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Summary

This paper proposes a novel spatially varying coefficient model for spatial regression using
General Additive Models (GAMs) with Gaussian Process (GP) splines parameterised with
observation locations. The brand leader in this area is probably Multiscale GWR (MGWR)
models but these have a number of theoretical and technical limitations. Here, a GAM with
GP spline model and a MGWR model were applied to simulated spatial datasets with varying
degrees of spatial autocorrelation. The GAM was shown to perform better than MGWR under
a range of fit metrics. Some unresolved issues are discussed such as model calibration or tuning

of knots and spline smoothing parameters.
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1 Introduction

Linear regression seeks to model the relationship between a response variable, y, and a series of
predictor variables (x1, x2 etc). It estimates a single set of unknown regression coefficients for each
predictor variable (as well as independent error terms for each observation) by trying to minimise
some metric such as the sum of the squared difference between the observed and predicted dependent
variable (ordinary least squares). The standard form for a linear regression model is:

yi = β0 +
k=1∑
m

βkxik + ϵi (1)

where for observations indexed by i = 1 . . . n, yi is the response variable, xik is the value of the
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kth predictor variable, m is the number of predictor variables, β0 is the intercept term, βk is the
regression coefficient for the kth predictor variable and ϵi is the random error term.

However, in reality, the relationship between the response and predictor variables may change with
observation location, potentially due to unaccounted for local factors or due to process spatial
heterogeneity. Because of this ’whole map’ or global regression models may unreasonably assume
spatial stationarity in regression coefficients (Openshaw, 1996) and spatially varying coefficient re-
gression models (SVCs) may be considered. An SVC model is one in which the regression coefficient
estimates are allowed to vary over space, describing different predictor-to-response relationships in
different locations:

yi = β0(ui, vi) +
k=1∑
m

βk(ui, vi)xik + ϵi (2)

where now (ui, vi) are the spatial coordinates of the observations i and βk(ui, vi) are the coefficients
estimated at those locations.

Spatially varying coefficient models are increasingly popular because their outputs provide intuitive
measures of the scale of individual predictor-to-response relationships (i.e. how processes vary spa-
tially) through determination of parameter specific bandwidths and the spatially varying coefficient
estimates can be mapped (i.e. where processes vary), with values on similar scales to those esti-
mated a standard OLS regression and thus easily understood by users. A popular approach is to
solve Equation 2 with a geographically weighted regression (GWR) model (Brunsdon et al., 1996)
or a multiscale GWR (MGWR) model (Yang, 2014; Fotheringham et al., 2017; Oshan et al., 2019),
which is now recommended as the default GWR (Comber et al., 2022).

However there are number of conceptual limitations to geographically weighted approaches: obser-
vations are used in multiple local regression models rather than a single one; they violate standard
assumptions of standard independent and identically distributed statistical error terms; they are
also sensitive to the kernel form (shape) used to weight observations and different conclusions may
be drawn about the effect of covariates under different kernel forms; they may be sensitive to local
collinearity even when this is not a problem across the whole dataset (Wheeler and Páez, 2010;
Páez et al., 2011); they are difficult to use for predictions at locations with no observation (Fan
and Huang, 2022). As a result some argue that GWR and MGWR models are best suited for ex-
ploratory spatial analyses (Wheeler and Calder, 2007; Farber and Páez, 2007) and to guide further
investigation through enhanced through process understanding (Comber et al., 2022).

Generalised Additive Models (GAMs) with Gaussian Process splines parameterised with location
offer an alternative and novel approach to solve Equation 2 in order to to support process spatial
understanding, to quantify process spatial heterogeneity and to support spatial prediction. This
paper describes a multiscale spatially varying coefficient modelling using a Geographical Gaussian
Process GAM (GGP-GAM).



2 Geographical Gaussian Process GAM

An alternative approach to solving Equation 2 is to use Gaussian Processes (GPs) to model terms
in a Generalised Additive Model (GAM) (Wood, 2006; Fahrmeir et al., 2021). A GP is a random
process over functions and GAMs calibrate regression models with unspecified functions of the
predictor variables, of the form:

y = α+ f1(z1) + f2(z2) + · · ·+ fm(zm) + ϵ (3)

where zj may be a vector.

These can be extended so that each fj(zj) is a linear regression coefficient on another predictor
xj :

y = α(z0) + x1f1(z1) + x2f2(z2) + · · ·+ xmfm(zm) + ϵ (4)

If z0 = z1 = · · · zm = z say, and z is a vector specifying spatial locations then this specifies a
spatially varying coefficient model:

y = α(z) + x1f1(z) + x2f2(z) + · · ·+ xmfm(z) + ϵ (5)

One way of specifying α(z) · · · fm(z) is that each function is generated from a GP and each function
estimate is an a posteriori estimate of a GPs with a zero mean. GPs also have a covariance
function:

κm(δ) = Cov(fm(δ), fm(z + δ)) (6)

This controls the ’smoothness’ of fm(z): as κm(δ) reduces, δ increases and the ’smoother’ fm(z)
tends to be. The GAM estimates parameters in each κj(δ) in order to estimate fm(z). In this way
a GAM uses smooth functions of the predictor variables in which the values of y are assumed to be
of an exponential distribution, such as a Gaussian one. If

y = f(x) + ϵ (7)

where f is the function being sought in the model, then in GAMs, rather than assuming y to be
some linear function of x, a space of functions, or basis, is chosen of which f is some element. This
allows the basic formula above to be expanded:

y = f(x) + ϵ =
d∑

j=1

βj(x)γj + ϵ (8)



where each βj is a basis function of the transformed x and the γ are the corresponding regression
coefficient estimates. One example of a basis is a Gaussian Process basis. If there are n distinct
geographical locations in the data set, then knowing the locations and the covariance function κ
allows the variance covariance function of the values of βj in each location to be found, giving the
variance covariance matrix R. This can be translated into a set of n basis vectors βj(x) (Hefley
et al., 2017), and the GAM can be calibrated in this way. Thus the predictors in a GAM include
smooth functions of some or all of the covariates, which allow for non-linear relationships between
the predictors and the target variable.

3 A Simulation case study

Simulated spatial data sets with varying degrees of spatial heterogeneity were used to examine the
performance of GGP-GAM and to compare that with the performance of a standard MGWR. The
simulated data were created following Fotheringham et al. (2017) and used subsequently by others
(e.g Fan and Huang (2022)), with the aim of simulating the coefficient estimates (β’s) for Equation
9:

yi = β0(ui, vi) + β1(ui, vi)xi1 + β2(ui, vi)xi2 + ϵi (9)

Three surfaces were created with varying degrees of spatial heterogeneity over consider a 25 × 25
regular square grid. Each of the surfaces was assigned to the coefficients of the three predictor
variables as follows:

βzero = β0 = 3 (10)

βlow = β1 = 1 +
1

12
(u+ v) (11)

βhigh = β2 = 1 +
1

324

[
36− (6− u

2
)2
] [

36− (6− v

2
)2
]

(12)

As with Fotheringham et al. (2017), the values for x1 and x2 were generated from a normal distri-
bution in the range [0, 1], ϵ from normal distribution in the range [0, 0.25], and 50 surfaces were
generated. The simulated true regression coefficient surfaces are shown in Figure 1.

Gaussian Process splines parameterised with observation location (i.e. a GGP-GAM) can be used
within a GAM model. The mgcv R package (Wood and Wood, 2015) was used to construct the
GAM with GP splines with a GP smooth and for the simulation data, the X and Y locations were
extracted from (u, v) respectively. The splines optimise a parameter which controls the degree of
smoothing of the data and as such potentially indicates the locally varying nature of the coefficient
estimate in a similar way to MGWR bandwidths. The GPs modelled in the GAM function all have
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Figure 1: The simulated regression coefficient surfaces with zero, low and high spatial heterogeneity.

a mean of zero, so for each covariate an extra fixed offset term is added along with the spatially
smoothed terms.

The simulated coefficient surfaces for β0, β1, β1 in Figure 1 and the 50 simulated values of x1, x2
and ϵ were used to create a 50 sets of target variables over the 625 surface points, y. These values
of true y, x0, x1 and x2 were then used as inputs to the GGP-GAM model (i.e as 625 located
observations with 4 fields) to generate coefficient estimates. For comparison a Multiscale GWR was
also undertaken with the same data. The spatially located coefficient estimates for both models
were retained and used to generate measures of fit by comparing the modelled coefficients with true
ones in Figure 1, generating R2 for β1 and β1 (as β0 is stationary R2 cannot be computed) and
RMSE and MAE for β0, β1, β1. This was done for each of the 50 sets of y, x0, x1 and x2.

The results are shown in Figure 2. Under each fit measure, (AIC, RMSE, MAE, R2) the GGP-GAM
generates better estimates of the true coefficients than MGWR, with the difference in fit measures
increasing with increasing degrees of spatial heterogeneity. This is also shown visually using an
example set of β values from the 50 sets of coefficients estimated by the GGP-GAMand by the
MGWR to recreate the surfaces for β0, β1, β1. Figure 3 shows the coefficient surfaces estimated
from the 10th set of simulations, with the same shading breaks as Figure 2. The better performance
of the GGP-GAM in estimating the true βs is clearly demonstrated.

4 Conclusions

This paper demonstrates for the first time the application of a GGP-GAM model, through GAMs
(Wood, 2006; Fahrmeir et al., 2021) with GP splines parameterised with observation location. Using
simulated data with known spatial heterogeneity, the GGP-GAM models out-performed MGWR.
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Figure 2: Evaluation of the accuracy of the GGP-GAM and MGWR regression coefficient estimates,
when compared to the true coefficients.

GAMs offer an intuitive approach to fit relatively complex relationships in data with complex
interactions and non-linearities. The outputs provide easily understood measures of the process
spatial heterogeneity, the models predict well and support inferences about such relationships.
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Páez, A., Farber, S., & Wheeler, D. (2011). A simulation-based study of geographically weighted
regression as a method for investigating spatially varying relationships. Environment and Planning
A, 43(12), 2992–3010.

Wheeler, D. C. & Calder, C. A. (2007). An assessment of coefficient accuracy in linear regression
models with spatially varying coefficients. Journal of Geographical Systems, 9(2), 145–166.
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