewpoint of password
users, multiple “unrelated” passwords (e.g., “chixue100” →
“123456”) could be used in practice, which breaks the “de-
pendency” on the previous assumption. To tackle the issues,
we propose PassTrans, a credential tweaking attack model
based on transformer [8].

“© 2022 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses,  
in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, 

for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.” 
https://ieeexplore.ieee.org/document/9746731



1.1. Our Contributions

We use a neural network to automatically extract the transfor-
mation rules. In order to obtain visible feature extraction ca-
pability, we build our model based on transformer [8], which
is able to deliver great performance in machine translation
tasks. In our model - PassTrans, we feed the leaked passwords
directly into the model, and obtain the guessing without trans-
formation rules. PassTrans is trained on 4iQ [3] which con-
tains billions of passwords. To evaluate the fitting ability of
PassTrans on password reuse behavior, we simulate attacks on
practical datasets. And the experiments show that PassTrans
can crack 67.51% of passwords under 1,000 guesses, which
outperforms Pass2path,

2. PASSWORD REUSE MODEL

Passwords have been massively reused on different web-
sites [4]. When attackers compromise a password that a user
has used, they may use this password as a step-stone, by
modifying it, to attempt login to the user’s other accounts.
We call this credential tweaking attack. Das et al. [5] pro-
posed a heuristic credential tweaking attack algorithm based
on transformation rules. The algorithm transforms the leaked
password in sequence - sequential operations (such as “abc”
followed by ‘d’), deletion, insertion, uppercase, and a series
of artificially defined rules - and then outputs the guessed
password. But the shortcomings are clear there. The priority
of the transformation rules is fixed, which leads to generating
many inreasonable guessing. For example, the transformation
rule of “password” → “pa$$word” is leet; but reverse is
ranked before leet, the method then will generate “drowssap”
first. Furthermore, their design does not consider the mixed
rules of multiple transformation. Later on, Wang et al.[6]
proposed Targuess II which assumes that users modify old
passwords by fixed rules (such as adding or deleting a char-
acter, adding or deleting a structure, special transformation,
etc.). They analyzed the transformation path of the pass-
word pair by editing distance, via a series of probabilities of
transformation rules, and generated the guesses with the con-
ditional probability decreasing. They took mixed rules into
consideration and selected the rules according to probability.
But the transformation rules they used are still artificially
defined without considering irrelevant passwords.

In 2019, Pal et al. [7] proposed Pass2path. They first
adapted deep learning to construct model instead of statistical
learning. Their goal is to predict the generation path of the
targeted password (note the generation path is the sequence
of artificially defined transformation rules). For example, the
path from “cats” to “kates” is: (sub,k, 0), (ins,e,3), which
means we can substitute ‘c’ for ‘k’ first, and then insert ’e’
at the third character of “cats”, and finally get “kates”. There
may be multiple paths for password-to-password transforma-
tion, but only one transformation path is used for training.

Fig. 2. Transformer [8] Fig. 3. Multi head attention [8]

This brings difficulty to determine which one should be cho-
sen to capture better characteristics under different sceneries.
For instance, there are two paths for transformation between
“123456” and “12345678”. The first one is to add ‘8’ before
inserting ‘7’ between ‘6’ and ‘8’, while the second option is
to add ‘7’ and then ‘8’. Besides, the model may generate in-
valid generation path, such as (sub,k, 7), (ins,e,8) for “cats”
to “kates”. And again, their transformation rules only cover
relevant passwords.

3. OUR PROPOSED METHOD

In order to characterize a user’s password reuse behavior,
such as direct reuse (e.g., “password”→ “password”), fine-
tuning (e.g., “password” → “pa$$word”) and irrelevant
passwords (e.g., “chixue100” → “123456”), we propose
PassTrans based on the transformer structure.

3.1. Transformer

In 2017, Vaswani et al. [8] developed the transformer model,
which provides great performance in machine translation and
has been widely used in many fields [9, 10]. They proposed
multi-head attention to improve the feature extraction ability
of the network. The transformer is designed as the encoder-
decoder architecture. The encoder converts the sequence into
hidden representation, while the decoder converts the hid-
den representation into output sequence. Unlike the seq2seq
model presented by Sutskever et al. [11], the transformer
does not adopt RNN [12] and LSTM [13]; instead, it lever-
ages a new structure including position embedding, multi-
head attention, and feed forward network modules, as shown
in Fig.2.

3.1.1. Scaled Dot-Product Attention

Bahdanau et al. [14] proposed an attention model on the ma-
chine translation tasks. The attention model (with information
extraction function) simulates human language mechanism,
and only pays attention to the key information rather than the

“© 2022 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses,  
in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, 

for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.” 
https://ieeexplore.ieee.org/document/9746731



useless. Scaled Dot-Product Attention mechanism is the ba-
sic module of the transformer. Assume that the query matrix
of a given task is Q, the input information is represented by
K-V, which is used to calculate the correlation score with Q.
Then we have

Attention (Q,K, V ) = softmax

(
QKT

√
4iQk

)
V (1)

where 4iQk is the dimension of the input vector and K repre-
sents the key.

3.1.2. Multi-Head Attention

Multi-head attention mechanism is the core module of the
transformer. Its core idea is to calculate the attention multiple
times and concatenate it. In Fig.3, h represents the number of
headers. The larger h we set, the stronger the feature extrac-
tion ability we have. In our setting, we define h=4.

3.2. The Design of PassTrans

3.2.1. Building PassTrans

Based on the transformer [8], we propose a credential tweak-
ing attack model, which is called PassTrans. Assume the
leaked password is pwleak, the password to guess is pwguess.
Our purpose is to model the conditional probabilityP (pwguess|pwleak)
given as follows.

P (pwguess|pwleak) = P (c1, . . . , cl | ĉ1, . . . , ĉl′)

=
l∏

i=1

P (ci | ĉ1, . . . , ĉl′ , c1, . . . , ci−1)
(2)

Different from natural language processing, passwords
focus on characters instead of words. Therefore, our dictio-
nary collection is printable characters. As shown in Fig.4,
PassTrans consists of encoder and decoder. Firstly, we put
the leaked password into the encoder, and then get the output
of the encoder, denoted as enout. Further, we can obtain the
first character c1 by entering the start character τ and enout;
and at the same time, we obtain the conditional probability
P (c1 | ĉ1, . . . , ĉl′), c2 and P (c2 | ĉ1, . . . , ĉl′ , c1) are gener-
ated by entering enout and τ, c1 into the decoder. We then
keep iterating until the end character ε is generated. Finally,
we have the pwguess and P (pwguess|pwleak) by multiplying
the above conditional probabilities.

In our model, both encoder and decoder adopt three-
layer transformer structure. The number of head is set to
4 in the multi-head attention module, and the dimension is
64. The feedforward network consists of two layers of one-
dimensional convolutional networks. Due to the limit of
users’ memory, passwords are usually short. As in [6, 7], we
restrict the max length of a password to 30.

Fig. 4. Generate ci by PassTrans

Table 1. Password dataset information
Dataset Users Total Passwords Unique passwords
4iQ 1.46× 109 3.60× 109 1.72× 109

Pastebin 276 2272 739

3.2.2. Generating Guesses

In order to generate multiple guesses, PassTrans adopts beam
search technology [15], which is applied in natural language
process. We assume that the number of guesses is q, and our
purpose is to generate the most likely q guesses, i.e. the top
q of the probability P (pwguess|pwleak). It may take a lot of
time to traverse all possible guesses and then select those with
the top q. Fortunately, beam search is an approximate solu-
tion that maintains a balance of time and performance. In the
process of generating guesses, we 1) select the top q paths at
each iteration; 2) iterate until the end character appears, then
we say that a guess is generated; and 3) output q guesses.
This algorithm leverages the greedy algorithm and prunes the
spanning tree, which significantly improves the generation ef-
ficiency.

There are some shortcomings on beam search that can be
improved. First, beam search may miss the optimal sequence
because it is a greedy algorithm; in addition, since the longer
the sequence, the lower the score, it tends to generate short
sequences, it would be improved adding length normalization
and coverage penalty [16].

4. EXPERIMENTS AND RESULTS

The experimental results provided by Pal et al. [7] show
that the performance of Pass2path is much better than the ap-
proach designed by Das et al. [5] and Targess II [6]. Thus we
here only compare our design with the best - Pass2path. The
model parameter settings of Pass2path are consistent with the
public model [17].

“© 2022 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses,  
in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, 

for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.” 
https://ieeexplore.ieee.org/document/9746731



100 101 102 103

Guesses

0.05

0.10

0.15

0.20
Cr
ac

ke
d 
pr
op

or
tio

n

PassTrans
Pass2path

(a) 4iQts

100 101 102 103
Guesses

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

Cr
ac

ke
d 
pr
op

or
tio

n

PassTrans
Pass2path

(b) Pastebin

Fig. 5. Percentage of guessed password under 1000 guesses on different datasets

4.1. Password Datasets

We use two public password datasets to present practical at-
tack results, and their details are given in Table 1. One is
the password set collected from 4iQ [3], which contains 1.4
billion email password pairs, and the duplicate entries are re-
moved. The other dataset is Pastebin [18], which is widely
used in the research of password vault [18, 19]. And it in-
cludes 276 user password sets.

4.2. Experiment Setup

In 4iQ, to obtain the user’s password set, we use the same
method as in Pal et al. [7]. Specifically, passwords with the
same email are aggregated as a password set. In addition,
we only retain users with passwords ranging from 2 to 100,
which is reasonable in practical applications. Through this
processing, we have 146 million users. In our setup, 80%
of the dataset is used as the training set, and the remaining
20% is for testing, which are recorded as 4iQtr and 4iQts,
respectively.

Our goal is to successfully guess the targeted password
through the leaked password under a certain number of
guesses. Therefore, we take the number of guesses as our
experimental overhead and record it as q. In our experiment,
1000 guesses are generated and sorted by decreasing prob-
ability. In order to improve the experimental efficiency, we
randomly select one hundred thousand users from the 4iQts,
and then select a pair of passwords as the leaked password
and the targeted password respectively for each user. As for
Pastebin, we first select the leaked password as a starting
point, and then use PassTrans to fine tune q−1 passwords for
guessing.

4.3. Analysis of Experimental Results

The experimental results are shown in Fig.5, Table 2 and Ta-
ble 3. From the results obtained from 4iQts, we find that the
performance of PassTrans is increased by 57.2% – 62.7%, as
compared to Pass2path. In Pass2path, there are multiple paths

Table 2. Percentage of guessed password on 4iQts

Attack Method q = 10 q = 102 q = 103

Pass2path 8.07 11.71 14.83
PassTrans 13.13 18.41 23.52

Table 3. Percentage of guessed password on Pastebin
Attack Method q = 10 q = 102 q = 103

Pass2path 54.15 60.72 63.07
PassTrans 58.81 63.93 67.51

for generating a target password, so that some guessed pass-
words are repeated. This makes the actual guessing number
less than q. Besides, Pass2path doesn’t consider irrelevant
passwords. In the attacks against Pastebin, we can see that the
guessing success rate of the two models is greater than 50%.
This is reasonable in daily life, since some users may reuse
their old passwords without any modification. PassTrans out-
performs Pass2path in all experimental metrics. Under 1000
guesses, PassTrans reaches approx. 67.51% cracking success
rate.

In our experiment, the user’s password dataset is aggre-
gated by email names, not the user’s real password set. It may
be a better choice that simulating credential tweaking attack
experiments in real life.

5. CONCLUSION

We introduce PassTrans - a password reuse model based on
transformer for credential tweaking attack. PassTrans uses
the transformer to build neural network, avoiding to gener-
ate passwords via the generation path approach. We perform
experiments on two real password datasets, 4iQts and Paste-
bin. The results show that PassTrans achieves better password
guessing performance than Pass2path. There are some open
problems, such as the explanation of password reuse behav-
ior, password strength evaluation and et al..

“© 2022 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses,  
in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, 

for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.” 
https://ieeexplore.ieee.org/document/9746731



6. REFERENCES

[1] Peter N. Belhumeur, Joao P Hespanha, and David J.
Kriegman, “Eigenfaces vs. fisherfaces: Recognition us-
ing class specific linear projection,” IEEE PAMI, vol.
19, no. 7, pp. 711–720, 1997.

[2] Anil Jain, Lin Hong, and Ruud Bolle, “On-line finger-
print verification,” IEEE PAMI, vol. 19, no. 4, pp. 302–
314, 1997.

[3] Julio Casal, “1.4 billion clear text credentials
discovered in a single database,” https:
//medium.com/4iqdelvedeep/1-4-bil
lion-clear-textcredentials-discovere
d-in-a-single-database-3131d0a1ae14,
2017.

[4] Dinei Florêncio, Cormac Herley, and Paul C
Van Oorschot, “An administrator’s guide to inter-
net password research,” in Proc. LISA14, 2014, pp.
44–61.

[5] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita
Borisov, and XiaoFeng Wang, “The tangled web of
password reuse.,” in Proc. NDSS, 2014, vol. 14, pp.
23–26.

[6] Ding Wang, Zijian Zhang, Ping Wang, Jeff Yan, and
Xinyi Huang, “Targeted online password guessing: An
underestimated threat,” in Proc. ACM CCS, 2016, pp.
1242–1254.

[7] Bijeeta Pal, Tal Daniel, Rahul Chatterjee, and Thomas
Ristenpart, “Beyond credential stuffing: Password sim-
ilarity models using neural networks,” in Proc. IEEE
S&P. IEEE, 2019, pp. 417–434.

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin, “Attention is all you need,” in Ad-
vances in neural information processing systems, 2017,
pp. 5998–6008.

[9] Hari Krishna Vydana, Martin Karafiát, Katerina Zmo-
likova, Lukáš Burget, and Honza Černocký, “Jointly
trained transformers models for spoken language trans-
lation,” in Proc. ICASSP, 2021, pp. 7513–7517.

[10] Xuankai Chang, Wangyou Zhang, Yanmin Qian,
Jonathan Le Roux, and Shinji Watanabe, “End-to-end
multi-speaker speech recognition with transformer,” in
Proc. ICASSP, 2020, pp. 6134–6138.

[11] Ilya Sutskever, Oriol Vinyals, and Quoc V Le, “Se-
quence to sequence learning with neural networks,”
in Advances in neural information processing systems,
2014, pp. 3104–3112.

[12] David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams, “Learning representations by back-
propagating errors,” nature, vol. 323, no. 6088, pp. 533–
536, 1986.

[13] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins,
“Learning to forget: Continual prediction with lstm,”
Neural computation, vol. 12, no. 10, pp. 2451–2471,
2000.

[14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio, “Neural machine translation by jointly learning to
align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[15] Christopher Makoto Wilt, Jordan Tyler Thayer, and
Wheeler Ruml, “A comparison of greedy search algo-
rithms,” in third annual symposium on combinatorial
search, 2010.

[16] Yonghui Wu, Mike Schuster, and et al., “Google’s neu-
ral machine translation system: Bridging the gap be-
tween human and machine translation,” CoRR, vol.
abs/1609.08144, 2016.

[17] Bijeeta Pal, Tal Daniel, Rahul Chatterjee, and Thomas
Ristenpart, “Password similarity models using neu-
ral networks,” https://github.com/Bijeeta
/credtweak, 2019.

[18] Rahul Chatterjee, Joseph Bonneau, Ari Juels, and
Thomas Ristenpart, “Cracking-resistant password vaults
using natural language encoders,” in Proc. IEEE S&P.
IEEE, 2015, pp. 481–498.

[19] Maximilian Golla, Benedict Beuscher, and Markus
Dürmuth, “On the security of cracking-resistant pass-
word vaults,” in Proc. ACM SIGSAC, 2016, pp. 1230–
1241.

“© 2022 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses,  
in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, 

for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.” 
https://ieeexplore.ieee.org/document/9746731




