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Abstract. Searchable Encryption schemes provide secure search over encrypted databases
while allowing admitted information leakages. Generally, the leakages can be categorized
into access and volume pattern. In most existing SE schemes, these leakages are caused
by practical designs but are considered an acceptable price to achieve high search effi-
ciency. Recent attacks have shown that such leakages could be easily exploited to retrieve
the underlying keywords for search queries. Under the umbrella of attacking SE, we design
a new Volume and Access Pattern Leakage-Abuse Attack (VAL-Attack) that improves the
matching technique of LEAP (CCS ’21) and exploits both the access and volume pat-

terns. Our proposed attack only leverages leaked documents and the keywords present in
those documents as auxiliary knowledge and can effectively retrieve document and key-
word matches from leaked data. Furthermore, the recovery performs without false pos-
itives. We further compare VAL-Attack with two recent well-defined attacks on several
real-world datasets to highlight the effectiveness of our attack and present the performance
under popular countermeasures.
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1 Introduction

In practice, to protect data security and user privacy (e.g., under GDPR), data owners may
choose to encrypt their data before outsourcing to a third-party cloud service provider. En-
crypting the data enhances privacy and gives the owners the feeling that their data is stored
safely. However, this encryption relatively restricts the searching ability. Song et al. [34] pro-
posed a Searchable Encryption (SE) scheme to preserve the search functionality over outsourced
and encrypted data. In the scheme, the keywords of files are encrypted, and when a client wants
to query a keyword, it encrypts the keyword as a token and sends it to the server. The server
then searches the files with the token corresponding to the query, and afterwards, it returns the
matching files. Since the seminal SE scheme, many research works have been presented in the
literature, with symmetrical [7, 9, 10, 13] and asymmetrical encryption [1, 5, 36, 38]. Nowadays,
SE schemes have been deployed in many real-world applications such as ShadowCrypt [17] and
Mimesis Aegis [23].
Leakage. In an SE scheme, an operational interaction is usually defined as a client sending a
query to the server and the server responding to the query with the matching files. Nevertheless,
this interaction could be eavesdropped on by an attacker. The messages could be intercepted
because they are sent over an unprotected channel, or the attacker is the cloud service provider
itself, who stores and accesses all the search requests and responses. The attacker may choose to
match the query with a keyword such that he can comprehend what information is present on
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the server. The query and response here are what we may call leakage. In this work, we consider
two main types of leakage patterns: the access pattern, the response from the server to a
query, and the search pattern, which is the frequency a query is sent to the server. Besides
these types, we also consider the volume pattern as leakage. This pattern is seen as the size of
the stored documents on the server. The leakage patterns can be divided into four levels, by Cash
et al. [8]. In this work, we consider our leakage level to be L2, which equals the fully-revealed
occurrence pattern, together with the volume pattern to create a new attack on the SE scheme.
Note that a formal definition of the leakages is given in Section 3.1.
Attacks on SE. There exist various attacks on SE that work and perform differently. Most of
these attacks take the leaked files as auxiliary knowledge. Islam et al. [18] presented the foun-
dation for several attacks on SE schemes. They stated that, with sufficient auxiliary knowledge,
one could create a co-occurrence matrix for both the leakage and the knowledge so that it can
easily map queries to the keywords based on the lowest distance. Cash et al. [8] later proposed
an attack where the query can be matched to a particular keyword based on the total occurrence
in the leaked files. These attacks with knowledge about some documents are known as passive
attacks with pre-knowledge. Blackstone et al. [4] developed a SubgraphVL attack that provides
a relatively high query recovery rate even with a small subset of the leaked documents. The
attack matches keywords based on unique document volumes as if it is the response pattern.
Ning et al. [28] later designed the LEAP attack. LEAP combines the existing techniques, such
as co-occurrence and the unique number of occurrences, to match the leaked files to server files
and the known keywords to queries based on unique occurrences in the matched files. It makes
good use of the unique count from the Count attack [8], a co-occurrence matrix from the IKK
attack [18] (although LEAP inverts it to a document co-occurrence matrix) and finally, unique
patterns to match keywords and files. Note that we give related work and general comparison
in Section 6.
Limitations. The works in [4, 8, 18, 28] explain their leakage-abusing methods, but they only
abuse a single leakage pattern, while multiple are leaked in SE schemes. Besides the leakage
patterns, the state-of-the-art LEAP attack abuses the access pattern but does not exploit its
matching techniques to the full extent. In addition to extending their attack, a combination of
leakage can be used to match more documents and queries.

We aim to address the issue of matching keywords by exploiting both the access pattern

and volume pattern. The following question arises naturally:

Could we match queries and documents in a passive attack by exploiting the volume and access
patterns to capture a high recovery rate against popular defences?

Contributions. We answer the above research question by designing an attack that matches
leaked files and keywords. Our attack expands the matching techniques from the LEAP attack
[28] and exploits the volume pattern to match more documents. The attack improves the LEAP
attack by fully exploring the leakage information and combining the uniqueness of document
volume to match more files. These matches can then be used to extract keyword matches. All
the matches found are correct, as we argue that false positives are not valuable in real-world
attacks.
• Besides exploiting the access pattern, we also abuse volume pattern leakage. We match
documents based on a unique combination of volume and number of keywords with both leakage
patterns. We can match almost all leaked documents to server documents using this approach.
• We match keywords using their occurrence pattern in matched files.
• Besides matching keywords in matched files, we use all leaked documents for unique keyword
occurrence, expanding the keyword matching technique from the LEAP attack. We do this to
get the maximum amount of keyword matches from the unique occurrence pattern.
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• We run our attack against three different datasets to test the performance, where we see
that the results are outstanding as we match almost all leaked documents and a considerable
amount of leaked keywords. Finally, we compare our attack to the existing state-of-the-art
LEAP and SubgraphVL attacks. Our attack performs great in revealing files and underlying
keywords. In particular, it surpasses the LEAP attack, revealing significantly more leaked files
and keywords. VAL-Attack recovers almost 98% of the known files and above 93% of the keyword
matches available to the attacker once the leakage percentage reaches 5%. When 10% of the
Enron database is leaked, which is 3,010 files with 4,962 keywords, we match 2,950 files and
4,909 queries, respectively, corresponding to 98% and 99%. VAL-Attack can still compromise
encrypted information, e.g., over 90% recovery (with 10% leakage) under volume hiding in Enron
and Lucene, even under several popular countermeasures. We note that our proposed attack is
vulnerable to a combination of padding and volume hiding.

2 Preliminaries

2.1 Searchable Encryption

In a general SE scheme, a user encrypts her data and uploads the encrypted data to a server.
After uploading the data, the user can send a query containing an encrypted keyword to the
server, and the server will then respond with the corresponding data. We assume the server
is honest-but-curious, meaning that it will follow the protocol but will try to retrieve as much
information as possible.
The scheme. At a high level, an SE scheme consists of three polynomial-time algorithms:
Enc, QueryGen and Search [13, 15, 21, 24, 27]. Definition 1 shows the scheme in more detail.
The client runs the algorithm Enc and encrypts the plaintext documents and the corresponding
keywords before uploading them to the server. Enc outputs an encrypted database EDB, which
is sent to the server. QueryGen, run by the user, requires a keyword and outputs a query token
that can be sent to the server. The function Search is a deterministic algorithm that is executed
by the server. A query q is sent to the server; the server takes the encrypted database EDB
and returns the corresponding identifiers of the files EDB(q). After it has retrieved the file
identifiers, the user has to do another interaction with the server to retrieve the actual files.

Definition 1. A searchable encryption scheme includes three algorithms {Enc, QueryGen, Search}
that operate as follows:

– Enc(K,F ): the encryption algorithm takes a master key K and a document set F = {F1, ..., Fn}
as input and outputs the encrypted database EDB := {Enck(F1), ..., EncK(Fn)};

– QueryGen(w): the query generation algorithm takes a keyword w as input and outputs a
query token q.

– Search(q, EDB): the search algorithm takes a query q and the encrypted database EDB as
input and outputs a subset of the encrypted database EDB, whose plaintext contains the
keyword corresponding to the query q.

Leakage. A query and the server response are considered the access pattern. The documents
passed over the channel have their volume; this information is considered the volume pattern.
In Section 3.1, we will explain the leakage in more detail.

2.2 Notation

In the VAL-Attack, we have m′ keywords (w) and m queries (q), and n′ leaked-documents and
n server documents, denoted as di and edi, respectively; for a single document, similarly for
wi and qi. Note wi may not be the underlying keyword for query qi, equal for di and edi. The
notations are given in Table 1.
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Table 1: Notation Summary

F Plaintext document set, F = {d1, ..., dn} F ′ Leaked document set, F ′ = {d1, ..., dn′}

E Server document set, E = {ed1, ..., edn} W Keyword universe, W = {w1, ..., wm}

W ′ Leaked keyword set, W ′ = {w1, ..., wm′} Q Query set, Q = {q1, ..., qm}

A m′ × n′ matrix of leaked documents B m× n matrix of server documents

M ′ n′ × n′ co-occurrence matrix of F ′ M n× n co-occurrence matrix of E

vi Volume (bit size) of document i |di| Number of keywords in document i

C Set of matched documents R Set of matched queries

3 Models

In an ideal situation, there is no information leaked from the encrypted database, the queries
sent, or the database setup. Unfortunately, such a scheme is not practical in real life as it costs
substantial performance overheads [16]. The attacker and the leakage are two concerns in SE
schemes, and we will discuss them both in the following sections, as they can vary in different
aspects.

3.1 Leakage Model

Leakage is what we define as information that is (unintentionally) shared with the outer world.
In our model, the attacker can intercept everything sent from and to the server. The attacker
can intercept a query that a user sends to the server and the response from the server. It then
knows which document identifiers correspond to which query. This query → document identifier
response is what we call the access pattern. The leakage is defined as [4]:

Definition 2 (access pattern). The function access pattern (AP) = (APk,t)k,t∈N : F (k) ×
W t(k) → [2[n]]t, such that APk,t(D,w1, ..., wt) = D(w1), ..., D(wt).

As discussed earlier, we assume the leakage level is L2 [8], where the attacker does not know the
frequency or the position of the queried keywords in the document response.

The volume pattern is leakage that tells the size of the document. It is relevant to all
response leaking encryption schemes [6, 9, 11, 13, 20, 21] and ORAM-based SE schemes [26].
The leakage is defined formally as follows [4]:

Definition 3 (volume pattern). The function volume pattern (Vol) = (V olk,t)k,t∈N : F (k)×
W t(k) → Nt, such that V olk,t(D,w1, ..., wn) = ((|d|w)d∈D(w1), ..., (|d|w)d∈D(wn)), where | · |w
represents the volume in bytes.

3.2 Attack Model

The attacker in SE schemes can be a malicious server that stores encrypted data. Since the
server is honest-but-curious [4], it will follow the encryption protocol but wants to learn as
much as possible. Therefore, the attacker is passive but still eager to learn about the content
present on the server. Our attacker has access to some leaked plaintext documents, keeps track
of the access and volume pattern and tries to reveal the underlying server data. Fig. 1 shows
a visualization of our attack model. We assume that the attacker has access to all the queries
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Figure 1: Technical Framework of Existing Attacks

and responses used in the SE scheme. This number of queries is realistic because if one waits
long enough, all the queries and results will eventually be sent over the user-server channel. The
technical framework delineates the LEAP, SubgraphVL and our designed attack.

The attacker in our model has access to some unencrypted files stored on the server. This
access can be feasible because of a security breach at the setup phase of the scheme, where the
adversary can access the revealed files. Another scenario is if a user wants to transfer all of his
e-mails from his unencrypted mail storage to an SE storage server. The server can now access
all the original mail files, but new documents will come as new e-mails arrive. Therefore, the
adversary has partial knowledge about the encrypted data present on the server. The attacker
has no access to any existing query to keyword matches and only knows the keywords present
in the leaked files. With this information, the attacker wants to match as many encrypted
document identifiers to leaked documents and queries to keywords such that he can understand
what content is stored on the server.

The passive attacker is less potent than an active attacker, who can upload documents, with
chosen keywords, to the server to match queries to keywords [37]. Furthermore, the attacker has
no access to the encryption or decryption oracle. Because the attacker relies on the access and

volume pattern countermeasures that hide these patterns will reduce the attack performance.

4 The Proposed Attack

4.1 Main Idea

At a high level, our attack is built from the LEAP attack [28] by elevating the keyword matching
metric to increase the number of keyword matches. Furthermore, each document is labelled with
its document volume and number of keywords, and VAL-attack matches using the uniqueness
of this label, improving the recovery rate. We first extend the matching technique from LEAP.
The approach does not consist of only checking within the matched documents but also keeping
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track of the occurrence in the unmatched files. This method results in more recovered keywords
for the improvement of LEAP that provides a way to match rows that do not uniquely occur in
the matched files. We expand the attack by exploiting the volume pattern since the document
size is also leaked from response leaking encryption schemes, as described in Section 3.1. We can
extend the comprehensive attack by matching documents based on the volume pattern. Our
new attack fully explores the leakage information and matches almost all leaked documents. We
increase the keyword matches with the maximal file matches to provide excellent performance.

4.2 Leaked Knowledge

The server stores all the documents in the scheme. There are a total of n plaintext files denoted
as the set F = {d1, ..., dn}, with in total m keywords, denoted as the set W = {w1, ..., wm}. We
assume the attacker can access:
• The total number of leaked files (i.e. plaintext files) is n′ with in total m′ keywords. Suppose
F ′ = {d1, ..., dn′} is the set of documents known to the attacker and W ′ = {w1, ..., wm′} is the
corresponding set of keywords that are contained in F ′. Note that n′ ≤ n and m′ ≤ m.
• The set of encrypted files, denoted as, E = {ed1, ..., edn} and corresponding query tokens,
Q = {q1, ..., qm} with underlying keyword set W .
• The volume of each server observed document or leaked file is denoted as vx for document
dx or server document edx. The number of keywords or tokens is represented as the size of the
document |dx| or |edx| for the same documents, respectively.

The attacker can construct an m′ × n′ binary matrix A, representing the leaked documents
and their corresponding keywords. A[dx][wy] = 1 iff. keyword wy occurs in document dx. The
dot product of A is denoted as the symmetric n′ × n′ matrix M ′, whose entry is the number of
keywords that are contained in both document dx and document dy. We give an example of the
matrices with known documents in Fig. 6 (Appendix A).

After observing the server’s files and query tokens, the attacker can construct anm×n binary
matrix B, representing the encrypted files and related query tokens. B[edx][qy] = 1 iff. query qy
retrieved document edx. The dot product of B is denoted as the symmetric n × n matrix M ,
whose entry is the number of query tokens that retrieve files edx and edy from the server. We
give an example of the matrices with observed encrypted documents in Fig. 7 (Appendix A).

4.3 Our Design

The basis of the attack is to recursively find row and column mappings between the two created
matrices, A and B, where a row mapping represents the underlying keyword of a query sent to
the server, and a column mapping indicates the match between a server document identifier and
a leaked plaintext file. Note that each leaked document is still present on the server, meaning
that n′ ≤ n and there is a matching column in B for each column in A. Similarly to the rows,
each known keyword corresponds to a query, so m′ ≤ m as we could know all the keywords, but
we do not know for sure. In theory, there is a correct row mapping for each row in A to a row
in B. The goal of the VAL-Attack is to find as many correct mappings as possible.

We divide the process of finding as many matches as possible into several steps. The first step
is to prepare the matrices for the rest of the process. The algorithm then maps columns based
on unique column-sum, as they used in the Count attack [8], but instead of using it on keywords,
we try to match documents here. Another step is matching documents based on unique volume
and the number of keywords or tokens. As this combination can be a unique pattern, we can
match many documents in this step. The matrices M and M ′ are used to match documents
based on co-occurrence. Eventually, we can pair keywords on unique occurrences in the matched
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documents when several documents are matched. This technique is used in the Count attack
[8], but we ’simulate’ our own 100% knowledge here. With the matched keywords, we can find
more documents, as these will give unique rows in matrices A and B that can be matched. We
will introduce these functions in detail in the following paragraphs.
Initialization. First, we initialize the algorithm by creating two empty dictionaries, to which
we eventually add the correct matches. We create one dictionary for documents and the other
for the matched keywords, C (for column) and R (for row). Next, as we want to find unique rows
in the matrices A and B, we must extend matrix A. It could be possible that not all underlying
keywords are known beforehand, in which case n′ < n, and we have to extend matrix A to find
equal columns. Therefore we extend matrix A to an m × n′ matrix that has the first m′ rows
equal to the original matrix A and the following m −m′ rows of all 0s. See Fig. 10 (Appendix
A) for an example. The set {wm′+1, ..., wm} represents the keywords that do not appear in the
leaked document set F ′.
Number of keywords. Now that the number of rows in A and B are equal, we can find
unique column-sums to match documents. This unique sum indicates that a document has a
unique number of keywords and can thus be matched based on this unique factor. Similar to the
technique in the Count attack [8], we sum the columns, here representing the keywords in A and
B. The unique columns in B can be matched to columns in A, as they have to be unique in A as
well. If a columnj-sum of B is unique and columnj′ -sum of A exists, we can match documents
edj and dj′ because they have the same unique number of keywords.
Volume and keyword pattern. The next step is matching documents based on volume and
keyword pattern. If there is a server document edj with a unique combination of volume vj and
number of tokens |edj | and there is a document dj′ with the same combination, we can match
document edj to dj′ . However, if multiple server documents have the same pattern, we need to
check for unique columns with the already matched keywords between these files. Initially, we
will have no matched keywords, but we will rerun this step later in the process. Fig. 2 shows a
concrete example, and Algorithm 1 describes our method.

Figure 2: Document matching on volume and number of keywords. Given multiple candidates,
match on a unique column with the already matched keywords.

(a) Multiple documents with the same pattern of volume and number of keywords/tokens.

Leaked files · · · d4 d6 d8 · · · dn′

Volume · · · 120 120 120 · · · 120

#Keywords · · · 15 15 15 · · · 18

Server files · · · ed6 ed9 ed10 · · · edn

Volume · · · 120 120 120 · · · 150

#Tokens · · · 20 15 15 · · · 15

(b) With the already matched keywords, create unique columns to match documents. Here d6 and ed8
can be matched, as well as d9 and ed15.



ACR d4 d6 d8 d9

w2 1 0 1 1

w3 1 1 1 0

w5 0 0 0 1

...
...

...
...

wt 1 1 1 0





BCR ed8 ed9 ed10 ed15

q1 0 1 1 1

q3 1 1 1 0

q15 0 0 0 1

...
...

...
...

qt 1 1 1 0
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Algorithm 1 matchByVolume

Input: R,A (m× n′), B (m× n)

1: C′ ← {}
2: patterns ← {(vj , |edj |) with volume vj and #tokens |edj | of document edj}
3: for p ∈ patterns do
4: enc docs ← [edj with pattern p]
5: if |enc docs| = 1 then
6: edj ← enc docs[0]
7: C′[edj ] ← dj′ with pattern p
8: else if |R| > 0 then
9: docs ← [dj′ with pattern p]
10: BCR ← enc docs columns and R rows of B
11: ACR ← docs columns and R rows of A
12: for columnj ∈ BCR that is unique do
13: C′[edj ] ← dj′ with columnj ∈ ACR

14: return C′

Co-occurrence.When having some matched documents, we can use the co-occurrence matrices
M and M ′ to find other document matches. For an unmatched server document edx, we can
try an unmatched leaked document dy. If Mx,k and M ′

y,k′ are equal for each matched document
pair (edk, dk′) and no other document dy′ has the same results, then we have a new document
match between edx and dy. The algorithm for this step is shown in Algorithm 2.

Algorithm 2 coOccurrence

Input: C,M (n× n),M (n′ × n), A (m× n′), B (m× n)

1: while C is increasing do
2: for each dj′ ̸∈ C do
3: sumj′ ← columnj′ -sum of A
4: candidates ← [edj ̸∈ C where columnj-sum of B = sumj′ ]
5: for edj ∈ candidates do
6: for (edk, dk′) ∈ C do

7: if Mj,k ̸= M
′

j′,k′ then
8: candidates ← candidates \ edj
9: if |candidates| = 1 then
10: edj ← candidates[0]
11: C[edj ] ← dj′

12: return C

Keyword matching. We match keywords using the matched documents. To this end, we create
matrices Bc and Ac by taking the columns of matched documents from matrices B and A. Note
that these columns will be rearranged to the order of the matched documents, such that column
Bcj is equal to column Acj′ for document match (edj , dj′). Matrices Bc and Ac are shaped m× t
and m′ × t, respectively, for t matched documents. We give the algorithm for this segment in
Algorithm 3 and a simple example in Fig. 8 (Appendix A).

A row in the matrices indicates in which documents a query or keyword appears. If a rowi

in Bc is unique, rowi is also unique in B, similar to Ac and A. Hence, for rowi in Bc, that is
unique, and if there is an equal rowj in Ac, we can conclude that the underlying keyword of qi
is wj .
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Algorithm 3 matchKeywords

Input: C,A (m× n′), B (m× n)

1: R ← {}
2: Bc ← C columns of B
3: Ac ← C columns of A
4: for rowi ∈ Bc do
5: if rowi is unique in Bc then
6: if rowi′ ∈ Ac = rowi then
7: R[qi] ← wi′

8: else ▷ Match based on occurrence in (server) files
9: docs ← [i′ ∈ Ac where Ac[i

′] = rowi]
10: e docs ← [j ∈ Bc where Bc[j] = rowi]
11: Bx ← sum of rows in B[e docs], sort descending
12: Ax ← sum of rows in A[docs], sort descending
13: if Bx[1] < Ax[0] < Bx[0] then
14: ix ← index of Bx[0] ∈ e docs
15: jx ← index of Ax[0] ∈ docs
16: R[qix ] ← wjx

17: return R

Nevertheless, if rowi is not unique in Bc, we can still try to match the keyword to a query. A
keyword can occur more often in the unmatched documents than their query candidates; thus,
they will not be valid candidates. We create a list Bx with for each similar rowi in Bc the sum
of rowi in B; similar for list Ax, with rowi in Ac and the sum of rowi in A. Next, if the highest
value of Ax, which is Axj , is higher than the second-highest value of Bx, we can conclude that
keyword wj corresponds to the highest value of Bx, i.e. Bxj , which means that wj matches with
qj . We put an example in Fig. 3.

Figure 3: Example of matching keywords in matched documents. Query q3 has a unique row and
therefore matches with keyword w1. Queries q1, q2 and keywords w2, wm′ have the same row.
However, keyword wm′ occurs more often in A than w2 and query q2 in B. Therefore q1 matches
with wm′ .



Bc ed3 ed2 ··· edt

q1 1 1 · · · 0
q2 1 1 · · · 0
q3 1 0 · · · 1
...

...
...

. . .
...

qm 0 1 · · · 0





Sum in B

q1 9
q2 7
q3 −
...

...
qm −





Ac d1 d2 ··· dt

w1 1 0 · · · 1
w2 1 1 · · · 0
w3 0 0 · · · 1
...

...
...

. . .
...

wm′ 1 1 · · · 0





Sum in A

w1 −
w2 7
w3 −
...

...
wm′ 8



Keyword order in documents. We aim to find more documents based on unique columns
given the query and keyword mappings. First, we create matrices Br and Ar with the rows from
the matched keywords in R. Br and Ar are submatrices of B and A, respectively, with rearranged
row order. Br and Ar are shaped t × n and t × n′, respectively, for t matched keywords. Note
that we show an example in Fig. 9 (Appendix A). If any columnj of Br is unique and there
exists an equal columnj′ in Ar, we know that edj is a match with dj′ .
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The next step is to set the rows of the matched keywords to 0 in B and A. Then, similar to
before, we use the technique from the Count attack [8]; we sum the updated columns in A and
B and try to match the unique columns in B to columns in A. If a columnj-sum of B is unique
and an equal columnj′ -sum in A exists, we can match document edj and dj′ .

The complete algorithm of our VAL-attack is in Algorithm 4, Appendix B.

4.4 Countermeasure Discussions

Some countermeasures have been proposed to mitigate leakage-abuse attacks [8, 12, 18, 32].
The main approaches are padding and obfuscation. Below, we have some discussions on the
countermeasures.

The IKK attack [18] and the Count attack [8] discussed a padding countermeasure, where
they proposed a technique to add fake document identifiers to a query response. These false
positives could then later be removed by the user. This technique is also called Hiding the
Access Pattern [22].

The LEAP attack [28] crucially relies on the number of keywords per document, and if
the scheme adds fake query tokens to documents on the server, they will not be able to match
with their known documents. However, they also proposed a technique that describes a modified
attack that is better resistant to padding. This technique, which is also used in the Count attack
[8], makes use of a window to match keywords. But this will give false positives and thus reduce
the performance of the attack.

The SubgraphVL attack [4] depends on the volume of each document. Volume-hiding tech-
niques from Kamara et al. [19] reduce the attack’s performance, but it is not clear if they
completely mitigate the attack.

A padding technique that will make all documents of the same size, i.e. adding padding
characters, will reduce the uniqueness in matching based on the volume of a document. If the
padding technique can be extended such that false positives are added to the access pattern,
we have no unique factor in matching documents based on the number of keywords per file.
Therefore, a combination of the two may decrease the performance of the VAL-Attack.

5 Evaluation

We set up the experiments to run the proposed attack to evaluate the performance. Furthermore,
we compare the file and query recovery of the VAL-Attack with the results from the LEAP
[28] and SubgraphVL attack [4]. We notice that the LEAP attack is not resistant to the test
countermeasures, and Blackstone et al. [4] argue for their SubgraphVL attack that it is not clear
whether volume-hiding constructions may mitigate the attack altogether. From this perspective,
we only discuss the performance of VAL-Attack against countermeasures in Section 5.3. It would
be an interesting problem to test the countermeasures on the LEAP and SubgraphVL attacks,
but that is orthogonal to the focus of this work.

5.1 Experimental Setup

We used the Enron dataset [35] to run our comparison experiments. We leveraged the sent -
mail folder from each of the 150 users from this dataset, resulting in 30,109 e-mails from the
Enron corporation. The second dataset we used is the Lucene mailing list [2]; we specifically
chose the ”java-user” mailing list from the Lucene project for 2002-2011. This dataset contains
50,667 documents. Finally, we did the tests on a collection of Wikipedia articles. We extracted
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plaintext documents from Wikipedia in April 2022 using a simple wiki dump4 and used the tool
from David Shapiro [33] to extract plaintext data, resulting in 204,737 files. The proposed attack
requires matrices of size n × n; therefore, we limited the number of Wikipedia files to 50,000.
We used Python 3.9 to implement the experiments and run them on machines with different
computing powers to improve running speed.

To properly leverage those data from the datasets for the experiments, we first extracted
the information of the Enron and Lucene e-mail content. The title’s keywords, the names of the
recipients or other information present in the e-mail header were not used for queries. NLTK
corpus [3] in Python is used to get a list of English vocabulary and stopwords. We removed
the stopwords with that tool and stemmed the remaining words using Porter Stemmer [30]. We
further selected the most frequent keywords to build the keyword set for each document. For
each dataset, we extracted 5,000 words as the keyword set W . Within the Lucene e-mails, we
removed the unsubscribe signature because it appears in every e-mail.

The server files (n) and keywords (m) are all files from the dataset and 5,000 keywords,
respectively. The leakage percentage determines the number of files (m′) known to the user. The
attacker only knows the keywords (n′) leaked with these known documents. The server files and
queries construct a matrix B of size m × n; while the matrix A of size m′ × n′ is constructed
with the leaked files. We took the dot product for both matrices and created the matrices M
and M ′, respectively. Note that the source code to simulate the attack and obtain our results is
available here: https://github.com/StevenL98/VAL-Attack.

Because our attack does not create false positives, the accuracy of the retrieved files and
keywords is always 100%. Therefore, we calculated the percentage of files and keywords retrieved
from the total leaked files and keywords. Each experiment is run 20 times to calculate an average
over the simulations. We chosen 0.1%, 0.5%, 1%, 5%, 10%, 30% as leakage percentages. The
lower percentages are chosen to compare with the results from the LEAP attack [28], and the
maximum of 30% is chosen because of the stagnation in query recovery.

5.2 Experimental Results

The results tested with the different datasets are given in Fig. 4a and Fig. 4b, which show
the number and percentage of files and keywords recovered by our attack. The solid line is the
average recovery in those plots, and the shades are the error rate over the 20 runs.

We can see that the VAL-attack recovers almost 98% of the known files and above 93% of the
keywords available to the attacker once the leakage percentage reaches 5%. These percentages
are based on the leaked documents. When 10% of the Enron database is leaked, which is 3,010
files with 4,962 keywords, we can match 2,950 files and 4,909 queries, corresponding to 98% and
99%, respectively. The Lucene dataset is more extensive than Enron, and therefore we have more
files available for each leakage percentage. One may see that we can recover around 99% of the
leaked files and a rising number of queries, starting from 40% of the available keyword set. The
Wikipedia dataset does not consist of e-mails but rather lengthy article texts. We reveal fewer
files than the e-mail datasets, but we recover just below 90% of the leaked files, and from 1%
leakage, we recover more available keywords than the other datasets. This difference is probably
because of the number of keywords per file since the most frequent keywords are chosen.

With the technique we proposed, one can match leaked documents to server documents for
almost all leaked documents. Next, the algorithm will compute the underlying keywords to the
queries. It is up to the attacker to allow false positives and improve the number of (possible)
correctly matched keywords, but we decided not to include it.

4 https://dumps.wikimedia.org/simplewiki/20220401/simplewiki-20220401-pages-meta-curre

nt.xml.bz2
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Figure 4: Results for VAL-Attack, with the actual number and the percentage of recovered files
and queries for different leakage percentages.

(a) Exact number and relative percentage of recovered files

(a.i) #Files recovered (a.ii) %Files recovered

(b) Exact number and relative percentage of recovered queries

(b.i) #Queries recovered (b.ii) %Queries recovered

Comparison. We compare the performance of VAL-Attack to two attacks with the Enron
dataset. One is the LEAP attack [28] (which is our cornerstone), while the other is the SubgraphVL

attack [4] (as they use the volume pattern as leakage). We divide the comparison into two parts:
the first is for recovering files, and the second is for queries recovery.

As shown in Fig. 5, we recover more files than the LEAP attack, and the gap in files recovered
expands as the leakage percentage increases, see Fig. 5a.i. The difference in the percentage of
files recovered is stable, as VAL-Attack recovers about eight percentage points more files than
the LEAP attack, see Fig. 5a.ii. The comparison outcome for recovered queries can be seen in
Fig. 5b. We can see that the recovered queries do not show a significant difference with the
LEAP attack as that attack performs outstandingly in query recovery. The most significant
difference is around 5% leakage, where VAL-Attack retrieves around 100 queries more than the
LEAP attack, which could influence a real-world application. Compared to the SubgraphVL,
we see in Fig. 5b.ii that the combination of the access pattern and the volume pattern is a
considerable improvement; we reveal about 60 percentage points more of the available queries.
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Figure 5: Comparison of VAL-Attack

(a) Comparison with LEAP [28] based on the number and percentages of files recovered

(a.i) #Files recovered (a.ii) %Files recovered

(b) Comparison with LEAP [28] and SubgraphVL [4] based on the number and percentages of queries
recovered

(b.i) #Queries recovered (b.ii) %Queries recovered

5.3 Countermeasure Performance

As discussed in Section 4.4, there are several options for countermeasures against attacks on
SE schemes. Moreover, since our attack exploits both the access and volume pattern, coun-
termeasures must mitigate both leakage patterns. The former can be mitigated by padding the
server result, while the latter may be handled using volume-hiding techniques. However, these
approaches may come with impractical side effects. Padding the server response requires more
work on the client-side to filter out the false positives. This padding can cause storage and read-
ing problems because the user has to wait for the program to filter out the correct results. The
volume-hiding technique [19] may easily yield significant storage overhead and could therefore
not be practical in reality. Luckily, Patel et al. [29] illustrated how to reduce this side effect
whilst mitigating the attack.

It is possible to mitigate our attack theoretically by using a combination of padding and
volume hiding. We tested the VAL-attack’s performance with padding, volume hiding and further
a combination, but we did not examine by obfuscation due to hardware limitations.
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We padded the server data using the technique described by Cash et al. [8]. Each query
returned a multiplication of 500 server files, so if the original query returned 600 files, the server
now returned 1,000. Padding is done by adding documents to the server response that to done
contain the underlying keyword. These documents can then later be filtered by the client, but
will obfuscate the client’s observation. We took the näıve approach from Kamara et al. [19] for
volume hiding, where we padded each document to the same volume. By adding empty bytes
to a document, it will grow in size. If done properly, all files will eventually have the same size
that can not be distinguished from the actual size.

We ran the countermeasure experiments on the Enron and the Lucene dataset. We did not
perform the test on the Wikipedia dataset, but we can predict that the countermeasures may
affect the attack performance. We predict that a single countermeasure will not entirely reduce
the attack effectiveness, but a combination may do.

Because of the exploitation of the two leakage patterns, we see in Table 2 that our attack
can still recover files and underlying keywords against only a single countermeasure. Under a
combination of padding and volume hiding, our attack cannot reveal any leaked file or keyword.

Table 2: Performance of VAL-Attack with countermeasures
Dataset Enron Lucene

Counter-
measure

Padding Volume
Hiding

Padding &
Vol. Hiding

Padding Volume
Hiding

Padding &
Vol. Hiding

F
il
e
s

0.1% 25 (83.7%) 27 (89.5%) 0 (0%) 45 (88.9%) 10 (28.4%) 0 (0%)
0.5% 103 (68.4%) 137 (90.7%) 0 (0%) 191 (75.3%) 95 (37.4%) 0 (0%)
1% 208 (69.0%) 274 (90.9%) 0 (0%) 381 (75.3%) 147 (28.9%) 0 (0%)
5% 1,114 (74.0%) 1,365 (90.7%) 0 (0%) 2332 (92.0%) 2452 (96.8%) 0 (0%)
10% 1,910 (63,4%) 2,736 (90.9%) 0 (0%) 4,073 (80.4%) 4,891 (96.5%) 0 (0%)
30% 5,358 (59.0%) 8,219 (91.0%) 0 (0%) 10,343 (68.0%) -2 0 (0%)

Q
u
e
ri
e
s

0.1% 94 (10.4%) 172 (14.8%) 0 (0%) 377 (27.7%) 153 (10.6%) 0 (0%)
0.5% 433 (18.1%) 1,059 (43.3%) 0 (0%) 724 (25.3%) 663 (22.8%) 0 (0%)
1% 414 (12.8%) 1,836 (56.3%) 0 (0%) 556 (15.3%) 748 (20.5%) 0 (0%)
5% 53 (1.1%) 4,290 (89.9%) 0 (0%) 87 (1.8%) 4,659 (95.2%) 0 (0%)
10% 11 (0.2%) 4,890 (98.4%) 0 (0%) 33 (0.7%) 4,872 (97.6%) 0 (0%)
30% 1 (0.0%) 4,993 (99.9%) 0 (0%) 10 (0.2%) -2 0 (0%)

2 Did not run due to hardware limitations

Table 2 is read as follows: The number below the countermeasure is the exact number of
retrieved files or queries, with the relative percentage between brackets. So for 0.1% leakage
under the padding countermeasure, we revealed, on average, 25 files, which was 83.7% of the
leaked files. Each experiment ran 20 times. Due to runtime and hardware limitations, we did not
run the experiment with 30% leakage on the Lucene dataset. However, since we have the results
for 10% leakage and the results for the Enron dataset, we can predict the outcome for 30%.
Similar to the Enron dataset, the recovered data in Lucene increases as the leakage percentage
grows. Therefore, we predict that 30% leakage results in the Lucene dataset is a bit higher than
the 10% leakage.

5.4 Discussion on Experiments

We chose specific parameters in the experiments and only compared our attack with two popular
attacks [4, 28]. We give more discussions below.
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Parameters. We used 5,000 high selectivity keywords, i.e. keywords that occur the most
in the dataset. This number is chosen because a practical SE application will probably not have
just a few search terms in a real-world scenario. Other attacks [4, 8, 18] have experimented with
only 150 query tokens and 500 keywords, and we argue that this may not be realistic. Our attack
is able to recover almost all underlying keywords for an experiment with 500 keywords because
the number of files is still equal, but a slight variation in keyword occurrence.

We cut the number of Wikipedia files to 50,000. We did this to better present the comparison
with the Enron and Lucene datasets. The attack may also take longer to run when all Wikipedia
files are considered. The results will also differ as the number of files leaked increases similarly.
The percentage of files recovered will probably be the same because of keyword distribution
among the files.

If we ran the experiments with a higher leakage percentage, the attack would eventually
recover more files, as more are available, but we would not recover more keywords. As with 30%
leakage, we see that we have recovered all 5,000 keywords.

Our attack performs without false positives. And we did so because they would not improve
the performance, and an attacker cannot better understand the data if he cannot rely on it.
If we allowed the attack to return false positives, we would have 5,000 matches for underlying
keywords, of which not all are correct. The attack performance will not change since we will
only measure the correct matches, which we already did.

Attack comparison. In Fig. 5a, we only compared our attack with the LEAP attack rather
than the SubgraphVL attack. We did so because the latter does not reveal encrypted files and
thus cannot be compared. If we choose to compare the attack to ours, we would have to rebuild
their attack using their strategy, which is out of the scope of this work.

We used the Enron dataset to compare the VAL-Attack to the LEAP and the SubgraphVL.
In their work [4, 28], they used the Enron dataset to show their performance. If we used the
Lucene or Wikipedia dataset instead to present the comparison, we would have no foundation
in the literature to support our claim. A comparison of all the datasets would still show that
our attack surpasses the attacks since, in theory, we exploit more.

We discussed other attacks, like the IKK and the Count attack, but we did not compare their
performance with ours. While these attacks exploit the same leakage, we could still consider
them. However, since LEAP is considered the most state-of-the-art attack and it has already
been compared with the other attacks in [28], we thus only have to compare the LEAP attack
here. Accordingly, a comparison with all attacks would not affect the results and conclusion of
this paper.

6 Related Work

The Count attack [8] uses the number of files returned for the query as their matching technique;
The SubgraphVL [4] matches keywords based on unique document volumes as if it is the re-
sponse pattern, and the LEAP attack [28] uses techniques from previous attacks to match leaked
documents and keywords with high accuracy. Besides the attacks that exploit similar leakage
to our proposed attack, we may also review those attacks that do not. An attack that leverages
similar documents as auxiliary knowledge, called Shadow Nemesis, was proposed by Pouliot et
al. [31]. They created a weighted graph matching problem in the attack and solved it using Path
or Umeyama. Damie et al. [14] presented the Score attack, requiring similar documents, and
they matched based on the frequency of keywords in the server and auxiliary documents. Both
attacks use co-occurrence matrices to reveal underlying keywords. The Search attack by Liu et
al. [25] matches based on the search pattern, i.e. the frequency pattern of queries sent to the
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server. Table 3 briefly compares the attacks based on leakage, auxiliary knowledge, false posi-
tives and exploiting techniques. The reviewed attacks described above are not mainly relevant
to our proposed attack; thus, we did not put them in the comparison in Section 5.

Table 3: Comparison on Different Attacks. The lower part are those passive attacks with pre-
known data compared with VAL-Attack. Documents in the auxiliary data column refers to
leaked document knowledge, queries refers to leaked underlying keywords for query tokens, and
similar refers to the use of similar documents instead of leaked documents.

Attack Leakage Auxiliary data False
positives

Exploited information

IKK [18] Access pattern Documents, queries ✓ Co-occurrence

Shadow Nemesis [31] Access pattern Similar ✓ Co-occurrence

Score [14] Access pattern Similar, queries ✓ Co-occurrence

Search14 [25] Search pattern Search frequency ✓ Query frequency

ZKP [37] (active) Access pattern All keywords ✗ -

Count [8] Access pattern Documents ✓ Co-occurrence, length

SubgraphVL [4] Volume pattern Documents ✓ Volume, length

LEAP [28] Access pattern Documents ✗ Co-occurrence, length

VAL-Attack Access,
volume pattern

Documents ✗ Volume, length,
co-occurrence

7 Conclusion

We proposed the VAL-attack to improve the matching technique from the LEAP attack, lever-
aging the leakage from the access pattern and the volume pattern which is a combination
that has not been exploited before. We showed that our attack provides excellent performance,
and we compared it to the LEAP attack and the subgraphVL attack. The number of matched
files is with more remarkable improvement than the number of queries recovered compared to
the LEAP attack. The attack recovers around 98% of the leaked documents and above 90%
for query recovery with very low leakage. Since the proposed attack uses both the document
size and the response per query, it requires strong (and combined) countermeasures and thus,
is more harmful than existing attacks.
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A Examples of Matrices

Figure 6: Matrix A and M ′ Example


A d1 d2 ··· dn′

w1 1 1 · · · 1
w2 0 1 · · · 0
...

...
...

. . .
...

wm′ 1 0 · · · 1




M′ d1 d2 ··· dn′

d1 5 2 · · · 3
d2 2 6 · · · 0
...

...
...

. . .
...

dn′ 3 0 · · · 10



Figure 7: Matrix B and M Example


B ed1 ed2 ··· edn

q1 0 1 · · · 1
q2 0 0 · · · 1
...

...
...

. . .
...

qm 1 1 · · · 0




M ed1 ed2 ··· edn

ed1 4 3 · · · 1
ed2 3 9 · · · 2
...

...
...

. . .
...

edn 1 2 · · · 9



Figure 8: Matrix Ac and Bc Example



Bc ed3 ed2 ··· edt

q1 1 0 · · · 1
q2 1 1 · · · 0
q3 1 0 · · · 1
...

...
...

. . .
...

qm 0 1 · · · 0





Ac d1 d2 ··· dt

w1 1 0 · · · 1
w2 1 1 · · · 0
w3 0 0 · · · 1
...

...
...

. . .
...

wm 1 1 · · · 0



Figure 9: Matrix Ar and Br Example



Br ed1 ed2 ··· edn

q3 0 0 · · · 1
q5 1 1 · · · 0
q2 0 0 · · · 0
...

...
...

. . .
...

qt 1 1 · · · 0





Ar d1 d2 ··· dn′

w1 1 0 · · · 1
w2 0 0 · · · 1
w3 1 0 · · · 1
...

...
...

. . .
...

wt 1 1 · · · 0
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Figure 10: An Example of Extended Matrix A



A d1 d2 ··· dn′

w1 1 1 · · · 1
w2 0 1 · · · 0
...

...
...

. . .
...

wm′ 1 0 · · · 1
wm′+1 0 0 · · · 0

...
...

...
. . .

...
wm 0 0 · · · 0



B VAL-Attack Algorithm

Algorithm 4 VAL-Attack

Input: A (m′ × n′), B (m× n), M ′ (n′ × n′),M (n× n)

1: C = R ← {} ▷ Initialization
2: A ← A where rows extended with 0’s (m x n’)
3: vectorA = vectorB ← [ ] ▷ Match documents with unique #keywords
4: for j ∈ [n] do
5: vectorB [j] ← sum of column Bj

6: for j′ ∈ [n′] do
7: vectorA[j

′] ← sum of column Aj′

8: for vectorBj ∈ vectorB that is unique do
9: if vectorAj′ == vectorBj then

10: C[edj ] ← dj′

11: C ← C ∪ matchByVolume(R,A,B) ▷ Match documents with unique volume
12: C ← C ∪ coOccurrence(C,M,M ′, A,B) ▷ Match docs with co-occurrence
13: C ← C ∪ matchByVolume(R,A,B)
14: while R or C is increasing do
15: R ← R ∪ matchKeywords(C,A,B) ▷ Match keywords in matched docs
16: Br ← R rows of B ▷ Match documents with unique keyword order
17: Ar ← R rows of A
18: for columnj ∈ Br that is unique do
19: if columnj′ ∈ Ar == columnj then
20: C[edj ] ← dj′

21: C ← C ∪ matchByVolume(R,A,B)
22: row Bj ← 0 if qj ∈ R ▷ Match documents with unique #keywords
23: row Aj′ ← 0 if kj′ ∈ R
24: for j ∈ [n] where edj ̸∈ C do
25: vectorB [j] ← sum of column Bj

26: for j′ ∈ [n′] where dj′ ̸∈ C do
27: vectorA[j

′] ← sum of column Aj′

28: for vectorBj ∈ vectorB that is unique and edj ̸∈ C do
29: if vectorA′

j
== vectorBj and dj′ ̸∈ C then

30: C[edj ] ← dj′

31: C ← C ∪ coOccurrence(C,M,M ′, A,B) ▷ Match docs with co-occurrence

32: return R, C
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