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Abstract—In this work, we tackle the energy consumption
problem of edge computing technology looking at two key as-
pects: (i) reducing the energy burden of modern edge computing
facilities to the power grid and (ii) distributing the user-generated
computing load within the edge while meeting computing dead-
lines and achieving network level benefits (server load balancing
vs consolidation and reduction of transmission costs). In the
considered setup, edge servers are co-located with the base
stations of a mobile network. Renewable energy sources are
available to power base stations and servers, and users generate
workload that is to be processed within certain deadlines. We
propose a predictive, online and distributed algorithm for the
scheduling of computing jobs that attains objectives (i) and (ii).
The algorithm achieves fast convergence, leading to an energy
efficient use of edge computing facilities, and obtains in the best
case a reduction of 50% in the amount of renewable energy that
is sold to the power grid by heuristic policies and that is, in turn,
used at the network edge for processing.

Index Terms—Edge computing, green computing, renewable
energy, Model Predictive Control, scheduling, distributed opti-
mization.

I. INTRODUCTION

INFORMATION and Communication technologies have
pervaded our everyday lives. Thanks to them, we enjoy

a great variety of mobile apps while we are on the go, such
as exchanging audio and video content and having our voice
recognized in a snap. New applications, such as extended
reality and autonomous driving are on their way and all of
these apps generate a great amount of data. International
Data Corporation (IDC) predicts that the yearly amount of
data generated worldwide will grow 5 times, and that the
percentage of real-time data generated by connected devices
will reach 30% of the global data volume by 2025 (it was
15% in 2017) [1]. Most of such data has to be processed by
either cloud or network servers. In an attempt to make this
processing more efficient, a paradigm shift is occurring, going
from a centralized mobile cloud computing (MCC) model
towards a highly distributed multi-access edge computing
(MEC) one, where computing power, network control, and
storage are pushed to the network edge [2]. What it is often
ignored, is that this computation drains a noticeable amount of
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energy, drastically increasing the carbon footprint of mobile
networks [3] and MEC alone is unable to solve the energy
consumption issue.

To ameliorate this, in the present work we advocate the
use of off-grid renewable energy, such as solar radiation
and wind, as a means to reduce the environmental impact
of modern Information Technology (IT) systems [2], and
we devise new online scheduling techniques for in-network
computing tasks that are green by design. Specifically, we
consider energy-hybrid MEC networks, where edge servers
are installed at the base stations (at the network edge) and are
co-powered by renewable energy sources and by the power
grid. Any renewable energy surplus can be either stored, via
local energy storage devices (batteries) or sold back to the grid.
Computing jobs, subject to execution deadlines, are generated
by access nodes (mobile users), and our chief objective is
to execute them by minimizing the amount of energy that is
purchased over time from the power grid, while meeting all
deadlines. Computing servers can exchange workload (in full
or in part) with their neighbors to relieve congested nodes. To
allocate computing resources at runtime, an online approach
based on Model Predictive Control (MPC) [4] with lookahead
capabilities is devised, where external (exogenous) processes
such as renewable energy and job arrivals are estimated within
a prediction window, and their estimates are used to drive
the online optimization of job schedules. A fully distributed
solver for the job scheduling problem is devised, whereby
network servers iteratively solve simpler local sub-problems
communicating with their immediate neighbors, using the
alternating direction method of multipliers (ADMM) [5].

The main contributions of the present work are:
i. energy efficiency is considered at all stages of our design,

computing servers are equipped with batteries for energy
storage, have access to renewable energy sources, and are
connected to the power grid.

ii. Our system’s model accounts for transmission and com-
puting resources under arbitrary network topologies.
It supports the processing of time-sensitive computing
jobs with strict execution deadlines, and workload re-
distribution (load balancing).

iii. Two objective functions are devised, promoting contrast-
ing resource allocation policy behaviors, namely con-
solidation (using as few servers as possible) and load-
balancing (spreading the load across servers). To allocate
resources at runtime, we propose an online approach
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based on Model Predictive Control (MPC), which uses
future job and energy arrival estimates, obtained via
low-complexity predictors.

iv. For scalability purposes, a fully distributed iterative pro-
cedure for solving the predictive control problem is
proposed, based on the Douglas-Rachford splitting (DRS)
algorithm.

v. The effectiveness and benefits of our predictive control
policy are evaluated thanks to an extensive simulation
campaign, investigating the efficacy of the optimization
goals, and the performance of the distributed algorithm
in terms of convergence rate and overall amount of
renewable energy utilized.

The proposed scheduling algorithm uses edge computing re-
sources effectively, leading in the best case to a decrease of
50% in the amount of renewable energy that is sold to the
power grid by heuristic policies, and that is instead utilized by
the edge servers for processing. Other benefits include server
consolidation, reducing by up to 40% the number of active
servers across the edge network. These results are achieved
by intelligently resorting to the cloud computing facility only
when the edge processing capacity is exceeded, and by never
violating execution deadlines.

The rest of the paper is organized as follows. Section II
discusses the related works. Section III presents the system
model. The optimization problem and its distributed solution
are detailed in Sections IV and V, respectively. Numerical
results are presented in Section VI, and concluding remarks
are given in Section VII.

II. STATE OF THE ART

The multi-access edge computing paradigm has received
considerable attention from academia [2], [3], [6]–[8] and
industry [9] alike. The typical objectives pursued by MEC
resource allocation algorithms are: minimizing the power con-
sumption, minimizing the execution delay, or maximizing the
revenue. In some studies, these objectives are combined, e.g.,
through a weighted sum of power consumption and delay [10].
In this work, we propose a distributed, online and adaptive
optimization framework for computation load offloading in a
network of edge servers, with the goal of managing effectively
the energy coming from renewable sources. We consider
CPU power, transmission bandwidth and execution deadline
constraints in the formulation, as only a few works previously
did, e.g., [11].

Server power consumption models and how they relate to
CPU load are the focus of [12]–[14]. Reducing the power
consumption of such systems is beneficial for lowering both
the providers’ costs and the environmental impact of the MEC
infrastructure. Therefore, it is of paramount importance de-
signing these systems to be as energy-efficient as possible [11],
[15]. In [11], a model for the allocation of processing tasks
in hierarchical MEC environments is proposed, by devising
a distributed (ADMM-based) algorithm to solve the resource
scheduling problem. Although the authors consider job execu-
tion deadlines, they propose a centralized strategy for inducing
load-balancing, whereas, here, load-balancing and consolida-
tion are a natural consequence of the chosen optimization

function and are obtained via a fully distributed algorithm.
Moreover, the setting of their work is static, while we propose
an online and dynamic algorithm. That is, the optimization is
continuously adapted to the time varying (exogenous) load and
energy processes, exploiting a model predictive control (MPC)
based framework. The authors of [15] propose a successive
convex approximation (SCA) based algorithm to minimize
the total mobile energy expenditure for offloading augmented
reality tasks under latency constraints. They allocate commu-
nication and computation resources, considering the cloudlet
as a single computation entity. In contrast, we consider an
edge network of distributed agents. Furthermore, our goal
does not corresponds to globally minimize the energy used
by the system, but to optimally exploit the energy coming
from renewable sources at each server. Note that the two
objectives do not necessarily coincide as with renewables it
is at times optimal to drain as much energy as possible, so
as to minimize the energy that goes unused, and thus lost.
According to [12]–[14], moreover, the CPU is energetically
better exploited in high load conditions. In fact, under low
load, most of the energy is drained to keep the CPU active.
This is why we propose two optimization strategies, the first
one for load-balancing (high load) and the other one for
consolidation (low load) purposes.

Several works have considered the exploitation of renewable
energy sources to power edge devices via energy harvesting
(EH) technologies [3], [10], [16]–[19]. The authors of [10]
devise an efficient reinforcement learning-based resource man-
agement algorithm. Their approach is online and adaptive and
the goal is the correct management of the incoming energy
arrivals. However, unlike what we do in the present work, their
framework requires a centralized controller, which is a strict
requirement in edge networks. The authors of [16] and [19] in-
vestigate a green MEC system with EH devices with equipped
batteries, and develop an effective computation offloading
strategy based on Lyapunov optimization. Their approach also
belongs to the class of online and adaptive policies, but it
is again centralized, and only the load-balancing objective is
sought. In [3], an energy hybrid system is deployed, where
mobile devices are equipped with EH capabilities, powered
by the downlink channel. According to the heuristic scheme
proposed by the authors, EH devices are fully capable of
reliably powering a small-scale edge computing prototype
system, during most (94.8%) of their experimental campaign.
However, in their work, only end devices harvest energy from
the environment, and this energy does not necessarily come
from renewable sources. Conversely, in our work, edge servers
are equipped with EH devices, and manage the incoming
workload from end devices in their coverage area accordingly.
Nonetheless, as also highlighted in [16] and [19], renewable
energy sources are unreliable and often inadequate for fully
supporting telecommunication networks demand. To cope with
this, we propose a hybrid-energy model integrating them with
the power grid, as done in [20].

MPC-based approaches have been previously used for con-
trolling networked systems [20]–[24]. Data centers virtual ma-
chine (VM) management is the focus of [21], which presents
an energy-aware consolidation strategy. A resource manage-
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ment approach effectively capturing the non-linear behavior
in VM resource usage through fuzzy modelling is presented
in [22]. The problem proposed in their work, however, is
NP-hard, and authors use a genetic algorithm to retrieve a
satisfactory solution. Besides being a centralized approach,
it is also complex to solve. On the contrary, we use a fast
version of ADMM, finding solutions even for non-convex
problems and establishing a distributed implementation. The
authors of [20] investigate how the monetary cost incurred in
the energy purchases from the power grid can be minimized
by dispatching the computation jobs to those servers that
have enough energy and computation resources. However, they
neither consider execution deadlines for jobs, nor they propose
a strategy to solve the problem in a distributed fashion.

On a related note, the distributed energy resource scheduling
problem of a set of smart homes is tackled in [23] by
means of a stochastic MPC approach, with cooperation among
neighbors.

III. SYSTEM MODEL

We consider a MEC network comprising " computing
entities or edge servers,M = {1, . . . , "}, organized according
to a given topology. Each node 8 ∈ M has a set of neighboring
nodes, denoted by N8 , to communicate with.

We identify with M0 ⊂ M the set of access nodes,
i.e., those servers co-located with base stations (BSs) that
receive job processing requests from end users. An access
node 8 ∈ M0 receiving a computing request can either
process it locally or transfer such request (or a portion of
it) to one or multiple neighboring nodes. Once the job’s
execution is completed, the computation result is sent back
to the user terminal that originated the request. In this work,
jobs are characterized by the computational effort they require,
and by the time available for their execution. Edge servers
can partially offload jobs multiple times during the temporal
window available to execute such tasks, acting as relays. This
amounts to a processing model where access nodes can:

1) process the workload locally, possibly splitting the task
execution over the available time window;

2) partially outsource jobs to neighboring servers, that will
have to complete the execution within the deadline.

In this way, the workload can be allocated across different
servers, so that highly congested nodes can relieve themselves
by partially outsourcing the execution of the load towards more
capable or less congested ones.

An in-depth description of the job gathering process, as
well as the execution and offloading duties is illustrated in the
following sections. For simplicity, we assume that the system
evolves according to a discrete-time model, with slots of length
Δ and indexed by variable : = 0, 1, . . . . The notation used
throughout the paper is summarized in Table I, whereas the
main blocks of the server architecture are shown in Fig. 1.

A. Jobs gathered at access nodes

Computing tasks are collected by the access nodes 8 ∈
M0 and are locally executed or, alternatively, offloaded to
other edge nodes. We abstract these generation processes

TABLE I: List of symbols used in the paper.

Notation Description
: time slot index
# MPC prediction horizon (time slots)
Δ duration of a time slot
D set of execution deadlines ( |D | = �)
M set of edge servers ( |M | = " )
M0 set of access nodes
N8 set of neighbors of server 8 ∈ M
T set of time slots (: ∈ T, |T | = # )
B3
8,:

state of buffer 3 within edge server 8 at time :

B8 maximum amount of buffered workload in 8
48,: amount of energy stored at server 8 (energy buffer state)
1̄8 maximum battery capacity at server 8
18 battery capacity threshold at server 8
68,: amount of energy exchanged with the power grid by 8
>3
8 9,:

CPU cycles with deadline 3 to be outsourced from 8 to 9

>8 9 maximum amount of workload exchanged from 8 to 9
F3
8,:

CPU cycles with deadline 3 allocated to CPU

F̄8 maximum computing power of server 8 (CPU cycles/slot)
�, $, , dimensions of variables g, o, and w, respectively
ℎ8,: amount of energy harvested by node 8 during slot :
C3
8,:

tasks (in CPU cycles) with deadline 3 generated in 8

XE
8

discount factor accounting for energy decay
� Jain’s fairness index, defined in (37)
n Job generation rate
q8,: load factor at server 8 at time :, defined in (15)
[ efficiency metric, defined in (38)
Pℓ proximity operators, ℓ ∈ {1, 2}
Qℓ reflected proximity operators, ℓ ∈ {1, 2}
)< edge network tier, < ∈ {0, 1, 2}

bOFF
8, 9
, bCPU
8

workload to energy consumption conversion factors

b PUR
8,:

, b SOLD
8,:

cost of purchasing (PUR) and selling (SOLD) energy

by aggregating computing tasks received by access node 8

with the same execution deadline 3 at the beginning of
time slot : into variable C3

8,:
. We also consider a maxi-

mum deadline of � slots, and, accordingly, we denote by
t8,: = [C18,: , . . . , C

3
8,:
, . . . , C�

8,:
]) the column vector containing

the cumulative generated workload for all possible execution
deadlines 3 ∈ D = {1, 2, . . . , �} at node 8. Note that the
generated workload t8 enters the system at the beginning of
a new time slot and, for the control framework, can either be
considered as a disturbance or estimated.

B. Edge server architecture

Each edge server has a central processing unit (CPU) whose
computational power is shared by:

i. newly generated jobs which are neither offloaded nor
backlogged (in case of an access node),

ii. the jobs offloaded from neighboring nodes, and
iii. backlogged jobs (previously arrived and temporarily kept

in a queue for later processing).
Further, jobs can be partially offloaded or backlogged, and
they also have to meet a certain execution deadline. This
suggests grouping the load at edge servers according to the
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TX
RX

CPU

BS t8

o 98

o 98

o8 9

o8 9

o8 9

w8

68 ℎ8

48

bOFF
8 9

bCPU
8 9

Workload buffers

Fig. 1: Edge server architecture. Edge servers are co-located
with the access points at BSs, and directly receive jobs from
end devices. The servers can process the incoming workload
locally or offload it to other servers. They are also equipped
with a battery, which is charged by the energy harvested
from the environment (ℎ8). Besides, the energy unit is also
connected to the power grid, allowing the purchase and the
sale of energy (68).

remaining slots available before the deadline 3. That is, the
buffered workload is organized according to its remaining
lifetime 3 before the deadline expires. We conveniently model
an edge server using � buffers, where each buffer is devoted
to meeting a specific deadline 3, as depicted in Fig. 2.
Accordingly, we define as B3

8,:
the buffer’s state, corresponding

to the backlogged jobs for edge server 8 ∈ M with deadline 3
at the beginning of time slot : , and we collect this information
in column vectors s8,: = [B1

8,:
, . . . , B3

8,:
, . . . , B�

8,:
]) .

The time evolution of vector s8,: depends on whether the
jobs (or portions thereof) are executed locally, if they are
backlogged, or transferred elsewhere, as well as on the locally
generated jobs t8,: . To precisely model these interactions we
distinguish between:

a) Local execution: edge server 8 must decide the amount
of workload to process at each time slot :: we denote
by F3

8,:
the amount of CPU cycles requested by tasks

collected in buffer 3 that edge server 8 locally processes
in time slot : .

b) Offloading: edge server 8 can offload a portion of a
backlogged task to a neighboring node: we denote by
>3
8 9,:

the amount of computing tasks (CPU cycles) that
edge server 8 transfers to its neighbor 9 from buffer 3
during time slot : . We also assume that the expiring
backlogged workload, with deadline 3 = 1, cannot be
offloaded.

Hence, the equation governing the buffer state evolution at
server 8 from time : to : + 1 reads as

B3−1
8,:+1 = B

3
8,:+ C38,:︸︷︷︸

locally generated

−

locally executed︷︸︸︷
F38,: +

∑
9∈N8

>398,:︸     ︷︷     ︸
offloaded here

−

offloaded elsewhere︷     ︸︸     ︷∑
9∈N8

>38 9,: ,

(1)

TX

CPU

Buffer D

Buffer d 1

Buffer d

Buffer 1

t8,:

o 98,:

o8 9 ,:

w8,:

Fig. 2: Detail of workload buffers. At each server 8, workload
can be received from a neighbor (o 98,: ) or generated locally
(t8,: ). The incoming workload is sent to the appropriate buffer,
according to its execution deadline. Workload w8,: is executed
locally, whereas o8 9 ,: is offloaded to a neighbor server.

for 3 ∈ D/{1}, and where we further assume that B�
8,:+1 is

only fed with locally generated workload. Note that in (1) we
explicitly account for the tasks locally generated at the access
node, C3

8,:
where C3

8,:
= 0 if 8 ∉M0, the tasks that are locally

executed, F3
8,:

, those incoming from neighboring nodes, >3
98,:

,
and the amount of workload that is outsourced >3

8 9,:
.

By exploiting the shift-by-one-position binary matrix

T� =


0 1
. . .

. . .

0 1
0


(2)

of size � × �, having ones in the sup-diagonal and zeros
elsewhere, (1) can be compactly rewritten in vector form as

s8,:+1 = T�

(
s8,: + t8,: −w8,: +

∑
9∈N8

(
o 98,: − o8 9 ,:

) )
, (3)

where w8,: , o8 9 ,: , and o 98,: are vectors collecting all the
offloading and local processing decision variables for the �
buffers. Refer to Fig. 2 for a pictorial representation of the
relations between these variables.

C. Energy consumption model

Edge nodes are equipped with energy harvesting capa-
bilities. In particular, each node can collect energy from a
renewable energy source and store it onto a local energy buffer.
Due to the unreliable nature of such energy sources, each edge
node is also connected to a power grid, from which it can
purchase the energy needed to support its operations at all
times, or even sell excess energy.

The energy buffer state 48,: , : = 0, 1, . . . , at node 8 ∈ M
evolves according to

48,:+1 = X
E
8 48,: + ℎ8,: + 68,:

−
∑

9∈N8 ,3∈D
bOFF
8 9 >

3
8 9,: −

∑
3∈D

bCPU
8 F38,: (4)

where:
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• XE
8
∈ [0, 1] is a discount factor accounting for the natural

energy decay in the battery;
• ℎ8,: represents the (random) amount of energy harvested

from the environment, which is either known or, more
realistically, estimated;

• 68,: represents the energy exchanged with the grid,
namely, purchased if 68,: > 0, or sold to the grid if
68,: < 0;

• bOFF
8 9

and bCPU
8

respectively represent the conversion factors
between the offloaded and locally processed workloads,
and the energy required by such processing.

D. Job and energy arrivals: dynamics and prediction

As for the characterization of the amount of harvested
energy ℎ8,: and aggregated amount of computing jobs C3

8,:

that enter the system, we rely on (correlated) Markov Chains
(MC) with parameters that can be customized per node 8

(energy/workload), and buffer 3 (workload only). Arrivals are
modeled via two-state discrete time MC (ON-OFF behavior).
Accordingly, each workload buffer 3 can receive at most one
aggregate computing job per time slot. If at the beginning of
time slot : the chain associated with buffer 3 at node 8 is in the
OFF state, the job intensity is C3

8,:
= 0 for this buffer. Instead,

in the ON state the job intensity C3
8,:

is randomly picked from a
state-specific discrete probability mass distribution (pmd). The
harvested energy process is generated analogously.

Prediction is a key ingredient for an MPC framework. Next,
we introduce three forecasting strategies, entailing different
degrees of knowledge about the generation processes.

i. Genie predictor (ideal). Arrivals times and job intensities
are known for all past and future time slots; this predictor
is used to derive an upper bound on the achievable
performance.

ii. MC-unroll predictor. This predictor knows the statistical
model governing the job arrivals, i.e., the MC transition
matrix, and also the pmd governing the intensities C3

8,:
.

Then, a sequence of job arrival estimates for the future
time slots : + 1, : + 2, . . . is obtained as a realization
of the corresponding MC over these future time slots,
starting from the MC’s current state. Arrival intensities
C3
8,:

are sampled from the pmd in the ON state.
iii. i.i.d. predictor. Let us define the average probability of

observing an arrival (in any arbitrary time slot) as 5̂ MC
8

,
and the average intensity of arrivals as ?MC

8 (expected pmd
value). Once these quantities are known, or more realisti-
cally estimated, predictions over future time slots can be
obtained as a realization of an i.i.d. process generating an
arrival with probability 5̂ MC

8
and with intensity ?MC

8 , and
no arrivals with probability 1 − 5̂ MC

8
.

IV. PROBLEM FORMULATION

A. Model predictive control framework

The system state equations (3) and (4) constitute the back-
bone for an MPC framework [4] which predicts the system
state in the next # time steps (the prediction horizon), control-
ling the scheduling of the incoming and outgoing workloads,

as well as the amount of energy purchased and sold. The
computed input is applied at the immediate following step
: +1 and the procedure is repeated again, updating the system
state with new measures every time. This approach is known
as receding horizon.

For notation simplicity, in the following we assume that the
reference time slot is : = 1, so that the time slots of interest for
MPC are those with : ∈ T = {1, . . . , #}, and the implemented
decisions are those at slot : = 1, namely, for each server 8:
a) the amount of workload to be executed locally w8,1; b) the
workload o8 9 ,1 to offload towards neighbor nodes 9 ∈ N8; and
c) the amount of energy 68,1 that is to be either purchased
from or sold to the power grid.

Details on the optimization problem that must be solved
under the said MPC framework are given in the following
sections.

B. Workload buffers evolution

We preliminarily generalise (3) in a form that projects the
buffers’ state forward in time by = time slots. By iterated
application of (3), we obtain

s8,:+= = T
=
�s8,: +

=−1∑
<=0

T =−<�

(
t8,:+< −w8,:+<

+
∑
9∈N8
(o 98,:+< − o8 9 ,:+<)

)
, (5)

where control actions are taken and job arrivals occur during
time slots :, : + 1, . . . , : + = − 1.

We compactly write (5) by stacking vectors and matrices
over the prediction horizon # . To this aim, we collect buffers’
states in the column vector s = {{s8,:+1}:∈T}8∈M in such a
way that the information of node 8 = 1 is placed atop, followed
by the information of node 8 = 2, etc. We do similarly for the
newly generated workload, t = {{t8,: }:∈T}8∈M , the locally
executed workload, w = {{w8,: }:∈T}8∈M , and the offloaded
workload, o = {{{o8 9 ,: }:∈T} 9∈N8 }8∈M . With this notation in
mind, the buffer state evolution (5) over the prediction horizon,
and for the whole network, is expressed by the linear relation

s = AFs1 +BF (t −w +C ′Fo −C ′′Fo) , (6)

where s1 = {s8,1}8∈M collects the initial states of all buffers
(memory), while AF , BF , C ′F , and C ′′F are appropriate
matrices that can be deduced from (5). Specifically, C ′F and
C ′′F are binary matrices that respectively collect the sums for
9 ∈ N8 in (5). Instead, for matrices AF and BF , we have

AF = I" ⊗
(
#∑
:=1
e:,# ⊗ T :�

)
, (7)

BF = I" ⊗
(
#∑
:=1
T :−1
# ⊗ T :�

)
(8)

where ⊗ is the Kronecker matrix product, I" is the identity
matrix of order " , and e:," is its :th column.

We observe that, according to the MPC approach, in (6)
the state variable s1 is assumed to be known, and, similarly,
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the newly generated workload t is assumed to be known in
the reference time slot (entries t8,1) and estimated for future
time slots (entries t8,: for : > 1). When estimates for future
generated workload are not available, they can be neglected
and treated as disturbances, i.e., t8,: = 0 for : > 1. Instead, the
locally executed workload, w, and the offloaded workloads, o,
play the role of optimization variables.

A number of side constraints that govern the behavior of
(6) further need to be formalized.
Positive bounds: workloads are, by definition, positive quan-
tities, that is

F38,: , >
3
8 9,: ≥ 0 (9)

for each node 8 ∈ M, neighbor node 9 ∈ N8 , and buffer 3 ∈ D,
and through the entire time span : ∈ T .
Offloading bounds: the amount of workload exchanged be-
tween nodes can be upper bounded (e.g., due to the physical
transmission constraints). We therefore assume∑

3∈D/{1}
>38 9,: ≤ >8 9 (10)

for each node 8 ∈ M, neighbor node 9 ∈ N8 , and slot : .
Buffer bounds: the amount of workload buffered at each node
8 ∈ M is bounded as

0 ≤ B38,: ≤ B8 . (11)

Workload conservation: for each node 8 ∈ M and buffer
3 ∈ D/{1} the workload conservation inequality

F38,: +
∑
9∈N8

>38 9,: ≤ B
3
8,: + C

3
8,: (12)

applies, which ensures that nodes can process or offload only
the existing workload, i.e, the backlogged (B3

8,:
) or the newly

generated (C3
8,:

) one. This corresponds to the assumption that
the offloaded workload >3

8 9,:
takes a full time slot to be

delivered to node 9 , and it will therefore be available for
execution (in buffer 3 − 1) starting from time : + 1. Thus,
workload offloading delays execution of at least one time slot.
Forced execution: as stated above, we force edge nodes to
process expiring tasks, i.e., tasks with just a time slot available
before their deadline expires. Hence, workload offloading from
buffer 3 = 1 is prohibited. We therefore assume

F1
8,: = B

1
8,: + C

1
8,: , >1

8 9 ,: = 0 (13)

for every node 8 ∈ M, neighbor node 9 ∈ N8 , and slot : .
Processing capacity: if we assume that an edge server has
finite computing capabilities, that is, a total computational
power of F̄8 CPU cycles per time slot, then it must hold∑

3∈D
F38,: ≤ F̄8 (14)

for every edge server 8 ∈ M and time slot : . Based on the
processing capacity, the load factor of server 8 in slot : is

q8,: =

∑
3∈D F

3
8,:

F̄8
. (15)

Note that 0 ≤ q8,: ≤ 1.

C. Energy buffers evolution
The evolution of the energy buffers (4) can be tracked sim-

ilarly. In this case, the vectors of interest are the energy buffer
states e = {{48,:+1}:∈T}8∈M , the initial state e1 = {48,1}8∈M ,
the harvested energy vector h = {{h8,: }:∈T}8∈M , and the
exchange with the grid g = {{g8,: }:∈T}8∈M . The evolution
over the prediction horizon is again expressed as a linear
relation,

e = A4e1 +B4 (h + g −C ′4o −C ′′4 w) (16)

where g, o, and w play the role of optimization variables, e1
is known, and h is known at time slot : = 1 and is estimated
for : > 1. In addition, the matrices A4 and B4 in (16) assume
a form similar to that of (7), namely

A4 = I" ⊗
(
#∑
:=1
(XE
8 ): e:,#

)
(17)

B4 = I" ⊗
(
#∑
:=1
(XE
8 ): T :−1

#

)
(18)

while C ′4 and C ′′4 are binary matrices collecting the two sums
of (4). The only constraint that is needed in this case is the
following one.
Energy bounds: we require that the energy buffer updates
48,:+1 be limited by the maximum battery capacity 1̄8 , and a
minimum working threshold 1

8
, that is

1
8
≤ 48,:+1 ≤ 1̄8 (19)

for every edge server 8 ∈ M and time slot : ∈ T .

D. Objective functions
As aforementioned, MPC solves at every time step an

optimization problem for every node 8 ∈ M, minimizing some
predefined cost which is function of the current measured state
and of the inputs to be optimized. We identify this cost with
� (g, o,w) to underline its dependence on the global optimiza-
tion variables. For the same reason, (6) will be denoted more
explicitly in the form s(o,w), and (16) in the form e(g, o,w).
This leads to the centralized optimization problem

%1 : min
g,o,w

� (g, o,w) (20)

s.t. (9) − (14), and (19) hold,

to be solved to find the resource allocation over the prediction
horizon # .

In this work, two processing cost functions are compared:
a quadratic and a logarithmic one, the latter leading to a
non-convex optimization problem. The importance of the
workload buffers cost minimization with respect to the op-
eration cost is tuned through a parameter W ∈ [0, 1].

Quadratic cost function: Writing the dependency on the
time slot : as a subscript, the quadratic cost is compactly
expressed as

� (g, o,w) = (1 − W)‖s(o,w)‖2QB
+ W

(
R4 (g) + ‖o‖2R>

+ 〈r>, o〉 + ‖w‖2RF

)
, (21)
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where ‖x‖2Q = x)Qx denotes a weighted norm, and 〈·, ·〉
denotes the inner product. All matrices Q and R are positive
semidefinite (and, typically, diagonal), and collect the work-
load buffering cost (Q), and the energy cost of transmissions
(R>) and processing (RF ), respectively. The linear term with
cost r> is an !1-norm penalty on transmissions that is added
to promote a spare use of channel resources. The cost R4 (g) of
the energy exchanged with the power grid takes the piecewise
linear form

R4 (g) =
∑

8∈M,:∈T
R8,: (68,: ) , R8,: (G) =

{
bPUR
8,:
G, G ≥ 0

−bSOLD
8,:

G, G < 0
(22)

where we assume bSOLD
8,:

< bPUR
8,:

, to prioritize the use of the
energy harvested over that purchased from the power grid.

The choice of a quadratic operation cost naturally induces
load balancing in the system, acting as !2-norm regularizer.
Note that, under the cost function (21), %1 can be solved in a
centralized manner using a constrained quadratic programming
(QP) solver. As a matter of fact, the constraints in (20) are
all linear, all the weighted norms in (21) have a quadratic
expression thanks to the fact that (6) and (16) are linear, and
the energy cost in (22) can be expressed in a linear form
by separating g into its positive and negative contributions,
that is g = g+ − g− and R4 (g) = R4 (g+) + R4 (−g−), with the
additional linear constraints g+ ≥ 0 and g− ≥ 0.

Logarithmic cost function: The intuition behind the choice
of a logarithmic (non-convex) cost function is that it directly
produces sparse solutions, promoting server consolidation.
Because this function is superlinear in proximity of the zero,
a sleeping server will prefer to offload the workload to an
already working neighbor if it can avoid to turn its processing
unit on. With the same notation employed for the quadratic
cost, the logarithmic objective function is defined as

� (g, o,w) = (1 − W)〈qB , s(o,w)〉 + W
(
R4 (g)

+ 〈r>, o〉 +
∑
8∈N

log(1 + 〈rF,8 ,w8〉)
)
, (23)

where qB is the vector of workload buffers costs, whereas r>
and rF respectively represent the energy cost of transmitting
and processing a unit of workload. Note that the cost function
in (23) is non-convex and, in turn, heuristic methods must be
used to solve the associated optimization problem.

V. DISTRIBUTED SOLUTION

A. Background on Distributed Optimization

In the present work we use message passing techniques, as
they nicely suit the considered distributed network setup. In
these frameworks, network agents exchange partial computa-
tion outputs with their immediate (one hop) neighbors using
(sub)gradient methods, where local gradient descent steps are
combined with consensus averaging. Among these techniques,
ADMM [5] has recently received a considerable attention as an
effective method to solve networked optimization problems by
iteratively applying simple optimization steps, while ensuring
good convergence properties (speed and stability) at both local
and global level [25]–[27]. ADMM is in close relation with,

and in many cases equivalent to, a large number of alternative
approaches, e.g., Douglas-Rachford splitting, proximal point
algorithms, and the split Bregman algorithm [25], [26]. With
these algorithms, the required level of coordination among
network agents depends on factors such as the considered
decomposition strategy and the underlying graph (communica-
tion) topology [27], [28]. Additionally, ADMM-like strategies
can be heuristically used to deal with non-convex problems [5],
[29].
Distributed MPC. Controlling networked systems of agents
(servers) is common to many engineering problems of interest,
and previous work investigating distributed procedures for
solving MPC (here referred to as distributed MPC (D-MPC))
can be found in [28], [30], [31]. In [30], different algorithms
are compared in terms of convergence speed, number of
messages exchanged and distributed computation architecture.
The authors of [28] propose an ADMM-based algorithm to
solve the D-MPC problem, and the effects of prematurely
terminating the iterative ADMM procedure are investigated
in [31].

In this work, we derive a customized DRS of the centralized
MPC problem defined in (20), optimizing a convex and a
non-convex cost function in a distributed fashion over a given
topology.

B. ADMM framework for scheduling computing jobs

The centralized problem %1 in (20) can be solved in a
distributed fashion, provided that we split the cost function
and the constraints into node-dependent contributions that rely
on separate entries (i.e., a partition) of the global optimization
variables. This can be obtained by duplicating the offloaded
workloads o in the pair (o, õ), where õ = o, that is, by
considering the optimization vector

x = [g;o; õ;w] (24)

and the associated sub-space

X = {x|õ = o} , (25)

which identifies an added linear constraint to be solved.
Accordingly, the cost functions and the linear constraints in
(20) must be slightly modified in order to obtain the said
separation. This simply requires replacing >3

8 9,:
with >̃3

8 9,:

throughout the expressions of Section IV, in such a way that
what is offloaded elsewhere is associated with variables o, and
what is offloaded from somewhere else is associated with the
duplicated variables õ. With this idea in mind, the state update
expression (6) assumes the alternative form

s(x) = AFs1 +BF (t −w +C ′F õ −C ′′Fo) , (26)

while the energy buffer update (16) is not modified (since it
does not use õ). Also, the constraints (9)-(14) and (19), as
well as the cost expressions (21) and (23), are not modified
but for the fact that state variables now exploit (26). Hence,
problem %1 can be rewritten in the equivalent form
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%2 : min
x
� (x) (27)

s.t. x ∈ X
x ∈ Y = {x|(9) − (14) and (19) hold}

where the linear constraints of problem (20) are collected in
the (linear) sub-space Y.

C. ADMM algorithm
%2 in (27) is a large scale optimization problem whose

complicating constraints x ∈ X and x ∈ Y make it
non-separable in simple local sub-problems. However, it can
be parallelised by duplicating variable x in a form that
separates the complicating constraints, and that is amenable
to distributed implementation by using ADMM.

Specifically, the reference problem for distributed process-
ing is equivalently rewritten in the form

%3 : min
x

� (x1) + IY (x1)︸              ︷︷              ︸
51 (x1)

+IX (x2)︸  ︷︷  ︸
52 (x2)

(28)

s.t. x1 = x2

where

IX (x) =
{

0 if x ∈ X ,

+∞ otherwise .
(29)

is the indicating function of set X.
Solution to (28) is here obtained via ADMM, which finds a

saddle point of the associated augmented Lagrangian through
a minimization that alternates between the direction of x1
and x2. The specific approach that we use is the so-called
scaled variable ADMM (e.g., see [25], [26]), illustrated in
Algorithm 1, where the + sign denotes an updated variable,
d and @ are tuneable parameters that control the convergence
speed, and

Pℓ (u) = argmin
x

5ℓ (x) +
d

2
| |x − u| |2 , (30)

with ℓ = 1, 2, are proximity operators.

Algorithm 1 Scaled variables ADMM

1: x+1 = P1 (x2 − ,) minimize with respect to x1
2: y+ = 2@x+1 + (1 − 2@)x2 scale variables
3: x+2 = P2 (y+ + ,) minimize with respect to x2
4: ,+ = , + y+ − x+2 update Lagrange multipliers

Nicely, the proximity operator (30) with ℓ = 2 assumes the
simple form

P2 (u) = argmin
x∈X

d

2
| |x − u| |2 = LX · u (31)

where LX is the projector associated with the subspace X,
which extracts the component of u that lies on X, and,
accordingly, removes the component orthogonal to X. We have

LX =


I�

1
2I$

1
2I$

1
2I$

1
2I$

I,

 , (32)

where �, $, and , are the dimensions (lengths) of, respec-
tively, g, o, and w. Note that (32) is a projection operator that
allows extracting an average value from o and õ.

Instead, the proximity operator (30) with ℓ = 1 takes the
form

P1 (u) = argmin
x∈Y

� (x) + d
2
| |x − u| |2 (33)

which, thanks to choice (24), is a separable form that corre-
sponds to a number of local problems of reduced dimension,
which can be solved in parallel. Specifically, the local problem
at the 8th edge server uses the (1+ (1+2|N8 |)�)# ' 2|N8 |�#
variables x8 = {68,: , {o8 9 ,: , õ 98,: } 9∈N8 ,w8,: }:∈T , which store
the information available locally, and can be written in the
form

P1,8 (u) = arg min
x8 ∈Y8

�8 (x8) +
d

2
| |x8 − u8 | |2 , (34)

where Y8 collects the constraints (9)-(14), and (19) for the 8th
node, and �8 (·) is the cost contribution ((21) or (23)) of node
8.

D. Douglas-Rachford splitting version

By further defining the reflected proximity Qℓ operators

Qℓ (u) = 2
√
dPℓ (u/

√
d) − u , (35)

Algorithm 1 can be equivalently rewritten in the extremely
compact form of Algorithm 2, namely a DRS counterpart that
tracks the unique variable z =

√
n (y+ + λ) (see details of this

formalization in [26]). The explicit relation with the system
variables is in this case

x+1 = P1 (Q2 (z)/
√
d) , x2 = P2 (z/

√
d) . (36)

Algorithm 2 Douglas-Rachford Splitting counterpart

1: z+ = (1 − @)z + @Q1 (Q2 (z))

In Algorithm 2, @ ∈ [0, 1], z is the global version of
the variables z8 = {W8,: , {σ8 9 ,: , σ̃ 98,: } 9∈N8 ,ω8,: }, where W8,: ,
σ8 9 ,: , σ̃ 98,: and ω8,: respectively correspond to the projections
of 68,: , o8 9 ,: , õ 98,: and w8,: , upon applying the transfor-
mation (36). Algorithm 2 works on a unique state variable
z, as opposed to the three state variables of Algorithm 1,
namely, x1, x2, and λ, hence it is to be preferred from
a computational perspective, also because the computational
complexities of operators Pℓ and Qℓ is identical. In addition,
we empirically verified that, despite its simplicity (or, possibly,
because of it), Algorithm 2 shows an improved numerical
stability, which represents a further added value. Type-II
Anderson acceleration is also added, to reduce the number
of iterations for reaching convergence. It is a higher order
acceleration technique that computes the new optimal direction
of the variable z considering a linear combination of all the
stored values back in time up to a certain memory limit (see
A2DR [32] for further details).
Stopping criterion. The variable z, which, as aforementioned,
is the only one tracked, carries information from both the
primal and the dual residuals. Therefore, a suitable method
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is to fix a desired threshold Iobj, and stop when | |z+ − z | | <
Iobj. Besides evaluating the residuals, we also compute the
current objective function value, and put a further threshold
on the relative difference concerning the previous iteration:��� 5 (x1)
5 (x+1 )

��� − 1 < 5obj.

E. Convergence properties

Quadratic cost function: when the quadratic objective func-
tion of (21) is used, (33) amounts to solving a convex
quadratic problem with linear constraints. Any QP solver can
be used to obtain local updates and, moreover, the algorithm is
ensured to converge linearly (e.g., see [25]) thanks to the fact
that functions 5ℓ (x) are proper, lower semicontinuous, and
convex. Interestingly, the convergence speed can be tracked
by observing the behavior of ‖z+ − z‖, which is guaranteed
to strictly decrease [26].
Logarithmic cost function: When, instead, the non-
convex logarithmic cost function (23) is used, then the
target function in (33) assumes a form proportional to
� (x) = p)x +∑

8∈M log(1 + q)
8
x), which is a concave func-

tion, for some values p and q8 , 8 ∈ M. In this case,
a suitable method to control convergence is provided by
[29], that uses DC programming with linear approximation.
Specifically, convergence is ensured under weak assumptions
if the cost function in (33) is replaced by its convex (actually,
linear) part, using the first order Taylor expansion, namely,
by �̃ (x) = p)x +∑

8∈M q
)
8
x/(1 + q)

8
x1/
√
d), where we used

the newly introduced (and compact) notation, and where we
dropped the constant terms since they do not play any role
in the minimization. With this approach in mind, the local
problems are quadratic at every iteration and a QP solver can
be used also in this case.

F. Final distributed algorithm

Algorithm 2 is expressed in compact form thanks to
the reflected proximity operators defined in (35). The fi-
nal algorithm is written from a server perspective in
the below Algorithm 3. Lines 7-8 of Algorithm 3 rep-
resent the only local exchange of information that is
required at each iteration, while the remaining opera-
tions are performed locally. Specifically, line 9 corresponds
to using operator Q2 (σ8 9 ) = 2P2 (σ8 9 ) − σ8 9 = σ̃8 9 , with
P2 (σ 98) = (σ8 9 + σ̃8 9 )/2, and, analogously, Q2 (σ̃ 98) = σ 98 .
This means that the projected offloading variables of node
8, σ8 9 (from 8 → 9), must take the value of σ̃8 9 (indicating,
at neighbor 9 , what is taken from 8). Lines 10-11 correspond
to using Q1, as well as extracting x+1 according to (36). On
line 14, the Anderson acceleration (A2DR in [32]) is applied,
considering all the values of z8 from a circular buffer / , of
fixed length. VI. NUMERICAL RESULTS

A. Simulation scenario and parameters

1) Scenario: As a reference scenario, we consider the
three-tier network of Fig. 3, with tiers )0, )1 and )2. At
tier )0, IoT nodes and other end devices generate workload
according to the Markovian generation process described in
Section III-D. For job arrivals, we consider bursts of length

Algorithm 3 MPC based allocation of processing tasks

1: Input: convergence parameters d and @, stopping thresh-
old 5obj and Iobj, cost function � (or �̃), buffer / of fixed
length

2: Output: workload allocation for the current step
3: initialize: z = 0, x = 0, 5cur = ∞, Icur = ∞
4: while 5cur > 5obj or Icur > Iobj do
5: for all nodes 8 in N do
6: zold

8
← z8

7: transmit entries σ8 9 and σ̃ 98 to neighbors 9 ∈ N8
8: receive entries σ 98 and σ̃8 9 from neighbors 9 ∈ N8
9: σ8 9 ← σ̃8 9 and σ̃ 98 ← σ 98 ⊲ apply Q2

10: x8 ← P1 (z8/
√
d) ⊲ solve problem (33)

11: z8 ← 2√d x8 − z8 ⊲ complete Q1
12: z8 ← (1 − @)zold

8
+ @z8 ⊲ combine with zold

8

13: add z8 to buffer /
14: z8 ← A2DR(Z) ⊲ Anderson acceleration [32]
15: end for
16: 5cur ← � (x)
17: Icur ← ‖z − zold‖
18: end while
19: locally allocate workload at slot : = 1 using x8

1 = max(3, n/(1 − n)), with n being the generation rate.
Energy, arrives in bursts of fixed average length of 50 slots,
following a correlated generation process with n4 = 0.6. Data
that needs processing is sent to the closest access server in
tier )1, where the actual optimization takes place. The results
that follows, have been obtained averaging over 10 randomly
generated networks, each with " = 16 servers. Network
connectivity graphs are obtained by independently generating
two undirected and connected graphs with low average degree,
one for )1 servers, with 12 nodes, and the other one for
)2 servers, with 4 nodes. Moreover, )1 servers have either
a directed connection to one (and only one) server of layer
)2, with probability ? = 0.5, or no connections to )2 servers
(prob. 1 − ?). Accordingly, workload can be only sent from
)1 to )2 servers, but it cannot be sent back to tier )1. Any
computation resource can redirect data and workload to the
cloud if the required processing cannot be performed on time
by the edge server infrastructure.

The simulation parameters, listed in Tab. II, are typical
of image processing tasks. We consider )2 servers twice as
powerful as )1 servers, and with a double transmission rate
as well. The harvested energy covers on average 30% of
the maximum computation power of each server. Nodes are
also equipped with a small energy buffer, that is kept above
25% of the maximum capacity, i.e., 48,: ≥ 1

8
= 0.25 × 1̄8 ,

∀ : , purchasing energy from the power grid if necessary, and
selling it if the residual harvested energy exceeds 1̄8 .

2) Evaluation metrics: Jain’s fairness index: To assess the
load balancing capability of job scheduling solutions, we use
the Jain’s fairness index,

� (φ) =
(∑

8∈M q8
)2

|M|∑8∈M q2
8

, (37)
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)0

)1

)2

Cloud

Fig. 3: Three-tier network. The three tiers )0, )1 and )2
comprise devices generating workload (e.g., Internet of Things
(IoT) nodes and mobile terminals), edge servers, and more
powerful edge servers, respectively. Besides, edge servers can
also fall back to the cloud computing facility.

TABLE II: Summary of simulation parameters

General parameters
simulations length 1050 slots
transient discarded 50 slots
number of workload buffers � 6
state-control weight tradeoff W 0.5
energy required per operation 2 10 J/Gflop
energy required per transmitted Mbit to close servers <8 9 0.67 J/Mbit
energy required per transmitted Mbit to the cloud <82 2<8 9
operations required per Mbit of data >? 0.33 Gflop/Mbit
Parameters for T1 servers
average harvested energy (when burst is active) ℎ1 530 J/slot
harvested energy std fℎ1 150 J/slot
maximum computational power F̄1 100 Gflop/slot
maximum transmission rate >̄1 10 Gbit/slot
maximum amount of data processed per slot 3̄1 300 Mbit/slot
maximum battery capacity 1̄1 2 × 104 J
average incoming workload per buffer (when burst is active) `3 120 Mbit/slot
incoming workload std per buffer f`3 22 Mbit/slot
Parameters for T2 servers
average harvested energy (when burst is active) ℎ2 1000 J/slot
harvested energy std fℎ2 190 J/slot
maximum computational power F̄2 2F̄1
maximum transmission rate >̄2 2>̄1
maximum amount of data processed per slot 3̄2 23̄1
maximum battery capacity 1̄2 21̄1

where φ = {q8}8∈M collects the servers load factors, see (15),
averaged across the whole simulation horizon.
System efficiency: we respectively define �ℎ and �? as
the total amount of energy harvested and the total energy
purchased by the power grid. The ratio [4 = �ℎ/(�ℎ + �?)
is a measure of energy efficiency. In fact, [4 = 1 if �? = 0,
i.e., if the system is operated by solely exploiting the energy
harvested, whereas [4 < 1 if �? > 0. With ,edge, we mean
the total amount of workload processed by the edge servers in
tiers )1 and )2, and with ,cloud we indicate the total amount of
workload that is sent to the cloud computing facility. The ratio
[F = `1,edge/(`1,edge + `2,cloud) weighs the capability of
the computing infrastructure of handling all processes at the
network edge and [F = 1 only if ,cloud = 0. The scaling
factors `1 and `2 translate the amount of workload into the
associated energy consumption. As we also want to assess the
fairness of the allocation, the total efficiency metric is defined

as
[ = [4 × [F × � (φ) . (38)

For our results, we used `2 = 5`1, as the carbon footprint of
cloud computing is usually higher than that of edge servers,
mainly due to the energy hungry cooling systems that are
used at the cloud. Note that 0 ≤ [ ≤ 1 and [ = 1 only
when the system solely uses harvested energy, executes all the
tasks inside the edge network, and the workload is perfectly
balanced across the edge servers.
Duty cycle: is the fraction of time during which a server is
switched on. It is defined, for every server 8 ∈ M as the
number of time slots g8 in which the server is active, divided
by the total number of slots ) , namely,

�8 =
g8

)
. (39)

3) Low complexity heuristic: For benchmark purposes, we
consider a simple and yet reasonable heuristic, as follows:
i) edge servers execute workload locally in ascending order
of their deadlines, without offloading data until the maximum
computing capacity is reached. ii) If the amount of workload
allocated to server 8 exceeds its computing capacity, it offloads
part of such workload to the freest of its neighbors 9 ∈ N8 ,
by offloading data to 9 until the workload difference at 8 and
9 is smallest (ideally zero). If, however, 8 itself is the freest
server in {N8∪ 8}, it will not offload anything. iii) Workload is
sent from an edge server to the cloud facility only from buffer
3 = 1, and only if it is impossible to execute it on time at
the edge server. iv) At each time slot, edge server 8 computes
the local energy expenditure and trades energy with the power
grid in such a way that its battery level is at least 25% of its
battery capacity.

B. Performance analysis: optimal vs heuristic policies

The same evolution of job and energy arrivals (same models
and parameters) was used to obtain the following plots, for all
algorithms. Moreover, 95% confidence bands are shown as
shaded areas surrounding the curves.

A preliminary performance analysis is presented in Fig.
4: the proposed distributed optimization framework of Algo-
rithm 3 is indicated by “MPC (# = G)”, where G ∈ {3, 8} and
# represents the length of the prediction window, “myopic”
refers to the MPC framework with # = 1 and “heuristic” to
the algorithm of Section VI-A3. The maximum job deadline
is set to � = 6, and thus, with # = 3, MPC cannot predict the
temporal evolution of those jobs with deadline greater than 3
time slots, while it can do so with # = 8 and, in general, with
any # ≥ �.

The average load of )2 servers is shown in Fig. 4a. Although
in our network scenario it is more difficult to fully exploit these
servers because of the sparsity of the links, MPC correctly
brings their utilization factor to 100% for an increasing load
(n ≥ 0.7). This is not attainable with the myopic and heuristic
schemes. With the heuristic, the workload is executed as much
as possible locally and, in turn, when n is small only )1 servers
process jobs. Notably, the load factor at )2 servers for the
heuristic is lower than that of the myopic scheme even when
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)1 servers are full. This fact is connected with the results of
Fig. 4d, which shows the amount of workload sent to the
cloud computing facility. In particular, optimizing in a myopic
way or employing a heuristic workload allocation policy leads
to a much more intensive use of cloud computing resources
starting from n = 0.5, when )2 servers are only 40% full. This
corresponds to a poor scheduling of the jobs, which should
be ideally sent to the cloud facility only when all the edge
servers are fully exploited.

On the other hand, optimizing in a predictive way, even
with a small lookahead window, i.e., MPC with # = 3, brings
the advantage of only using the cloud facility when the edge
system operates at full capacity, i.e., beyond n = 0.7. As a
consequence, since the carbon footprint of the cloud facility
is higher than that of the edge network, the energy that is
drained globally (edge and cloud), shown in Fig. 4e, is smaller
for the proposed algorithm (see the range n ∈ [0.5, 0.8]). From
Fig. 4b, we further see that the amount of energy harvested
suffices to keep the battery level to 100% until n = 0.4,
irrespectively of the used method. In this region, thus, not
only the system is fully self-sufficient, but can also inject
excess energy into the power grid. Beyond this load, the
heuristic and MPC behave differently. At low values of n
(i.e., n ≤ 0.5), MPC and the heuristic lead to high battery
levels, as the energy harvested is sufficient to fully satisfy
the computing demand. As n increases beyond 0.5, MPC
exploits the available computing resources in )2, leading to a
smaller energy reserve for these servers. Instead, the heuristic
sends more workload to the cloud computing facility, under
allocating )2 servers.

The Jain’s fairness index (37) is plotted in Fig. 4c. As can be
seen, a prediction horizon of # = 8 leads to a good balancing
of computing resources, maintaining the fairness index above
0.85 even at very low load. With the myopic scheme, the
performance slightly degrades, dropping considerably in the
range n ∈ (0, 0.3]. A further substantial drop is observed with
the heuristic.

These facts directly reflect on the global system efficiency
[ (see Fig. 4f), which is very low for the proposed heuristic,
across all values of n . MPC’s efficiency is highest at low values
of n , as it more effectively balances the load across the edge
servers (Fig. 4c), and it remains highest as n increases, as MPC
sends less workload to the cloud facility (Fig. 4d).

Figs. 5a and 5b show the energy traded with the power grid
(respectively, sold and purchased). MPC significantly reduces
the amount of energy injected into the power grid with respect
to myopic and heuristic strategies. At low n , e.g., around
n = 0.3, the amount of energy sold goes from about 1.6 kJ/slot
of the heuristic policy to about 0.8 kJ/slot of MPC, see Fig. 5a.
Also, MPC buys less energy from the power grid, going from
1 kJ/slot (heuristic) to 0.6 kJ/slot (MPC), see Fig. 5b. This
reflects a more efficient management of harvested energy re-
sources by MPC, resulting in a reduction of 50% in the energy
traded with the grid. Beyond n ≈ 0.6, MPC acquires more
energy, as that coming from renewables is no longer sufficient
to fully cope with the increased processing demand at the edge.
Instead, myopic and heuristic schemes purchase less energy
due to their poorer allocation of computing resources, and send

more workload to the cloud facility (see Fig. 4d).
In Fig. 6, we analyze the impact of the predictor used for

MPC. Specifically, the genie predictor is compared with that
based on Markov chains, with known transition probabilities,
and with an i.i.d. predictor, which uses the average intensity of
the arrivals, see Section III-D. Fig. 6a shows the dependency
between the amount of data sent to the cloud facility and
the prediction horizon # . As expected, the genie predictor
performs best, completely preventing the system from sending
workload to the cloud starting from # = 3, whereas a higher
# is required for the other (less accurate) predictors to achieve
the same goal. This is motivated by the fact that the random
samples used to obtain a predicted trajectory more accurately
reveal the average (intensity) of the process as their number
increases (higher #). Therefore, with a sufficiently long pre-
diction window, even very simple predictors such as the i.i.d.
one can be used profitably, as long as the average arrival rate
is accurately estimated. In Fig. 6b, the Jain’s fairness index
is shown as a function of n : both the Markov and the i.i.d.
predictors lead to very similar performance, which is close
to that of the genie, for any n . The very good quality of
these predictors is also confirmed by the system efficiency [
(Fig. 6c): although the difference is negligible, there is a slight
advantage in using Markov chains at low generation rates.

C. Load balancing vs consolidation
We now assess the role of the two cost functions of

Section IV-D. The results are obtained setting � = 6, with
job arrivals prevented in the two queues that are closest to
the deadline, but increasing the average workload arrival rate
to `3 = 140 Mbit/slot per queue, when the MC is in the
ON state. This is motivated by the fact that jobs close to the
deadline cannot be migrated, and therefore it would be difficult
to highlight the consolidation aspect in their presence. From
Fig. 7, we see that the quadratic cost promotes load balancing,
while the logarithmic one and the heuristic scheme both induce
server consolidation. Specifically, in Fig. 7a the fraction of
active servers is plotted as a function of n . At low generation
rates, the non-convex (logarithmic) cost reduces the number
of active servers with respect to the convex one by up to 40%.
For n < 0.3, the proposed heuristic achieves the best results in
terms of server consolidation. This holds true because, unlike
optimal policies, it executes all the incoming workload at the
edge server that receives it in the first place, without migrating
it. Moreover, MPC may also send computing tasks to energy
rich servers, going against the consolidation objective, and in
the interest of exploiting as much as possible the available
energy resources. In addition, as soon as the the arrival rate
increases a bit, the heuristic produces an oscillatory behavior
in the server activity status, by continuously switching on and
off the edge servers. Instead, MPC avoids this undesirable
ping ponging between activity statuses. Moreover, with MPC
the servers that are kept off are consistently the same ones,
and are selected based on their energy availability. Fig. 7b
(n = 0.25) shows that the heuristic leads to an imbalance in
the way the servers are exploited across the two tiers, whereas
MPC achieves a more balanced allocation, setting similar duty
cycles for the active servers in )1 and )2.
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Fig. 4: Main system features as a function of the job generation rate. In these plots, the quadratic cost function is used for
comparison with the benchmark heuristic.
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Fig. 5: Average energy traded with the power grid.

D. Convergence of the distributed MPC scheme

In Fig. 8, numerical insights on the convergence time of
the distributed MPC solution (Algorithm 3) are given, for a
network with " = 16 servers, # = 8, and n = 0.5. The
numerical solver uses CVXPY [33] and OSQP [34] to process
each local iteration of the DRS algorithm. The quadratic
cost leads to a very fast convergence: the distance from the
optimum gets smaller than 10−4 just after 15 iterations. For
the logarithmic cost, since an optimal solver is not available,
the optimal objective 5 (G∗) is approximated as the value of
5 (·) obtained by the iterative solver after 1, 000 iterations.
In this case, a linear convergence is no longer achieved, the

behavior of | 5 (G)/ 5 (G∗) | shown in Fig. 8 is non-monotonic,
and convergence is slower.

This is also confirmed by Fig. 9, where the median number
of iterations needed for convergence is shown as a function of
n (the shaded regions indicate the interquartile ranges). As a
stopping criterion, we require that Iobj = 5obj = 0.01. For the
quadratic cost, the convergence time remains about constant
and with a small variance until n ≈ 0.6, increasing at higher
loads. The same median holds for the non-convex formulation,
but in this case the interquartile range covers a wider area,
denoting that, in this case, the solution is highly sensitive
to initial conditions, and may require a higher number of
iterations to converge. At very high loads (beyond n = 0.8), the
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Fig. 6: Comparison between two simple predictors, namely a Markov chain and an i.i.d. predictor, with respect to the genie
policy. They are used by the MPC based optimization scheme with the quadratic objective function.
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Fig. 7: Comparison of the proposed optimization schemes as per the consolidation metrics.

convergence time of the logarithmic cost increases abruptly.
However, note that, in the main working region of the system,
where all the workload can be processed by the edge servers,
both methods require fewer than 50 iterations to converge.
Furthermore, we observe that a consolidation approach (log-
arithmic cost) makes little sense at high load, say n ≥ 0.5,
where nearly all the servers are to be used anyway and, in turn,
the convex cost represents a better choice. In fact, using the
logarithmic cost, makes sense at low load, where the associated
formulation converges quickly.

From these findings, we recommend using a convex
(quadratic) cost at all n if the objective is to promote load
balancing across the servers, whereas if the aim is to promote
consolidation, it makes sense to use a non-convex (logarith-
mic) cost until, e.g., n ≈ 0.5, and use the convex one at
higher loads. This is because, as the load increases, server
consolidation becomes an ill posed objective, and the use of
a logarithmic cost would only lead to a slower convergence,
leading to the same solution attained by the quadratic cost
formulation.

VII. CONCLUSIONS

In this paper, the problem of decreasing the energy drainage
associated with processing tasks in MEC networks is tack-
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Fig. 8: DRS convergence to the optimal value for n = 0.5.

led, considering edge servers equipped with batteries and
energy harvesting devices. An online, predictive and fully
decentralized optimization framework for the allocation of
computing tasks is developed, exploiting MPC in conjunction
with a customized version of the DRS algorithm. Two con-
trasting objectives, namely, load-balancing and consolidation,
are sought. The results show that the proposed algorithm
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is beneficial with respect to a heuristic strategy, and to an
approach based on myopic optimization. The resulting job
scheduling algorithm uses the harvested energy much more
effectively, by exploiting energy rich edge servers and reducing
the amount of energy acquired from the power grid. When
the consolidation objective is pursued, the fraction of active
servers is reduced by up to 40%. Open research avenues are
the study of workload allocation strategies by accounting for
user mobility, and new energy consumption models for modern
GPU based architectures.
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