
DEKS: a Secure Cloud-based Searchable Service
can Make Attackers Pay

Yubo Zheng1, Peng Xu1(�), Wei Wang2, Tianyang Chen1, Willy Susilo3,
Kaitai Liang4, and Hai Jin1

1 National Engineering Research Center for Big Data Technology and System,
Services Computing Technology and System Lab, Hubei Engineering Research Center
on Big Data Security, School of Cyber Science and Engineering, Huazhong University

of Science and Technology, Wuhan, 430074, China
{zhengyubo,xupeng,chentianyang,hjin}@mail.hust.edu.cn

2 Cyber-Physical-Social Systems Lab, School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, 430074, China

viviawangwei@hust.edu.cn
3 Institute of Cybersecurity and Cryptology, School of Computing and Information

Technology, University of Wollongong, Wollongong, Australia
wsusilo@uow.edu.au

4 Faculty of Electrical Engineering, Mathematics and Computer Science, Delft
University of Technology, Delft, The Netherlands

Kaitai.Liang@tudelft.nl

Abstract. Many practical secure systems have been designed to prevent
real-world attacks via maximizing the attacking cost so as to reduce at-
tack intentions. Inspired by this philosophy, we propose a new concept
named delay encryption with keyword search (DEKS) to resist the notori-
ous keyword guessing attack (KGA), in the context of secure cloud-based
searchable services. Avoiding the use of complex (and unreasonable) as-
sumptions, as compared to existing works, DEKS optionally leverages a
catalyst that enables one (e.g., a valid data user) to easily execute en-
cryption; without the catalyst, any unauthenticated system insiders and
outsiders take severe time consumption on encryption. By this, DEKS
can overwhelm a KGA attacker in the encryption stage before it obtains
any advantage. We leverage the repeated squaring function, which is the
core building block of our design, to construct the first DEKS instance.
The experimental results show that DEKS is practical in thwarting KGA
for both small and large-scale datasets. For example, in the Wikipedia, a
KGA attacker averagely takes 7.23 years to break DEKS when the delay
parameter T = 224. The parameter T can be flexibly adjusted based on
practical needs, and theoretically, its upper bound is infinite.

Keywords: Delay encryption with keyword search · Keyword guessing
attack · Security · Privacy

“This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this
 contribution is published in Lecture Notes in Computer Science book series,

and is available online at https://doi.org/10.1007/978-3-031-17146-8_5

2 Y. Zheng et al.

1 Introduction

To date, an increasing number of individuals and companies choose to outsource
their personal and business data to remote cloud. Combining with encryption
technique, cloud-based searchable service, like CipherCloud [2], bitglass [1], and
MVISION Cloud [3], provide privacy-preserving data query and retrieval for
cloud users without violating data security. The secure service enables a data
searcher to put, say a keyword, into a search query, and after that, the cloud
server performs searching and returns matching files without knowing the in-
formation of the keyword and the files. This searchability can be captured by
the use of searchable symmetric-key encryption (SSE) [37], in a single-sender
scenario but with complex key distribution for multiple senders, or searchable
public-key encryption (SPE) [10] (also well known as public-key encryption with
keyword search, PEKS), in a multi-sender scenario.

In PEKS, each sender generates keyword-searchable ciphertexts with a target
receiver’s public key. The key is public so that any sender can generate a PEKS
ciphertext without pre-communication with the receiver. The receiver can keep
off-line, after publishing his public key, till he wants to retrieve the ciphertexts of
an expected keyword. Upon getting a keyword search delegation of the receiver,
the cloud server finds all matching ciphertexts and then returns them. However,
many PEKS schemes suffer from keyword guessing attack (KGA).

KGA seriously threatens the security of PEKS. This is due to the intrinsic
design of PEKS [28]. Boneh et al. [12] concluded that it is a challenge to resist
KGA unless the target keyword is sufficiently unpredictable. Fig. 1 shows two
types of KGA categorized as their interactive pattern, namely, off-line KGA [14]
and on-line KGA [42]. Specifically, an off-line KGA attacker guesses the key-
word in a unique search request without interaction with the cloud server, for
example, the malicious server itself and other attackers launch KGA locally. An
attacker can exhaust all possible keywords, generate the corresponding PEKS ci-
phertexts, and guess the target keyword by testing if a given ciphertext matches
the trapdoor. As for on-line KGA, attackers, like malicious senders, need public
injecting guessing ciphertexts into the cloud server. They can upload all possible
PEKS ciphertexts to the server, eavesdrop the search results to determine which
ciphertext corresponds to which trapdoors, and reveal the target keyword.

ReceiverCloud Server

Matching Results

Keyword Search

Trapdoor

2. Guess one keyword,

generate its ciphertext

and test whether match

repeatedly Off-line attacker

1. Eavesdrop or capture

a search request

Senders

Ciphertexts

1. Guess all possible

keywords, generate their

ciphertexts and upload

them to the cloud server On-line attacker

2. Eavesdrop search results

ReceiverCloud Server

Matching Results

Keyword Search

Trapdoor

Senders

Ciphertexts

Fig. 1. Off-line and On-line KGA Overview.

“This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this
 contribution is published in Lecture Notes in Computer Science book series,

and is available online at https://doi.org/10.1007/978-3-031-17146-8_5

DEKS: a Secure Cloud-based Searchable Service can Make Attackers Pay 3

1.1 Motivation

Many research works have contributed to resisting KGA. We analyze and cate-
gorize them into the following types based on the core techniques they use. Note
we here briefly introduce the types and will present a detailed review later.

– Type-I: The schemes, in [22, 23, 34, 35], suppose that server is trusted. The
receiver can designate that only trusted server can perform keyword search.
Thus, KGA can be easily excluded.

– Type-II: The schemes, in [16, 40, 43], require that both senders and receiver
know the distribution of all possible keywords, and the distribution is static.
This facilitates the receiver to constrain the malicious server’s search capabil-
ity only to fuzzy keyword search. Thus, the server cannot guess the accurate
target keyword.

– Type-III: The schemes, in [18, 39], make good use of two non-colluding
servers. The receiver can split a complete search procedure into two phases
and delegate the phases to the two non-colluding servers, respectively. Nei-
ther of the servers can guess the target keyword independently.

– Type-IV: Those works, in [26, 30–33, 38], assume that the receiver can al-
ways identify if senders are trusted. The receiver may only search over these
trusted senders’ ciphertexts. Thus, on-line KGA may be easily prevented.

– Type-V: The solutions, in [17, 44], requires a trusted server interactively to
assist senders in generating ciphertexts (but does not launch on-line KGA).
No sender can generate ciphertexts without the server. Thus, the server can
limit the capability of malicious senders to launch on-line KGA.

We find that all the aforementioned solutions are valid only if some additional
and strong assumptions (or unreasonable constraints) hold. These assumptions
are hard to be captured in real-world scenarios, and they even deviate from the
original PEKS. Specifically, the assumptions of the Type-I and Type-V solutions
are too ideal in practice. The assumption of the Type-IV solutions limits the
application of secure searchability, to some degree. The Type-II and Type-III
solutions also restrict the scalability of PEKS. Note the comprehensive analyses
will be given in section 2. Without using the above assumptions, we make efforts
to investigate a brand new design idea for KGA-resistant design.

1.2 A High-level Overview of Our Idea

Proof of Honesty (PoH) is the main component we use to design a KGA-resistant
scheme without any strong assumptions. Inspired by blockchain consensus mech-
anism, e.g., proof of work (PoW) [27] mechanism, we propose the notion PoH.
Each participant pays his computations to prove his honesty. Specifically, the
participants build reliability with only computational techniques and then build
a secure environment together. PoH is a self-constructing honesty-aware mech-
anism. It provides two or more parties an approach to build up essential trust
in fewer conversations, even non-interactively. Based on PoH, we successfully let
attackers pay severe time consumption mandatorily in encryption. It results that

“This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this
 contribution is published in Lecture Notes in Computer Science book series,

and is available online at https://doi.org/10.1007/978-3-031-17146-8_5

4 Y. Zheng et al.

a KGA attacker may lose intention or must pay a huge cost for attack. A consid-
erable amount of cost overweighs the attacker’s benefits such that KGA may be
meaningless. Our approach does not yield complex interactions and expensive
computational costs; meanwhile, it does not introduce any extra assumptions.

1.3 Our Contributions

This work aims at constructing a practical KGA-resistant scheme for cloud-
based searchable service via the use of you-attack-then-you-pay philosophy. Our
contributions are described as follows.

We investigate the existing KGA-resistant works and categorize them into
five types according to their technical features. After comprehensively analyzing,
we notice that we can design a KGA-resistant scheme in the PoH approach, to
open a new vision in this research line. To this end, we propose a new scheme
named delay encryption with keyword search (DEKS). DEKS allows the receiver
to define the time cost of generating a keyword-searchable ciphertext when ini-
tializing his public key. With the receiver’s public key, no sender can generate a
ciphertext with a time cost less than the receiver’s requirement, even when the
sender is malicious. In other words, DEKS can delay the generation of ciphertext
as the request of the receiver. Note such a delay process is non-interactive. More-
over, DEKS allows the receiver to initialize a catalyst, which enables the receiver
to generate a keyword search trapdoor efficiently (without any delay). In appli-
cation, the receiver optionally can give the catalyst to honest senders (e.g., top
contacts of the email system who usually are the receiver’s close friends or busi-
ness partners) and speed up the generation of a ciphertext. In terms of security,
the sender cannot leverage the catalyst to forge any legal search trapdoor.

We apply repeated squaring and bilinear mapping to realize a DEKS instance.
In DEKS, we have four phases, namely, Setup, DEKS, Trapdoor, and Test.
In Setup, the receiver generates his public-and-private keys and a catalyst. The
public key contains a delay parameter T , which means the mandatory number
of executing squaring modulo operations to generate a ciphertext in DEKS.
However, the honest senders (like top contacts) can fast generate ciphertexts
when getting the catalyst from the receiver. In Trapdoor, the receiver efficiently
generates a trapdoor for an expected keyword with both the catalyst and the
private key. We prove that if the generation of a ciphertext without the catalyst
does not satisfy the above mandatory time limitation, the trapdoor is ineffective
in testing the ciphertext even if they have the same keyword in the Test phase.
We also prove that DEKS is semantically secure.

Finally, we evaluate DEKS through comprehensive experiments. We take the
Enron mail data and Wikipedia article data to examine the practical security
of DEKS for resisting KGA, respectively. DEKS is valid for both small and
large-scale datasets. As the delay parameter T increases, an attacker’s average
consumed time to complete a successful KGA climbs exponentially. For example,
for the Wikipedia dataset, when T = 224, it takes 7.23 years for an attacker to
complete a successful KGA. And, the average time cost to break a traditional
PEKS is less than 51 hours. As for the small-scale dataset Enron, DEKS can

“This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this
 contribution is published in Lecture Notes in Computer Science book series,

and is available online at https://doi.org/10.1007/978-3-031-17146-8_5

DEKS: a Secure Cloud-based Searchable Service can Make Attackers Pay 5

also give a better performance on resisting KGA by increasing the value of T . At
last, we consider the case where attackers are equipped with parallel computing
ability. For mitigating the effect of parallel computing, the receiver can slightly
increase the value of T . T belongs to a large set and does have an infinite upper
bound. It, thus, can be a factor to properly limit the KGA ability.

Discussions. To the best of our knowledge, the repeated squaring function
is a unique technique to construct DEKS, which is also implied in [13]. From the
technical viewpoint, our DEKS is different from the scheme in [13]. Furthermore,
we cannot construct DEKS from their design because they delay the generation
of a private key instead of ciphertext. Besides, the following delay techniques
cannot be used to construct DEKS either. The password-based key-derivation
function is used to mitigate dictionary attacks on password [41]. It delays deriv-
ing keys so that the workload of key search attacks significantly increases. But it
cannot be used to delay encryption. Both PoW [27] and proof of sequential work
(PoSW) [20] can mandatorily assign the time cost of finding a valid proof of a
work. However, they require many valid proofs for a given task, and the receiver
cannot securely delegate a semi-trust server to verify different proofs. This ap-
proach may not be feasible for us. The verifiable delay function (VDF) [9], which
is not based on the repeated squaring function, is also ineffective in construct-
ing DEKS. Such a kind of component cannot achieves either the non-interactive
delay and verification functions or the catalyst-optional delay function, which is
similar to the non-interactive VDF in [24], failing to achieve the optional short-
cut to speed up finding a delay proof. We note that the short-cut (or the catalyst)
is a must for guaranteeing a DEKS is friendly to the receiver and honest senders.

2 KGA Revisited

Table 1 shows the comparisons among the aforementioned five types of exist-
ing schemes and our proposed DEKS. We here separately consider insiders and
outsiders in off-line and on-line KGA. Outside attackers are eavesdroppers and
malicious senders. Semi-trusted servers perform as insider attackers. Our com-
prehensive analyzations as follows.

Table 1. Comparisons among Existing and Our Works.

Type Off-line KGA-resistant On-line KGA-resistant The Particular Required Other Disadvantagesoutside inside outside inside Assumption

Type-I
√

Omitted
√

Omitted A trusted server to
implement keyword searches

Make PEKS useless in
practice

Type-II
√ √ √ √ The distribution of keywords

is known
Additional cost to filter out
the redundant ciphertexts

Type-III
√ √

× ×
Two non-colluding servers to
implement keyword searches

cooperatively

The communication cost
between two servers

Type-IV
√ √ √ √ The receiver can always

identify if senders are trusted

The size of a keyword
trapdoor is linear with the

count of senders

Type-V
√

Omitted
√

Omitted
A trusted server to assist the
generation of ciphertexts and

trapdoors

The assistant server is
needed and could be a
performance bottleneck

DEKS
√ √ √ √

No above assumptions No above disadvantages

“This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this
 contribution is published in Lecture Notes in Computer Science book series,

and is available online at https://doi.org/10.1007/978-3-031-17146-8_5

6 Y. Zheng et al.

Type-I. The Type-I solutions suppose a trusted server performs all keyword
search tasks while any other entity cannot. Baek et al. [6] first proposed this idea
and designed a secure channel-free PEKS, but their work cannot resist KGA.
Rhee et al. [35] applied this idea to construct the first PEKS instance resisting
outside off-line KGA. Some following works, like [22, 23, 34], also applied this
idea to resist outside off-line KGA. Generally, the Type-I solutions can be easily
extended to resist outside on-line KGA by requesting the trusted server returns
the encrypted search results to the receiver, as in [19]. However, supposing a
trusted server is too ideal to realize in real-world scenarios. This assumption leads
the Type-I solutions to omit inside off-line and on-line KGAs. Moreover, this
assumption also makes PEKS meaningless in practice. A trusted server is allowed
to search keywords directly over plaintexts while maintaining the confidentiality
of keywords by applying a traditional secure communication technique.

Type-II. The Type-II solutions suppose that the distribution of keywords is
known and public and allows the server only to implement fuzzy keyword search.
Both the server and the malicious sender cannot know the accurate keyword that
the receiver requests. Thus, the Type-II solutions can resist off-line and on-line
KGAs. Xu et al. [40] proposed the first Type-II solution. Some following works
utilize the same idea and achieve new properties, such as the works in [16, 43].
However, it is difficult to know the distribution of keywords. In practice, different
applications have different distributions of keywords. Moreover, the distribution
of keywords can be dynamic due to the character of data. In addition, the Type-
II solutions return many redundant ciphertexts to the receiver, and the receiver
must pay an additional time cost to filter out these ciphertexts.

Type-III. The Type-III solutions suppose two non-colluding servers and
split a search task into two parts, and these servers each implement a part. This
idea first appeared in work [39]. However, if a single server is malicious, it can
still launch the inside off-line KGA. Chen et al. overcame this limitation and
designed a new Type-III solution [18]. However, it is not easy to guarantee that
these two servers do not collude in practice. Moreover, the additional interaction
between these two servers increases the communication cost and decreases the
search performance.

Type-IV. The Type-IV solutions suppose the receiver can always identify
if senders are trusted, and the receiver generates a trapdoor for each trusted
sender to realize a keyword search over these senders’ ciphertexts. Huang and
Li [26] proposed the first and specific Type-IV solution to resist off-line and on-
line KGAs. Some subsequent works applied the same idea to resist KGA, such
as works in [30–33, 38]. However, the Type-IV solutions limit the application of
PEKS to some individual scenarios, such as the receiver knows all trusted senders
in advance. Indeed, in such a scenario, SSE is more convenient than PEKS for
achieving keyword searches over ciphertexts. In addition, the receiver has to
generate many trapdoors for searching a keyword, and the count of trapdoors
increases linearly with the count of trusted senders.

Type-V. The Type-V solutions suppose a trusted server to assist PEKS in
generating its ciphertexts and trapdoors. Chen et al. [17] first proposed the Type-

“This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this
 contribution is published in Lecture Notes in Computer Science book series,

and is available online at https://doi.org/10.1007/978-3-031-17146-8_5

DEKS: a Secure Cloud-based Searchable Service can Make Attackers Pay 7

V solution. It designed a particular trusted keyword server to compute the hash
values of keywords when senders encrypt these keywords or the receiver generates
these keywords’ trapdoors. Since this trusted server does not help the untrusted
server and malicious senders generate the ciphertext, the Type-V solutions can
resist the outside off-line and on-line KGAs. In addition, to resist the on-line
KGA, the trusted server intentionally limits the speed to generate ciphertexts.
Later, Zhang et al. [44] used multiple servers to avoid the single-point-of-failure
problem. However, the Type-V solutions omit the case that the assistant server
could be an inside attacker. Besides, the assistant server could be a performance
bottleneck if many senders connect with the server simultaneously.

DEKS. As the first of its type, it avoids the unreasonable assumptions used
in the previous types, and it can resist all kinds of KGAs. DEKS allows the
receiver to non-interactively constrain the minimum time cost of generating a
keyword-searchable ciphertext. Neither the malicious sender nor the untrusted
server can break this constraint. Thus, launching a successful KGA will take a
considerable time cost such that the cost could be beyond the benefits obtained
by a successful attack. Compared with existing works, DEKS provides the best
performance in all metrics, except encryption. But DEKS has a negligible impact
on encryption throughput, and honest senders who hold a catalyst could generate
ciphertexts efficiently. DEKS also does not affect testing throughput.

In summary, all previous KGA-resistant works rely on some particular as-
sumptions. These assumptions are either difficult to realize or restrict the ap-
plication of PEKS to some individual scenarios. In contrast, DEKS adopts the
novel idea of delaying the encryption performance to resist KGA without any
particular assumption. Any sender can independently achieve the encryption,
but no one can avoid the mandatory encryption delay without a catalyst, even
if the sender is malicious.

3 System Definition and Model

3.1 System Overview

A DEKS system contains three participants: receiver, sender, and server, and
they work as follows, shown in Fig. 2.

– Receiver. In Setup, a receiver chooses the minimum time cost to generate
a DEKS ciphertext, generates his public-and-private keys and a catalyst,
and then publishes his public key. In Trapdoor, the receiver chooses an
expected keyword and delegates the corresponding keyword trapdoor to the
server. The receiver optionally could give the catalyst to the honest senders
(such as top contacts in the email system) for accelerating encryption.

– Sender. In DEKS, each sender abstracts keywords from the to-upload file,
then gets the corresponding ciphertexts by encrypting these keywords with a
receiver’s public key, and finally uploads these ciphertexts and the encrypted
file to a semi-trusted server. With the catalyst, the honest senders can encrypt
keywords fast. Other senders without the catalyst can only encrypt with a
mandatory and slow speed.

“This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this
 contribution is published in Lecture Notes in Computer Science book series,

and is available online at https://doi.org/10.1007/978-3-031-17146-8_5

8 Y. Zheng et al.

Sender Server Receiver

Choose the minimum time cost to

generate a DEKS ciphertext, generate

public-and-private keys and a catalyst,

and publish the public key

Generate the DEKS ciphertexts

(with or without the catalyst)

and the encrypted file

Store

Find the matching DEKS

ciphertexts

DEKS Phase

Setup Phase

Trapdoor Phase

Test Phase

Ciphertexts

Trapdoor

Search Results

Generate a keyword

search trapdoor

Fig. 2. The Workflow of DEKS.

– Server. InDEKS, the server stores the uploaded ciphertexts from senders. In
Test, once getting a keyword search delegation from a receiver, the server
finds and returns all matching ciphertexts to the receiver. Note that the
server is honest in implementing a keyword search; however, meanwhile, the
server is curious about the keywords that the receiver desires to search.

3.2 Definition of DEKS

The main difference between PEKS and DEKS appears in the definitions of the
encryption algorithm and correctness or consistency. The encryption algorithm
of DEKS has an optional input parameter. When the optional input parameter is
a catalyst, the encryption algorithm performs fast; otherwise, the performance is
relatively slow. In addition to the search correctness, we define the correctness for
delaying the generation of a DEKS ciphertext. The proposed correctness guar-
antees that everyone must take a fixed minimum time to generate a ciphertext
without a catalyst - even for the malicious parties.

Definition 1 (DEKS). A DEKS scheme DEKS contains four algorithms, Setup,
DEKS, Trapdoor, and Test, as shown below.

– (PK,SK, π) ← Setup(k, t): Take as inputs a security parameter k and a
minimum time constraint t and probabilistically output a pair of public-and-
private keys (PK,SK) and a catalyst π.

– Cw ← DEKS(PK,w, opt):Take as inputs the public key PK, a keyword w
and an optional input parameter opt, probabilistically output a DEKS ci-
phertext Cw of keyword w with a high speed if the optional input parameter
opt = π; Otherwise, slowly output a probabilistical DEKS ciphertext Cw of
keyword w.

– Tw′ ← Trapdoor(SK, π,w′): Take as inputs the private key SK, the catalyst
π, and a keyword w′, output a keyword search trapdoor Tw′ of keyword w′.

– “0” or “1”← Test(Tw′ , Cw): Take as inputs a keyword search trapdoor Tw′

and a DEKS ciphertext Cw, output “1” if trapdoor Tw′ and ciphertext Cw

“This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this
 contribution is published in Lecture Notes in Computer Science book series,

and is available online at https://doi.org/10.1007/978-3-031-17146-8_5

DEKS: a Secure Cloud-based Searchable Service can Make Attackers Pay 9

contain the same keyword (namely, the representation w = w′ holds); other-
wise, output “0”.

In addition, DEKS must be correct or consistent in the following senses:

– Search Correctness: For any two keywords w and w′, given the corresponding
ciphertext Cw ← DEKS(PK,w, opt) and the corresponding trapdoor Tw′ ←
Trapdoor(SK, π,w′), scheme DEKS always has that algorithm Test(Tw′ , Cw)
outputs “1” if w = w′ holds and “0” otherwise, except with a negligible prob-
ability.

– Delay Correctness: For any keyword w, no one can generate a valid DEKS
ciphertext with a time cost less than parameter t if it is the first time to
encrypt the keyword w without the catalyst π. A valid DEKS ciphertext
means that the ciphertext can satisfy the above search correctness.

Remark. In practice, suppose a receiver determines that a sender is honest.
The former optionally can help the latter to accelerate ciphertext generation by
giving the catalyst π securely, so that the time cost may decrease significantly.
Beyond that, the sender cannot use the catalyst π to harm the scheme, like
recovering a valid keyword search trapdoor.

3.3 SS-CKA Security

Semantic security is recognized as a strong enough guarantee in the public-key
setting, especially with simple assumptions. The semantic security of DEKS is
the same as that of PEKS. It is also defined as the semantic security under chosen
keyword attacks (SS-CKA). The SS-CKA security is distinct from the security
under KGA. The former focuses on if a ciphertext leaks its keyword under the
assumption that the keyword’s trapdoor is unknown; while the latter captures if
a trapdoor leaks its keyword, which implies that the KGA adversary knows the
target trapdoor. We briefly review SS-CKA security below. More details can be
found in reference [10].

Definition 2 (SS-CKA). A DEKS scheme DEKS is SS-CKA secure if any
probabilistically polynomial time (PPT) adversary A wins the following SS-CKA
game with only a negligible advantage:

– Setup: A challenger sets the public-and-private keys and the catalyst of
DEKS and publishes the public key (and the catalyst) to adversary A.

– Query Phase 1: Adversary A adaptively requests the expected keywords’
trapdoors.

– Challenge: Adversary A chooses two challenge keywords and issues them
to the challenger. The challenger randomly picks one of those keywords to
generate the challenge ciphertext.

– Query Phase 2: Same as Query Phase 1. Noting that adversary A cannot
request the trapdoors of the challenge keywords in Query Phase 1 and 2.

– Guess: Adversary A guesses which challenge keyword is contained in the
challenge ciphertext. Adversary A wins this game if the guess is correct.

“This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this
 contribution is published in Lecture Notes in Computer Science book series,

and is available online at https://doi.org/10.1007/978-3-031-17146-8_5

10 Y. Zheng et al.

4 A Concrete Construction for DEKS

4.1 Mathematical Tools

Bilinear Mapping Function [15] . Let G1, G2 and GT be three multiplica-
tive groups with the same prime order q. Let g1 and g2 denote generators
of group G1 and G2, respectively. The bilinear mapping function is defined
as an efficient function ê : G1 × G2 → GT with the property that equation
ê(gu1 , g

v
2) = ê(g1, g2)

uv holds for ∀u, v ∈ Z∗q .
Repeated Squaring Function [36]. Let P and Q be two special primes hav-
ing the same binary size. We say that primes P and Q are special if equations
P = 2P1+1, P1 = 2P2+1, Q = 2Q1+1, and Q1 = 2Q2+1 hold and P1, P2, Q1,
and Q2 are also primes [8]. Without loss of generality, suppose P2 is less than
Q2. Let N = P ·Q and ϕ(·) denote Euler’s totient function. Given ∀$ ∈ Z∗N and
T < P2, a repeated squaring function is defined to compute $2T mod N .

With Euler number ϕ(N), it is very efficient to compute $2T mod N by
computing 2T mod ϕ(N) first and then computing $2T mod ϕ(N) mod N . In
contrast, without Euler number ϕ(N), we usually have to repeatedly compute
$ = $2 mod N T times.

4.2 The Construction

We apply the repeated squaring function (RSF) to delay the time cost of ci-
phertext generation. Instead of directly generating a searchable ciphertext for a
keyword, we take the keyword as input to implement the RSF and then compute
the ciphertext from the resulting output. We state that no practical method can
accelerate the implementation of the RSF without a catalyst. We also use a sim-
ilar idea to efficiently generate a keyword search trapdoor (with the catalyst).
Due to the delay capability, anyone who does not know the catalyst must take
a mandatory time to generate a ciphertext. And this capability does not affect
the search performance. The details of our instance are described below.

– Setup(k, t,W): Take as inputs the security parameter k, the minimum time
constraint t, and the keyword space W and implement the steps below:
1. Generate parameters (q,G1,G2,GT , g2, ê) of the bilinear mapping func-

tion according to the security parameter k;
2. Pick parameters (P,Q,N, T) of the repeated squaring function, such that

for any randomly chosen$ ∈ Z∗N , the time cost to compute$2T mod N
is more than the minimum time constraint t without ϕ(N);

3. Set π = 2T mod ϕ(N), randomly pick σ ∈ Z∗q , and set η = gσ2 ;
4. Choose three cryptographic hash functions H1 : W → Z∗N , H2 : Z∗N →

G1, and H3 : GT → {0, 1}k;
5. Output public key PK = (q,G1,G2,GT , g2, η, ê,W, N, T,H1, H2, H3),

private key SK = σ, and catalyst π.
– DEKS(PK,w, opt): Take as inputs public key PK, a keyword w ∈ W, and

an optional parameter opt ∈ {Null, π} and execute the steps below:

“This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this
 contribution is published in Lecture Notes in Computer Science book series,

and is available online at https://doi.org/10.1007/978-3-031-17146-8_5

DEKS: a Secure Cloud-based Searchable Service can Make Attackers Pay 11

1. Take the hash value H1(w) as input to compute its repeated squaring,
where directly compute ∆ = H1(w)

π mod N if opt = π, and otherwise,
get the same result slowly by computing ∆ = H1(w)

2T mod N ;
2. Randomly pick r ∈ Z∗q and compute C1 = gr2 and C2 = H3(ê(H2(∆)r, η));
3. Output the DEKS ciphertext Cw = (C1, C2) of keyword w.

– Trapdoor(SK, π,w′): Take as inputs private key SK, catalyst π, and a
keyword w′ ∈ W, compute the repeated squaring ∆′ = H1(w

′)π mod N
of the hash value H1(w

′), and finally output the keyword search trapdoor
Tw′ = H2(∆

′)σ.
– Test(Tw′ , Cw): Take as inputs a keyword search trapdoor Tw′ and a DEKS

ciphertext Cw = (C1, C2), output “1” if H3(ê(Tw′ , C1)) = C2, and otherwise,
output “0”.

4.3 Correctness and Security Proof

Theorem 1 and 2 separately guarantee the search correctness and delay correct-
ness of our DEKS instance. Due to the limit of space, we provide the proofs of
these two theorems in the full version of this paper.

Theorem 1. Suppose that hash functions H1, H2, and H3 are random oracles.
DEKS can maintain search correctness, except for a negligible probability.

Theorem 2. Given two special primes P and Q having P 6= Q, N = P ·Q, and
a positive integer T < P2; suppose that N is an n-bit composite number. The
time cost to generate a DEKS ciphertext is at least t = Sn · T without catalyst
π, where π = 2T mod ϕ(N), ϕ(N) = (P − 1)(Q − 1), and Sn is the time cost
to compute squaring modulo N .

The SS-CKA security relies on the computational bilinear Diffie-Hellman
(CBDH) assumption. According to the security parameter k, given parame-
ters (q,G1,G2,GT , g1, g2, ê) of the bilinear mapping function and parameters
(ga2 , g

b
2, g

c
1), the CBDH problem is to compute the value of ê(g1, g2)abc, where

(a, b, c) are randomly sampled from Z∗q . Let Adv
CBDH
B (k) denote the advantage

of solving the CBDH problem by algorithm B. The CBDH assumption holds if
AdvCBDH

B (k) is negligible.
In the proof, we show that a specially constructed algorithm can solve the

CBDH problem if a PPT adversary can break the SS-CKA security of our DEKS
instance. Formally, we have Theorem 3 below. Since the CBDH assumption holds
in practice, Theorem 3 guarantees that no one can break the SS-CKA security.
Due to the limit of space, we provide the proof in the full version of this paper.

Theorem 3. Model hash functions H1, H2, and H3 as three random oracles
QH1

(·), QH2
(·), and QH3

(·), respectively. Suppose a PPT adversary A wins
with advantage AdvSS-CKA

DEKS,A in the SS-CKA game of our DEKS instance, in
which A makes at most q1 queries to QH1

(·), at most q2 queries to QH2
(·),

at most q3 queries to QH3(·), and at most qt queries to Qtrapdoor(·). Then, the
probability of a PPT algorithm B to solve the CBDH problem in parameters
(q,G1,G2,GT , g1, g2, ê, ga2 , gb2, gc1) is AdvCBDH

B (k) ≥ 2
e2q2t q3

AdvSS-CKA
DEKS,A, where e

denotes the base of the natural logarithm.

“This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this
 contribution is published in Lecture Notes in Computer Science book series,

and is available online at https://doi.org/10.1007/978-3-031-17146-8_5

12 Y. Zheng et al.

5 Evaluation

We evaluate practical schemes in terms of computation and communication. And
we experimentally compare DEKS with the two most-efficient schemes. We also
leverage the Enron mail data [21] and Wikipedia article dataset [25] to evaluate
the security of our DEKS under KGA.

5.1 Complexity Analysis

In terms of complexity, we compare DEKS with six classic PEKS instances. These
schemes include the first PEKS (BC’04 [10]) and different types of KGA-resistant
PEKS (RS’09 [35], XJ’13 [40], CM’16 [18], HL’17 [26], and CMY’16 [17]). For each
of them, we analyze the efficiency in three algorithms: ciphertext generation,
trapdoor computation, and test if a ciphertext matches. And we also analyze
the size for the main public and private parameters. Moreover, we evaluate the
number of expensive cryptographic operations implemented in those algorithms.
The expensive operations mainly include the computations of exponentiation,
multiplication, division, and bilinear mapping in different algebraic groups. To
make the comparison simple and clear, Table 2 defines the symbols which we
use later.

Compared with RS’09, XJ’13, CM’16, HL’17, and CMY’16, DEKS is much ef-
ficient in trapdoor generation and test stage. But DEKS is more complicated in
ciphertext generation than others. We choose to use this tricky and subtle way
to resist KGA. Further, both DEKS and BC’04 are most efficient in terms of com-
munication complexity. If honest senders are given the catalyst, the complexity
of encryption reduces significantly which could be quite close to the performance
of BC’04. Besides, DEKS still performs well in terms of parameter size.

In summary, BC’04 has great performance in terms of the complexity and the
interaction pattern but cannot thwart KGA. Under some particular assumptions,
others may resist KGA while sacrificing some complexity and communication

Table 2. Theoretical Comparison among DEKS and Existing Works in Efficiency.

Instance Computation Complexity Communication Cost Parameter Size TypeCiphertext Trapdoor Testing Ciphertext Trapdoor Testing Public Private
BC’04 [10] 2× E1 +B E1 B G+ k G Ω 2×G Z∗

q Original
RS’09 [35] 2× E1 +B 3× E1 +M1 2×E1+D+B G+ k 2×G Ω 3×G 2× Z∗

q Type-I

XJ’13 [40] 4× E1 + 2×B 2× E1 2×B 2×G+2×k G 2×Ω or
3×Ω 2×G Z∗

q Type-II

CM’16 [18] 4× E1 + 2×M1
4× E1 +D +

M1

7× E1 +D +
5×M1

6×G 3×G Ω 2×G 4× Z∗
q Type-III

HL’17 [26] 3× E1 +M1 θ × (E1 +B) M2 +B 2×G θ ×GT Ω 2×G 2× Z∗
q Type-IV

CMY’16 [17] 2× E1 + 2× E2 +
2×M3 +B

E1 +2×E2 +
2×M3

B
2× Z∗

N +
G+ k

2×Z∗
N+G Ω

2×G+
2× Z∗

N
Z∗

q + Z∗
N Type-V

DEKS 2×E1 + T ×M3 +B
or 2× E1 + E2 +B

E1 + E2 B G+ k G Ω 2×G+Z∗
N Z∗

q + Z∗
N New

Notations*

E1 and E2 separately denote the exponentiation operation in groups G and Z∗
N ;

θ denotes the number of possible senders; Ω denotes the size of matching ciphertexts;
T denotes the delay parameter in our DEKS instance; k denotes the security parameter;
B denotes the bilinear mapping operation; D denotes the division operation in group G;
M1, M2, and M3 separately denote the multiplication operation in groups G, GT , and Z∗

N .
*Without loss of generality, we use G denote G1 or G2.

“This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this
 contribution is published in Lecture Notes in Computer Science book series,

and is available online at https://doi.org/10.1007/978-3-031-17146-8_5

DEKS: a Secure Cloud-based Searchable Service can Make Attackers Pay 13

price. DEKS maintains analogous complexity and the same interaction pattern
as BC’04, while merely sacrificing the efficiency of encryption.

5.2 Experimental Analysis

We design two kinds of experiments to evaluate DEKS’s performance, and fur-
ther compare it with two efficient works, namely, BC’04 and CMY’16. The first
experiment codes the above three instances. It compares their time costs in the
aforementioned three algorithms. The second experiment tests the capability of
DEKS in resisting KGA. It separately compares the time costs in launching KGA
on DEKS and BC’04 in order to show that DEKS can make attackers cost mas-
sively. Further, we evaluate the average time cost on one guessing attempt for
attackers equipped with parallel computing supports. The results show that our
DEKS still makes attackers suffer well. Our experimental source codes are avail-
able on https://github.com/HustSecurityLab/DEKS_Exp, and the interested
readers can use the codes to reproduce the results.

Table 3. Experimental Environment.

Hardware & Operation System 4 × Intel Xeon CPU E5-2630 v3 @ 2.40GHz and 48 GB RAM; Ubuntu 20.04LTS
Compiler & Interpreter GCC v9.3.0 and Python v3.6

Program Library GMP v6.1.2, PBC v0.5.14, and NLTK v3.5
Dataset Enron dataset [21] and Wikipedia dataset [25]

Elliptic curve y2 = x3 + b with Embedding Degree 12 (unit: decimal)
Base Field 16283262548997601220198008118239886027035269286659395419233331082106632227801

Group Order 16283262548997601220198008118239886026907663399064043451383740756301306087801
b 7322757890651446833342173470888950103129198494728585151431956701557392549679

Repeated Squaring Function y = x2
T

mod N with N = P ·Q; both P,Q are special primes (unit: hexadecimal)

P

DD848D47E193DCF0F57DD9256ABF10B5869C2D5D600C21A4D36C29659C062542B5CDCB6CF1002D7177D720472078AFC0
193BAD7E0FCE7C07CABC83526F71CF2881993188748C07C52CF73D1A09BF38F22163909A7EBAEEC9A9D9019F6CE919AE
F18BCD995F80E7823370D500B53DC85D169F4FBA383C9A2E7DA2393A11A9B171C86957B82E8115F9FB19670466155E50
E41ADF91FB392EBC53614A475F58F9959972E56346993923991BD15110D2393513243DFEB2C28FCDFA067535E7A8A4DF

Q

F9CE5FD04C169FC42F3C24C9E149EDCA7513A02648628C9AB80A9E9CE6F1FCD7EF4EA0FBC5AD4BE3E2B199A99969B749
01B46BAF632A3B653A2E0FDC37D9D44646247C104EAB0A38027725886DCCAC682A3E71A84F57E5CE3FAF8C6DD7DEA272
07AD6B3FBDDD51A4898884FB9C4853826C2836987179D4359122308CC6D44987562800D136BFB01CB3611E66B0F862EF
A0E3769BE3795A9A75CA36A69E60851111849F8F0B8D46C5ACE50FCA7157B48B991C5AE30BC7B4198C464302C477CD0F

• Experimental Environment. Table 3 shows the experimental platform,
including the hardware and software, the elliptic curve for realizing the bilinear
mapping function, and the parameters of the repeated squaring function. We use
the GNU Multiple Precision Arithmetic (GMP) library and the Pairing-Based
Cryptography (PBC) library to implement BC’04, CMY’16, and DEKS. We pro-
duce the instances in the same bilinear-mapping-friendly elliptic curve [7] that
offers efficient exponentiation operations. The elliptic curve and the composite
number N both provide the same security level as AES-128. To test the perfor-
mance, as in [29], we apply the Enron and Wikipedia and extract their keywords
to generate a small-scale dataset and a large-scale dataset separately.
• Performance Comparison. This part shows the experimental results of

the three instances BC’04, CMY’16, and DEKS. For Algorithm Test,Trapdoor,
and DEKS, we choose the delay parameter T with values 20, 212, and 224 to

“This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this
 contribution is published in Lecture Notes in Computer Science book series,

and is available online at https://doi.org/10.1007/978-3-031-17146-8_5

14 Y. Zheng et al.

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
0
4
8

1 2
1 6
2 0
2 4
2 8

Tim
e C

os
t o

f A
lgo

rit
hm

 Te
st (

s)

N u m b e r o f C i p h e r t e x t s

 D E K S w i t h T = 2 0

 D E K S w i t h T = 2 1 2

 D E K S w i t h T = 2 2 4

 C M Y ' 1 6
 B C ' 0 4

Fig. 3. Time Cost: Algorithm Test.

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
0
2
4
6
8

1 0
1 2
1 4

Tim
e C

os
t o

f A
lgo

rith
m

Tr
ap

do
or

(s)

N u m b e r o f K e y w o r d s

 D E K S w i t h T = 2 0

 D E K S w i t h T = 2 1 2

 D E K S w i t h T = 2 2 4

 C M Y ' 1 6
 B C ' 0 4

Fig. 4. Time Cost: Algorithm Trapdoor.

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
0

1 0
2 0
3 0
4 0
5 0

3 3 7 0
3 3 8 0

Tim
e C

os
t to

 Ge
ne

rat
e C

iph
ert

ex
ts

(s)

N u m b e r o f K e y w o r d s

 D E K S w i t h T = 2 0

 D E K S w i t h T = 2 1 2

 D E K S w i t h T = 2 2 4

 C M Y ' 1 6
 B C ' 0 4

Fig. 5. Time Cost: Generate Ciphertexts.

0 4 8 1 2 1 6 2 0 2 4 2 8
1 m s

1 0 m s

0 . 1 s

1 s

1 0 s

1 0 0 s

1 0 0 0 s D E K S w i t h o u t c a t a l y s t π
 D E K S w i t h c a t a l y s t π

Tim
e C

os
t to

 Ge
ne

rat
e A

 Ci
ph

ert
ex

t
P a r a m e t e r T (2 #)

Fig. 6. DEKS Time Cost: Generate a Ci-
phertext with an Increase in Parameter T .

clearly show the relations between the value of T and algorithms’ performance.
Meanwhile, we set a test size of 1,000 to clearly show the average time cost in
each figure. Moreover, we present the average encryption time of DEKS with
different delay parameters. Without lose generality, we use T = 2i(i ∈ [0, 28]) to
show the experimental results clearly. We let the delay parameter T < 228 since
it is sufficient for us to practically resist KGA (which can be seen later).

Time Cost of Algorithm Test. Table 2 concludes that instances BC’04, CMY’16,
and DEKS have the same complexity in testing a ciphertext. The experimental
results, as shown in Fig. 3, also confirm this conclusion. Given different numbers
of ciphertexts, we test the total time cost to find the matching ciphertexts and
compute the average time to test a ciphertext. In summary, the above three
instances have the same average time cost, which is approximately 25.55 mil-
liseconds, in testing a ciphertext.

Time Cost of Algorithm Trapdoor. For each instance, we test the total time
costs to generate the corresponding trapdoors for different numbers of keywords
and compute the average cost. The numerical results, which is described in Fig. 4,
imply that DEKS takes more time than BC’04 in trapdoor generation, and the
time cost of DEKS is slightly higher than that of CMY’16. For example, the
average time cost of BC’04, CMY’16, and DEKS are 0.96 milliseconds, 12.24
milliseconds, and 0.98 to 13.71 milliseconds (for T ∈ [20, 224]), respectively. And
the average time cost of DEKS is constant for T ≥ 212.

Time Cost to Generate A Ciphertext. For each instance, we test the total time
costs to generate ciphertexts for different numbers of keywords and compute the

“This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this
 contribution is published in Lecture Notes in Computer Science book series,

and is available online at https://doi.org/10.1007/978-3-031-17146-8_5

DEKS: a Secure Cloud-based Searchable Service can Make Attackers Pay 15

average time cost. On the one hand, we test algorithm DEKS with the optional
input parameter opt = Null. As Fig. 5 shows, when T = 20, DEKS and BC’04
take a similar cost, the average values are 28.63 milliseconds and 28.47 millisec-
onds, respectively. When the delay parameter T = 212, the average of DEKS and
CMY’16 change to 45.11 milliseconds and 39.87 milliseconds, respectively. Note
for the case where T = 224, we only present the result of 50 keywords in Fig. 5.
We note that is sufficient to present a clear comparison. Setting T from 20 to
228, we can see that DEKS’s average cost also increases significantly, as shown
in Fig. 6. For example, when T = 220, the average time cost is 4.25 seconds.
On the other hand, we test algorithm DEKS with the optional input parameter
opt = π. The average cost is now quite stable even when T is increased to 212,
approximately 41.27 milliseconds. When T ≥ 212, further increasing its value,
we say, will not affect the encryption time. Note the generation of catalyst is
very efficient, in particular, it only takes nearly 55 microseconds when T ≤ 228.

• Testing DEKS’s Capability Against KGA. We take the Enron mail
data and Wikipedia article dataset as examples and test the average time cost
on launching a successful KGA on DEKS and BC’04. First, we remove the wiki
syntax from the entire Wikipedia article dataset using Wikipedia Extractor [5],
then extract keywords using the PorterStemmer tool provided by the NLTK
library [4] and remove stop words. Thus, we extract 6,756,439 different keywords
from the Wikipedia. Similarly, we extract 400,087 keywords from the Enron.

Suppose a KGA attacker desires to know the keyword underlying a given
keyword search trapdoor. The attacker picks a keyword from the keyword space,
generates the keyword’s searchable ciphertext, and tests if the searchable ci-
phertext matches the given trapdoor. If the test outputs a yes, the attacker
successfully guesses the keyword and stops the attack. Otherwise, it chooses a
new keyword and repeats the above steps.

Note BC’04 always provides fixed time cost w.r.t. ciphertext generation and
keyword testing; and given a fixed T , DEKS also maintains fixed cost. Thus, it
is feasible for us to compute the time cost to launch a successful KGA for a
given trapdoor. For example, let T Gen and T Test be the time costs to generate
and test a ciphertext, respectively. Suppose that the KGA attacker can get the
keyword in a target trapdoor after guessing num keywords. Then, the time cost
of the KGA attacker is equal to num · (T Gen + T Test).

According to the above methods, we compute the time costs of launching
a successful KGA, for each keyword. Then, we compute these costs’ arithmetic
mean, which is equal to the sum of them divided by the total count of distinct
keywords. Table 4 and 5 present the results on launching KGA on DEKS (with
some different delay parameters) and BC’04, with Wikipedia and Enron datasets.
We find that the attack works quite well on BC’04 for both small and large-
scale datasets. But, with the increase of T , DEKS can make attackers’ time cost
jump exponentially. For instance, for the Wikipedia, when T = 210, we make
attackers take 54.76 hours; when T = 217, the cost jumps to 22.74 days; and
further T = 224, it exponentially increases to 7.23 years. As for the small-scale

“This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this
 contribution is published in Lecture Notes in Computer Science book series,

and is available online at https://doi.org/10.1007/978-3-031-17146-8_5

16 Y. Zheng et al.

Table 4. Time Cost: Launch KGA on DEKS and BC’04 with Wikipedia.

Instance Arithmetic Mean of Time Cost

DEKS

T time T time T time T time T time
210 54.76 hrs 211 58.90 hrs 212 65.99 hrs 213 3.39 days 214 4.69 days
215 7.27 days 216 12.51 days 217 22.74 days 218 43.42 days 219 84.85 days
220 167.18 days 221 340.10 days 222 1.81 yrs 223 3.63 yrs 224 7.23 yrs

BC’04 50.69 hrs

Table 5. Time Cost: Launch KGA on DEKS and BC’04 with Enron.

Instance Arithmetic Mean of Time Cost

DEKS

T time T time T time T time T time
210 194.57 min 211 209.28 min 212 234.48 min 213 4.82 hrs 214 6.67 hrs
215 10.33 hrs 216 17.78 hrs 217 32.32 hrs 218 61.70 days 219 5.02 days
220 9.89 days 221 20.14 days 222 39.22 days 223 78.44 days 224 156.29 days
225 312.84 days 226 1.71 yrs 227 3.44 yrs 228 6.86 yrs

BC’04 180.09 min

dataset, Enron, the time cost of the attacker also reaches 6.86 years, along with
the increase of T .

In practice, a KGA attacker may guess and test possible keywords in parallel
so as to enhance attack performance. To simulate this setting, we experimentally
test the average time cost of one guessing attempt (namely, generating and
testing a DEKS ciphertext), with different delay parameters and various degrees
of parallelism. Fig. 7 presents the main results. From the results, it can be seen
that even a tiny increase of T may effectively mitigate the influence of parallel
attacks. For instance, given T = 219, the attacker with 16 cores CPU can reduce
the time cost of one attempt from 2.17 seconds to 0.17 seconds. If we put T to
223, the cost bounces back to 2.61 seconds. We state that DEKS resists KGA by
adaptively increasing the time cost of generating a ciphertext. And this increase
is unavoidable for any PPT adversary. According to the specific application, we
can choose an appropriate value of T to increase the attack difficulty, so that
the intaken cost of attack is far beyond the benefit attackers achieve.

1 2 4 8 1 6 3 2
0 . 0 6 4
0 . 1 2 8
0 . 2 5 6
0 . 5 1 2
1 . 0 2 4
2 . 0 4 8
4 . 0 9 6

Av
era

ge
 Ti

me
 Co

st
of

On
e A

tte
mp

t (s
)

D e g r e e o f P a r a l l e l i s m

 T = 2 1 8 T = 2 1 9 T = 2 2 0

 T = 2 2 1 T = 2 2 2 T = 2 2 3

Fig. 7. DEKS Average Time Cost: Guess and Test Possible Keywords in Parallel.

“This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this
 contribution is published in Lecture Notes in Computer Science book series,

and is available online at https://doi.org/10.1007/978-3-031-17146-8_5

DEKS: a Secure Cloud-based Searchable Service can Make Attackers Pay 17

6 Conclusion

To resist KGA on secure cloud-based searchable service, we propose a new
scheme DEKS, which allows receivers to constrain the minimum time cost of
a keyword-searchable ciphertext generation, in a non-interactive way. No sender
who generates the ciphertext can break the time constraint without a catalyst.
We apply both the RSF and bilinear mapping function to construct the first
DEKS instance and prove its unique encryption delay capability. Compared with
existing works, DEKS provides good performance and simple interaction pattern
as the original PEKS, except that the time cost of ciphertext generation may go
beyond the minimum constraint. Our experimental results show that our design
can practically resist KGA in small and large-scale datasets.

Acknowledgements. We would like to thank our shepherd Anrin Chakraborti
and the anonymous reviewers for their insightful comments and valuable sug-
gestions. This work was partly supported by the National Key Research and
Development Program of China under Grant No. 2021YFB3101304, the Wuhan
Applied Foundational Frontier Project under Grant No. 2020010601012188, the
National Natural Science Foundation of China under Grant No. 61872412, the
Guangdong Provincial Key Research and Development Plan Project under Grant
No. 2019B010139001, and the European Union’s Horizon 2020 Research and
Innovation Programme under Grant Agreement No. 952697 (ASSURED) and
No. 101021727 (IRIS).

References

1. bitglass, https://www.bitglass.com/cloud-encryption
2. CipherCloud, https://www.ciphercloud.com/encryption-and-tokenization/
3. MVISION cloud, https://www.mcafee.com/enterprise/en-us/products/

mvision-cloud/salesforce.html
4. Natural Language Toolkit (2020), http://www.nltk.org/
5. Attardi, G.: WikiExtractor (2015), https://github.com/attardi/wikiextractor
6. Baek, J., Safavi-Naini, R., Susilo, W.: Public key encryption with keyword

search revisited. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y.,
Gavrilova, M.L. (eds.) ICCSA 2008. LNCS, vol. 5072, pp. 1249–1259. Springer
(2008). https://doi.org/10.1007/978-3-540-69839-5_96

7. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S.E. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer
(2005). https://doi.org/10.1007/11693383_22

8. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number
generator. SIAM J. Comput. 15(2), 364–383 (1986)

9. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–
788. Springer (2018). https://doi.org/10.1007/978-3-319-96884-1_25

10. Boneh, D., Crescenzo, G.D., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer (2004). https://doi.org/10.1007/978-3-540-
24676-3_30

“This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this
 contribution is published in Lecture Notes in Computer Science book series,

and is available online at https://doi.org/10.1007/978-3-031-17146-8_5

18 Y. Zheng et al.

11. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 236–254. Springer (2000). https://doi.org/10.1007/3-540-
44598-6_15

12. Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based en-
cryption: Hiding the function in functional encryption. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 461–478. Springer (2013).
https://doi.org/10.1007/978-3-642-40084-1_26

13. Burdges, J., Feo, L.D.: Delay encryption. In: Canteaut, A., Standaert, F.
(eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 302–326. Springer (2021).
https://doi.org/10.1007/978-3-030-77870-5_11

14. Byun, J.W., Rhee, H.S., Park, H., Lee, D.H.: Off-line keyword guessing at-
tacks on recent keyword search schemes over encrypted data. In: Jonker, W.,
Petkovic, M. (eds.) SDM 2006. LNCS, vol. 4165, pp. 75–83. Springer (2006).
https://doi.org/10.1007/11844662_6

15. Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric
pairings - the role of Ψ revisited. Discret. Appl. Math. 159(13), 1311–1322 (2011)

16. Chen, H., Cao, Z., Dong, X., Shen, J.: SDKSE-KGA: A secure dynamic keyword
searchable encryption scheme against keyword guessing attacks. In: IFIP Int. Conf.
Trust Manage. (IFIPTM). pp. 162–177 (2019)

17. Chen, R., Mu, Y., Yang, G., Guo, F., Huang, X., Wang, X., Wang, Y.: Server-
aided public key encryption with keyword search. IEEE Trans. Inf. Forensics Secur.
11(12), 2833–2842 (2016)

18. Chen, R., Mu, Y., Yang, G., Guo, F., Wang, X.: Dual-server public-key encryption
with keyword search for secure cloud storage. IEEE Trans. Inf. Forensics Secur.
11(4), 789–798 (2016)

19. Chen, Y.: SPEKS: secure server-designation public key encryption with keyword
search against keyword guessing attacks. Comput. J. 58(4), 922–933 (2015)

20. Cohen, B., Pietrzak, K.: Simple proofs of sequential work. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 451–467. Springer (2018).
https://doi.org/10.1007/978-3-319-78375-8_15

21. Cohen, W.W.: Enron Email Dataset (2015), https://www.cs.cmu.edu/~./enron/
22. Emura, K., Ito, K., Ohigashi, T.: Secure-channel free searchable encryption with

multiple keywords: A generic construction, an instantiation, and its implementa-
tion. J. Comput. Syst. Sci. 114, 107–125 (2020)

23. Fang, L., Susilo, W., Ge, C., Wang, J.: Public key encryption with keyword search
secure against keyword guessing attacks without random oracle. Inf. Sci. 238, 221–
241 (2013)

24. Feo, L.D., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions
from supersingular isogenies and pairings. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 248–277. Springer (2019).
https://doi.org/10.1007/978-3-030-34578-5_10

25. Foundation, W.: Wikimedia downloads (2020), https://dumps.wikimedia.org/
enwiki/20201120/enwiki-20201120-pages-articles.xml.bz2

26. Huang, Q., Li, H.: An efficient public-key searchable encryption scheme secure
against inside keyword guessing attacks. Inf. Sci. 403, 1–14 (2017)

27. Jakobsson, M., Juels, A.: Proofs of work and bread pudding protocols. In: Com-
munications and Multimedia Security. pp. 258–272 (1999)

28. Jeong, I.R., Kwon, J.O., Hong, D., Lee, D.H.: Constructing PEKS schemes secure
against keyword guessing attacks is possible? Comput. Commun. 32(2), 394–396
(2009)

“This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this
 contribution is published in Lecture Notes in Computer Science book series,

and is available online at https://doi.org/10.1007/978-3-031-17146-8_5

DEKS: a Secure Cloud-based Searchable Service can Make Attackers Pay 19

29. Kim, K.S., Kim, M., Lee, D., Park, J.H., Kim, W.: Forward secure dynamic search-
able symmetric encryption with efficient updates. In: CCS 2017. pp. 1449–1463
(2017)

30. Lu, Y., Li, J.: Lightweight public key authenticated encryption with keyword search
against adaptively-chosen-targets adversaries for mobile devices. IEEE Trans. Mob.
Comput. (2021), https://doi.org/10.1109/TMC.2021.3077508

31. Lu, Y., Li, J., Zhang, Y.: Secure channel free certificate-based searchable encryp-
tion withstanding outside and inside keyword guessing attacks. IEEE Trans. Serv.
Comput. 14(6), 2041–2054 (2021)

32. Miao, Y., Tong, Q., Deng, R.H., Choo, K.K.R., Liu, X., Li, H.: Verifiable searchable
encryption framework against insider keyword-guessing attack in cloud storage.
IEEE Trans. Cloud Comput. 10(1), 835–848 (2022)

33. Qin, B., Chen, Y., Huang, Q., Liu, X., Zheng, D.: Public-key authenticated en-
cryption with keyword search revisited: Security model and constructions. Inf. Sci.
516, 515–528 (2020)

34. Rhee, H.S., Park, J.H., Susilo, W., Lee, D.H.: Trapdoor security in a searchable
public-key encryption scheme with a designated tester. J. Syst. Softw. 83(5), 763–
771 (2010)

35. Rhee, H.S., Susilo, W., Kim, H.: Secure searchable public key encryption scheme
against keyword guessing attacks. IEICE Electron. Exp. 6(5), 237–243 (2009)

36. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto. Tech. rep., MIT/LCS/TR-684 (1996), https://people.csail.mit.edu/
rivest/pubs/RSW96.pdf

37. Song, D.X., Wagner, D.A., Perrig, A.: Practical techniques for searches on en-
crypted data. In: S&P 2000. pp. 44–55 (2000)

38. Sun, L., Xu, C., Zhang, M., Chen, K., Li, H.: Secure searchable public key encryp-
tion against insider keyword guessing attacks from indistinguishability obfuscation.
Sci. China Inf. Sci. 61(3), 038106:1–038106:3 (2018)

39. Wang, C., Tu, T.: Keyword search encryption scheme resistant against keyword-
guessing attack by the untrusted server. J. Shanghai Jiaotong Univ. (Sci.) 19(4),
440–442 (2014)

40. Xu, P., Jin, H., Wu, Q., Wang, W.: Public-key encryption with fuzzy keyword
search: A provably secure scheme under keyword guessing attack. IEEE Trans.
Computers 62(11), 2266–2277 (2013)

41. Yao, F.F., Yin, Y.L.: Design and analysis of password-based key derivation func-
tions. IEEE Trans. Inf. Theory 51(9), 3292–3297 (2005)

42. Yau, W., Phan, R.C., Heng, S., Goi, B.: Keyword guessing attacks on secure search-
able public key encryption schemes with a designated tester. Int. J. Comput. Math.
90(12), 2581–2587 (2013)

43. Yousefipoor, V., Ameri, M.H., Mohajeri, J., Eghlidos, T.: A secure attribute based
keyword search scheme against keyword guessing attack. In: IST 2016. pp. 124–128
(2016)

44. Zhang, Y., Xu, C., Ni, J., Li, H., Shen, X.S.: Blockchain-assisted public-key en-
cryption with keyword search against keyword guessing attacks for cloud storage.
IEEE Trans. Cloud Comput. 9(4), 1335–1348 (2021)

“This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this
 contribution is published in Lecture Notes in Computer Science book series,

and is available online at https://doi.org/10.1007/978-3-031-17146-8_5

