

KI-ASIC – Test Dataset

OTH Amberg-Weiden

General Information (1)

- Data collected with reference system consisting of stereo camera, Ouster lidar sensor and HighRes radar sensor from Infineon, recorded with 10 Hz
- Image of left camera from stereo camera system is used for labeling process and is calibrated with the Ouster lidar sensor → calculated information (distances, angles, ...) from detected objects refer to this left colour camera
- HighRes radar sensor currently as a stand-alone sensor → not calibrated to lidar and sensor yet → will be developed as part of a master's thesis in the next months → offset between camera-lidar-system and radar has to be taken into account (translation array is in result file → description of result file later)
- Time synchronization between sensors has to be developed in the next month as well → only static test scenarios
 in the first run with test objects car, rider/bicycle and person → iterative improvement process
- Please provide us with feedback on how to improve the process of creating new test data sets for training the SNN

General Information (2)

- Definition of the coordinate system as follows:
 - x: objects in front have always positive distance information
 - > y: positive to the left
 - > z: positive upwards
- Derived from this, the positive directions of rotation are as follows:
 - horizontal angle: positive clockwise (to the right)
 - vertical angle: positive upwards

Structure Result Directory

Ostbayerische Technische Hochschule Amberg-Weiden

• The result directory consists of the result files with raw radar data and labeled images for checking

labeled_images	
DataSet_20220804_103458_TUD2b_result_1_raw_data.h5	
DataSet_20220804_103458_TUD2b_result_2_raw_data.h5	

13.08.2022 10:29 13.08.2022 10:21 13.08.2022 10:29

1.721.189 KB 1.450.596 KB

Dateiordnei

H5-Datei

H5-Datei

- Due to file size limitation of H5 files, the result files are split into blocks of 50 timestamps, which is why they are named "_1", "_2", etc.
- Furthermore, all labeled images with the detected objects are saved in a separate directory. Such an image contains
 the merged lidar points as well as the object mask and the class affiliation of the object.

Structure Result File (1)

- Each test scenario consists of specifications and timestamps (scenes)
- Per scene, one image per camera, one point cloud and one radar measurement are recorded, saved in the result file and processed
- All processed information is also stored in the result file

5 DataSet_20220324_104626_D50VB30_result_2_time_data.h5 1_user_agreement - C specifications 🔶 🗀 timestamp_0051 🔶 📋 timestamp_0052 - Cutimestamp_0053 🗢 🗀 timestamp_0054 - Cu timestamp 0055 - Cutimestamp 0056 🗢 🗀 timestamp_0057 - Current timestamp 0058 - Current timestamp_0059 - Cutimestamp_0060 🔶 🗀 timestamp 0061 - Content timestamp_0062 🗢 📋 timestamp_0063 - Cutimestamp 0064 - Content timestamp_0065 - Cutimestamp_0066 - Cutimestamp 0067 - Content timestamp_0068 - Cutimestamp_0069 - Cutimestamp 0070 - Content timestamp_0071 🗠 📋 timestamp_0072 - Cutimestamp 0073 - Content timestamp_0074 - Cutimestamp_0075 - Current timestamp 0076

Structure Result File (2)

- Specifications consist of general information about the recorded test scenario, a list of parameters specifying the different sensors (cameras, lidar, radar) and the prevailing weather at the time of recording
- General specifications
 - Classes to be analyzed
 - Timestamp of recording (e. g. "2021-Nov-01 12:00:00")
 - > NN for labeling (e. g. "DetectoRS", which we're using at the moment)
 - > Latitude and longitude of the area where the tests were carried out
 - Name of the recorded test scenario (label) (e.g. "static_car", designation is later chosen according to test scenario catalogue)
 - > Weather data (parameters with value/unit and sites of weather stations)
 - Translation between left camera and front-mid radar sensor
- List of parameters \rightarrow specification of camera system, lidar and radar

Structure Result File – Timestamp

Ostbayerische Technische Hochschule Amberg-Weiden

- Besides the specifications of the sensors, the collected data and calculated information are saved in a new folder numbered consecutively starting from "0001".
- Every timestamp folder consists of the following parameters:
 - Image Name
 - > **Depth Map** (calculated from stereo camera system)
 - Image of left camera undistorted with parameters from Lidar-camera-calib
 - > Left and right image from stereo camera system calibrated to each other
 - > **Detected objects** from labeling process with calculated information
 - Point Cloud from Ouster lidar sensor
 - > Collected raw data from HighRes radar sensor from Infineon

Structure Result File – Objects (1)

- Within the objects folder, a separate subfolder with a characteristic name is created for each detected object. The first object of the object class is also given the number "1"; if there are several objects of the same object class, they are numbered accordingly. Such a subfolder, in the example named as "car1" contains the following information:
 - > Horizontal angle lidar: Calculated with lidar data and labeling of image
 - > Verticale angle lidar: Calculated with lidar data and labeling of image
 - Bounding box: Bounding box from labeling of image from left camera
 - > **Distance lidar:** Calculated distance of detected object with lidar data
 - Input centroids: Centroids of labeled object
 - > **Quality:** Quality of lidar points within mask regarding density
 - > Mask: Mask of detected object from labeled left camera image
 - Score: Confidence of detected object from labeled left camera image

• More subfolders in objects folder with each additional detected object using the labeling process

Structure Result File – Objects (2)

Ostbayerische Technische Hochschule Amberg-Weiden

- The values stored in the individual subfolders of the object folder, i.e. the information calculated for the individual detected objects, can be interpreted as follows:
 - > Horizontal and vertical angles (values in rad): e. g. [0.01 0.05] → object appears in 0.01 rad +/- 0.05 rad
 - ➢ Bounding box (values in pixel): e. g. [1157 236 151 526] → objects appears in image of left colour camera between 1157 and 1157+151 pixel horizontally and between 236 and 236+526 pixel vertically. The pixel origin of the image is in the upper left corner.
 - ➤ Distances (values in meter): e. g. [5.12 0.08] → distance of object with mean 5.12 meters with a standard deviation of 0.08 meters
 - > Mask (logical array): 0 means that image pixel is not detected object, 1 means that object is detected in pixel
 - > Score: e. g. 0.999 \rightarrow object is assigned to the class with a probability of 99.9 %; value between 0 and 1
- The horizontal angle is as already described earlier positive to the right (clockwise)
- The vertical angle is as already described earlier positive upwards

Structure Result File – Objects (3)

 It could also be possible that sometimes (5% of cases) there is no point cloud available for processing the data. In such a case, the auxiliary depth information from the stereo camera system will be used to determine distance and angle information of the detected objects.

Structure Result File – Point Cloud

- Besides the detected objects including ther calculated information, the point cloud collected from the Ouster lidar sensor is stored in the result file with the following parameters:
 - > Count: Number of recorded lidar points, with the current setting 65536 points
 - Location: x,y and z values in meters from every lidar point for the 64 channels and selected lines (e. g. 1024 lines)
 - > XLimits: Limits of lidar points in x direction in meters, e. g. from -10 to 30 meters
 - > YLimits: Limits of lidar points in y direction in meters
 - > **ZLimits:** Limits of lidar points in z direction in meters
- One point cloud is recorded per timestamp

Structure Result File – Radar Data

Ostbayerische Technische Hochschule Amberg-Weiden

- Besides the point cloud from the lidar sensor, the raw radar data from the HighRes radar is stored and can be can be processed (time data, range and range-Doppler-map) and displayed using the exemplary scripts at https://gitlab.com/oth-aw_automotive/scripts-for-ki-asic-dataset.
- Arrangement of the HiRes radar sensor Tx and Rx:

Rx7	7 Rx6 Rx5 Rx3_B Rx4_B R	Rx4 Rx3 x1_B Rx2_B	Rx2 Rx3_A Rx	Rx1 Rx0 (4_A Rx1_A I	Rx2_A			
Tx2 Tx3_B	IC1_B Slave B			IC1_A Slave /	A I	īx1_A Tx1		
Tx3 Tx2_B		Tx3_M_IC Tx9	1_M Tx1, Tx8	_M 3	١	x2_A Tx0		
Tx4 Tx2_C						Tx2_D Tx7		
Tx5 Tx1_C	Slave C IC1_C			Slave IC1_D	D	Tx3_D Tx6		
Rx2_C Rx1_C Rx4_C Rx3_C Rx2_D Rx1_D Rx4_D Rx3_D Rx8 Rx9 Rx10 Rx11 Rx12 Rx13 Rx14 Rx15								