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Abstract 

With increasing the practical applications of polymeric materials, surging demands for the high-

performance flame-retardant polymer composites are obvious.  Accurately predicting the performance 

of flame-retardant materials is critical for expediting technology development. Here, we develop 

machine learning models based on Random Forest to create standard paradigms based on a self-

generated comprehensive dataset consisting of 219 experimental data from the literature. integrated by 

plenty of randomly combined decision trees, the Random Forest algorithm is well known for its 

accurate predictability and easy interpretability. We predict the important flame-retardancy-evaluating 

parameters including time to ignition (TTI), peak heat release rate (pHRR), total heat release (THR) 

and flame retardancy index (FRI) of different polymer composites containing metal hydroxides as the 

main fire-retardant additive. Our optimized models achieve high accuracy with R-squared value of 

0.81 for regression and over 0.85 for classification; mean absolute error is below 0.3 for all 4 models. 

The analysis of important features reveals that mass fraction of MH takes always the first place, and 

the influence of feature groups on target properties is usually multi-dimensional and complicated. 
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1. Introduction  

Functional polymers are deployed as structural units and shell materials [1], temperature sensor [2], 

conducting substances [3,4], and eco-compatible materials [5,6] in advanced human society [7]. But 

major concern of the flammability of these polymeric materials at high temperatures persists [8,9]. The 

traditional trail-and-test method to improve the flame retardancy of commercial products is time-

consuming and cost-ineffective. Today, machine learning (ML) techniques have been highly 

developed, which are well-aligned with materials research in mechanical analysis [10,11], image 

segmentation [12,13], and intrinsic properties prediction of polymers [14,15], and have been 

demonstrated to be a promising approach to predicting material properties [16,17]. Accurate 

predictions of flame retardant parameters are imperative to decipher new directions in production and 

optimization of fire-proof materials. However, this task is still challenging owing to nonlinear 

degradation in flame retardancy properties during their practical operation. 

In general, various flame retardant (FR) additives are incorporated into the polymers to inhibit 

flame propagation through either physical processes or chemical mechanisms. Since 1980 [18,19], 

metal hydroxides (MHs) are considered a good choice attributed to its smoke-suppression [20], 

nontoxicity [21], and low cost [22,23]. Besides, the comprehensive understanding of its underlying FR 

mechanism enables data-driven prediction of the FR properties with proper features. In fact, an 

increasing tendency of utilizing ML algorithms appears in the research field of flame retardant 

materials: combustion states of fuels [24] and residential room fires [25] were successfully predicted 

via image-detecting ML method; Chen F. et al. Used ML tools to explore the relationship between 

limiting oxygen index (LOI) and components of fire-resistant [26]; Zhang Z. et al. investigated the 

optimization of flame retardancy index (FRI) with various ML algorithms [27].  

In situations mentioned above, the supervised models perform well in accuracy and feasibility. 

Among those ML algorithms, Random Forest (RF) [28] is simple to use and qualified for plenty of 

tasks. RF is constructed with a large number of decision trees (DT) into a set, in which the prediction 

is made as an aggregation of those trees (see top right corner in Fig. 1). A single DT represents a series 
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of conjuncted features arranged in a top-to-bottom tree-like structure. The object propagates through 

the tree to obtain its final prediction result according to its features and tree structures. Randomness 

induced into RF ensure high generalization in unseen data and better performance. [29] 

In this study, we plan to build separate models to predict the cone calorimeter test (CCT) 

characteristics of polymer composites. We have selected 9 polymer composites blended with MHs as 

main flame retardants from the literatures [30–51] to integrate with computational technique. Dataset 

was structured with selected features based on generality, representativity, and comprehensibility. 

Robust ML models validated with experimental results, serve as analytical tools. Finally, the assessed 

models are desired to pre-estimate the CCT values of formulations without real burning tests. 

Meanwhile, oriented optimization should be achievable through the importance analysis of selected 

features. 

2. Materials and methodology  

2.1 Preparation and characterisation of polymer composites 

The used materials, preparation and characterization of polymer composites are presented in 

supporting information S1-S3 with details. For simplicity, 5 different polymer composites were 

prepared using magnesium di-hydroxide (MDH) as main FR additive, together with other synergists 

like metal-organic framework [52]. Cone calorimeter results were collected to support the further 

usage.  

2.2 Machine learning modelling 

As shown in Fig. 1, the entire dataset was divided into two key parts: modelling set and validation set. 

In the modelling part, 85% of data were used to train the models (hereafter as ‘training set’), and the 

rest of the data was used as the ‘test set’ to perform a real-time evaluation of the models on unknown 

samples. The data for validation was consisting of 5 different formulations prepared as last section, 

which was excluded in the modelling set. 

The to be predicted CCT characteristics are time to ignition (TTI), peak heat release rate (pHRR), 

total heat release (THR) and flame retardant index (FRI). The first three properties are directly 



                                                                                                

4 

 

measured, whereas FRI is derived from them as a dimensionless ratio calculated by equation (1) [53]. 

In consequence of the size of dataset and feature structures, TTI, pHRR, THR and FRI were converted 

to corresponding target properties (see supporting information S4). Due to the complex nature of 

combustion processes as well as the great diversity of chemicals in FR composites, all the features in 

our dataset are preliminarily defined from the viewpoint of simplicity and universality as 𝑋⃗ in equation 

(2). (see Table S2). 

𝐹𝑅𝐼 =
[𝑇𝐻𝑅×

𝑝𝐻𝑅𝑅

𝑇𝑇𝐼
]

𝑝𝑜𝑙𝑦𝑚𝑒𝑟_𝑚𝑎𝑡𝑟𝑖𝑥

[𝑇𝐻𝑅×
𝑝𝐻𝑅𝑅

𝑇𝑇𝐼
]

𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒

                                                        (1) 

       𝑦 = 𝑓(𝑋⃗𝑝𝑜𝑙𝑦𝑚𝑒𝑟_𝑚𝑎𝑡𝑟𝑖𝑥 , 𝑋⃗𝑙𝑜𝑎𝑑𝑖𝑛𝑔_𝑜𝑓_𝑀𝐻, 𝑋⃗𝑠𝑦𝑛𝑒𝑟𝑔𝑖𝑠𝑡𝑠_𝑏𝑒𝑠𝑖𝑑𝑒𝑠_𝑀𝐻 , 𝑋⃗𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) (2)  

The pre-processing and feature selection were conducted as in support information S5. Finally, 

dataset with optimised size and feature structure was generated to train, test and validate the ML 

models. 

 

Fig. 1 Dataset used to build machine learning models and validate their accuracies. 

 

3. Results and discussion 

3.1 Experimental flame retardancy of MH-blended polymer composites 

The generated dataset consisting of 219 records was used as input in our ML approach. Each 

formulation was unique due to the combination of the polymer matrix, FR additives, and processing 

parameters. From the graphic illustration in Fig. 2(a), decreasing D-pHRR with increasing amount of 

FR additives was found, corroborating the empirical rules. Interestingly, with increasing the FR 

loading over 50 wt%, the D-pHRR value is estimated to be significantly lower. It should also be noted 
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that the high amount of FR additives significantly enhances the TTI of the polymers from Fig. 2(b). 

Similar decreasing trends in D-THR and FRI in Fig. 2(c) and (d) are observed as the behaviour of D-

pHRR. However, high filling of inorganic compounds (such as metal hydroxides) lowers the content 

of flammable polymers as well as provides a cooling function additionally and thereby effectively 

reduces heat generation [54]. 

Although MHs as the key FR components are effective to prolong the TTI and lower the D-pHRR, 

D-THR and FRI, the influence of other factors including synergists and polymer matrix cannot be 

ignored. Furthermore, no distinct correlation is observed between the CCT characteristics and the other 

affecting parameters in the input dataset. Despite the fact that these additional affecting parameters 

have a certain impact on the combustion process of polymer composites, however, their effects are not 

as significant as the effect of MHs. 

3.2 Statistical machine learning models of fire properties 

To evaluate the accuracy of RF models, three common used statistical indices (R2, MAE and RMSE) 

[55] are calculated in Table 1. The R2 scores meet the requirement for precise predictions in test sets: 

R2 values of 0.81 for prediction of D-pHRR and over 0.85 were achieved for classification of Lv-TTI, 

Lv-THR and Lv-FRI, respectively. The MAE and RMSE in test sets for all target properties were 

comparable, relatively small.  

Table 1: Model indices in training and test sets in predicting D-pHRR, Lv-TTI, Lv-THR and Lv-FRI 

Indices 

D-pHRR Lv-TTI Lv-THR Lv-FRI 

training 

set 

test set training 

set 

test set training 

set 

test set training 

set 

test set 

R2 0.97 0.81 1.0 0.9 1.0 0.84 0.99 0.88 

MAE 0.02 0.06 0 0.3 0 0.16 0.02 0.14 

RMSE 0.04 0.09 0 1.43 0 0.4 0.16 0.42 

 

The predictions are plotted against truly measured values in Fig. 2(e) to (h)Fig. 2. Blue dots stand 

for samples in training sets and red stars are from test sets. In all plots, blue points of training sets are 
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distributed along the green lines closely, indicating the high equivalence between measured and 

predicted values. Red marks in testsets spread themselves along the diagonal line but with relatively 

wider range than the blue dots. Some red stars can be noticed located far away from the green line 

which are unseen/untrained formulations to the models that lead to high error in predictions. For 

example Fig. 2(e), 2 samples in testset (22wt% synergist without MH and 1.8wt% MH with 7wt% 

synergist) locate to the left side due to these rare combinations. These “outliers” can be classified as 

the minorities in the dataset. [56]  

In addition, we prepared the validation samples to evaluate the predictive performance of our models. 

The red bars in histograms in Fig. 2(i) to (l) stand for the measured values in to the same format as 

target properties, and the blue bars are the predictions made by our assembled models correspondingly. 

In summary, the predictions match the measurements well. Higher accuracy is found in predicting D-

pHRR, Lv-THR and Lv-FRI, where their MAE values remain as low as 0.06, 0.16 and 0.24, 

respectively. The model for Lv-TTI showed inferior performance for some samples, the predicted TTI 

values are much different from the experimentally measured values. In EVA01 and EVA02 samples, 

unseen synergists were introduced with varied ratios, which strongly influenced the ignition properties. 

Bad performance on HDPE01 sample is attributed to the minority of data featured with HDPE as 

polymer matrix. Even so, the predictions and measured values are still comparable in most cases. This 

indicates that the models can be promoted by feeding rare formulations to compensate the 

inhomogeneity of dataset. 

The prime reason for the overfitting can be attributed to the construction of the input dataset. Since 

most data come from researches with high MH-loading to achieve good performance, and published 

results have commonly similar formulations. Consequently, the predictive performance of such models 

is inferior for low MHs loading and rare composites. However, the disadvantages during the data 

collection cannot be ignored. Due to a lack of comprehensive databases on FR polymer composites, 

our input dataset is constrained in size and feature structure. The information that was retrieved is 

selective and unable to account for every conceivable type of additive and process. On the other hand, 



                                                                                                

7 

 

certain errors in characterization are inevitable due to the differences in device conditions, operation 

skills, and the standard of experimental instruments in labs. 

 

Fig. 2. Distribution of pHRR (a) and TTI (b) with respect to the mass fraction of flame-retardant additives, different 

colours stand for different polymer matrixes in the dataset. The size of the dots represents the mass fraction of flame-

retardant additives; Predictions versus measurements: D-pHRR (c) and Lv-TTI (d) in train- and testsets; D-pHRR(e) and 

Lv-TTI (f) in validation set. 

3.4 Feature importance analysis 

RF algorithmic framework allows to calculate importance of every feature based on information gain, 

aiming to investigate its significance in deciding target properties in our predictive models. All features 

are coloured into 4 parent groups marked as subscripts in equation (2). 

Unsurprisingly, all target properties are significantly affected by the mass fraction of MH shown 

in Fig. 3. The difference is that MH mass nearly dominates in deciding D-pHRR: MH related features 

take 57% feature importance in total. In other 3 models, features referring to polymer matrix, synergists 

and processing parameter still have significate impact. The influence of features in deciding Lv-TTI, 

Lv-THR and Lv-FRI is more multi-dimensional; and the size of feature structure increases with higher 

complexity of target properties: compared to Lv-TTI and D-pHRR, more features are needed to 

improve the accuracy in predicting Lv-THR and Lv-FRI.  
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Fig. 3 Importance of all features selected to build the random forest models predicting Lv-TTI (a), D-pHRR (b), Lv-THR 

(c) and Lv-FRI (d); Coloured legends illustrate the parent groups of each feature. 

In comparison to the most important feature group ‘MH_loaded’ of D-pHRR model, all feature 

groups mixed together ranking by decreased importance with little difference. Features related to 

additional synergists have similar impact on the composites’ TTI as the polymer matrix; while THR is 

strongly influenced by the properties of neat polymer. As derived property, predicting FRI is more 

complicated with 19 features in order to achieve high accuracy.  
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3.5 Virtual dataset-based multi-objective optimization 

To find the optimized formulations for flame retardant polymer composites, virtual datasets featured 

with the same structures from the original input dataset were generated computationally, in which 

values were automatically varied in corresponding ranges (4 grades of 0, 0.33, 0.67, and 1). Due to the 

limitation of computer performance, the virtual dataset was only imported into the constructed models 

to predict their D-pHRR and Lv-TTI. Points with D-pHRR < 0.4 and Lv-TTI > 8 are classified into 

high-performance samples as shown in equation (3). 

𝑦𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =  {
ℎ𝑖𝑔ℎ     𝐷−𝑝𝐻𝑅𝑅<0.4

   𝐿𝑣−𝑇𝑇𝐼>8 

𝑙𝑜𝑤    𝐷−𝑝𝐻𝑅𝑅≥0.4
   𝐿𝑣−𝑇𝑇𝐼≤8

                                                  (3) 

As presented in Fig. 4, Y-axis represents the value range of each feature in the original dataset 

after label encoding. Each column depicts the individual histograms of feature listed below. Bars in 

red and blue with different lengths indicate the number of screened formulations with correspondingly 

low- and high-performance. 

To achieve high performance, the suggested formulation should correspond to the values where 

the blue bars are relatively long. Along the green line, a large amount of MHs with moderate particle 

size and high enthalpy of decomposition is preferred. [57] The mass fraction of synergist should be 

low. The content (atomic percentage) of carbon, nitrogen and oxygen in the synergists should be as 

much as low, while silicon content is required to be high. Last but not the least, the process temperature 

required to prepare the samples should preferably be low.  

The recommended formulation is constructed according to our models. Consequently, restrictions 

related to our input dataset exist. For example, the requirement for high content of Si is partially 

attributed to the fact that all the Si-containing formulations in the dataset contain high mass fractions 

of MHs too, resulting in lower pHRR and longer TTI. Such data combination emphasizes a monotonic 

relationship between the atomic percentage of Si present in the samples and the target features. 

However, silicon additives have certainly a synergetic effect together with MHs, especially in the 

condensed phase to facilitate char formation [38]. 



                                                                                                

10 

 

 

 Fig. 4 Histograms of values distribution of each important feature, red bars refer to low-performance points and blue 

bars are high-performance ones; Green segments represent the recommended composition of polymer composites with 

high performance. 

 

4. Conclusions 

The machine learning approach is a promising route for materials investigation and development 

through predicting the optimized performance. We successfully develop predictive models for TTI, 

pHRR, THR and FRI using an experimental dataset generated from the literature on polymer 

composites with different mass fractions of MHs. The R-squared values for all models in training sets 

were close to 1 and those for in test sets were over 0.81(highest R2 of 0.9 for TTI prediction). This 

high level of prediction accuracy is achieved by implementing a supervised learning algorithm of 

Random Forest and generating a virtual dataset to reinforce the decision-making formulations. The 

analysis of feature importance reveals that the amount of MHs is a prime governing factor for deciding 

CCT properties, especially in pHRR prediction. Categorical classification models have relatively better 

performance due to oversampling of the small dataset. Feature screening provides the critical 

suggestion in constructing the formulations consisting of the high mass fractions of MHs, high content 

of silicon, low addition of synergists, and low processing temperature in sample preparation. However, 

there is still plenty of scope in improving the machine learning models to achieve higher accuracy in 



                                                                                                

11 

 

predicting the flame retardancy properties of fire-resistance polymer composites. With the availability 

of additional experimental data from the literature, it is possible to predict heat release rate against 

time in CCT.  
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