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Summary 
Citizen reports and social media images that capture the aftermath of natural disasters contain 
important information for emergency responders. Currently, these data sources are not fully 

integrated into existing systems or require labour-intensive user input, which can be challenging in 
critical situations. In this paper, we apply computer vision services to publicly available imagery to 
derive meaningful information, extract objects and create text descriptions. This research builds on 

our previous work and enhances available hazard maps with (near) real-time weather and traffic 
information. Through this geospatial-based workflow, we aim to reduce climate hazard reporting 

friction and support operational response to incidents. 
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1. Introduction  
 
When citizens want to report an incident, such as a flood, they can visit the central gov.uk website, 
from which they are redirected to the website of the respective local authority (Newcastle City Council 
2022). These tools often require citizens to register, upload a picture of the incident, describe the 
incident, and indicate the incident's location on a map. This process can be labour-intensive and yield 
variable analysis results, as the data accuracy heavily depends on the data provided by citizens. As a 
result, the stakeholders receiving the report may not have sufficient data, which may cause the incident 
not to be resolved in the intended manner. In line with the UK government's commitment to levelling 
up and responding to climate change, incident-relevant location data can help emergency services 
obtain real-time information and reduce response time (Geospatial Commission 2020). In this study, 
we aim to reduce the friction in reporting weather-related hazards through a deep-learning-based 
workflow that helps to detect objects and generate text from publicly available images. The underlying 
hypothesis is that computer vision can improve current hazard reporting, assist emergency services in 
their operational response to incidents and help communities recover more quickly. 
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2. Background 
 
According to the Intergovernmental Panel on Climate Change (2022), natural hazards are more likely 
to become more frequent and intense due to the rise in weather and climate extremes, leading to adverse 
impacts and risks to human and natural systems worldwide (United Nations 2015). To support the UN 
Sustainable Development Goal 13 to combat climate change and its impacts while improving resilience 
to natural hazards, we need effective tools for assessing hazard impacts.   
 
With the increasing number of internet-enabled devices and the proliferation of social media posts, we 
can now enhance our previous work on available hazard maps with (near) real-time weather and 
dynamic traffic information. While CCTV camera images might show a snapshot from one angle for a 
specific location at a set angle at a specific time and date, citizens can take pictures from different 
angles which can, during dynamic events, such as flooding, hold more significant value. These data can 
capture a wide range of information, as they can show emergency services the current depth level of 
flooding and impacted infrastructure, for instance, roads, buildings and cars.  
 
Artificial Intelligence (AI) can help in different phases of emergency response: Mitigation, 
preparedness, response, and recovery (Ali 2022). Computer vision is a field of AI developing 
algorithms to automatically interpret and understand the content of visual information (Iqbal et al. 
2021). We can identify water-related building damage (Kim et al. 2022), classify objects, such as flood 
and fire, detect people and vehicles in danger (Giannakeris et al. 2018), and automatically generate 
description based on the objects inside the pictures. The use of automation to minimise human effort 
has further been explored in other areas, such as healthcare (Rahman et al. 2018). Using computer 
vision algorithms and cloud computing resources, we can now better leverage existing social media 
data, while reducing the time and effort required to create incident reports. 
 
3. Methods 
 
In Wolf et al. (2022), we describe the general spatial framework to enhance current existing hazard 
maps through real-time data from Internet-enabled devices. We use ESRI ArcGIS Pro 2.5 software to 
model the geospatial database. All data extraction, transformation and analysis steps are performed in 
the integrated Jupyter Notebook environment using core Python libraries, ArcPy and ArcGIS API for 
spatial queries. Building on this work, we now deploy Microsoft Azure’s Application Programming 
Interfaces (APIs) to process flood-related images posted on social media and online newspapers 
(Microsoft 2023). Using Microsoft Azure, we implement the following complementary methodologies 
(1 & 2) using Python in Jupyter Notebooks:   
  

• (1) Unsupervised object extraction and classification from social media images related to 
flooding events: We use the off-the-shelf Microsoft Azure Cognitive Image API to detect and 
extract objects from images indicating if urban assets, environmental infrastructure, and people 
are located in the spatial proximity and could be impacted by the hazards.  
 

• (2) Unsupervised image description using social media flood-related incidents: We provide 
a text description of the image using Microsoft Azure Cognitive Image API.  

 
We convert the final model outputs of the computer vision algorithms to text in a comma separated 
value (CSV) file. This CSV file containing the image analysis results is then integrated into the existing 
geospatial data model using ArcGIS Pro 2.5 and visualised in an operational dashboard using ESRI 
ArcGIS Operations Dashboard. Additionally, the model outputs can be presented in an automatically 
generated standardised report and shared with emergency services. 
  



Page | 3  
 

4. Results and discussion 
 
This work introduces a case study to demonstrate how we can enhance currently exiting hazard maps 
and our previous research through integrated social media imagery analysis. Figure 1 provides a 
snapshot of the analysis results for a publicly available image example during an autumnal flood event 
on 5 October 2021 in Newcastle upon Tyne (UK): 
 

 
Figure 1: Dynamic hazard map for Newcastle upon Tyne during autumnal storm event (own figure, 
developed using Esri (2020)) 

 
1. Map extract visualises different types of incidents, current traffic flow and real-time hazards 

for the area around Chillingham Road.  
2. Social media image that was uploaded to an online newspaper outlet. 
3. Social media image analysis presents the text input and the computer vision generated output 

based on visual image information. 
4. Incident details as recorded by the Urban Traffic Management and Control Centre (UTMC). 
5. Travel time on day of the storm in comparison to average travel time (historical four weeks). 
6. Difference in travel time on day of storm in comparison to average travel time. 

 
Using the image analysis from the computer vision algorithms, we can derive the following 
information: 

(1) The image shows a flood-related incident.  
(2) The location information provided with the image can be geocoded and visualised on the map, 

adding (near) real-time information to the event-based location analysis.  
(3) Detected objects on the image, such as trees, fences, water, and others, can be further assessed 

to support operational response strategies and provide emergency systems with answers to 
questions such as these: What environment is impacted?). 

 
The image analysis above demonstrates how we can generate insights from publicly available data 
using cloud computing resources and integrate AI-based model results into our existing GIS solutions. 
Further, the algorithms applied help to ensure a standardised analysis of images, which can be further 
enhanced through more detailed user inputs (such as image captions or descriptions). Thus, we can 
move towards a more integrated incident reporting approach that can support emergency services.  
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5. Summary and future steps 
  
Using the outputs from this study, we are able to enhance our existing geospatial hazard map containing 
(near) real-time location-based information from the Urban Observatory, Environment Agency and 
UTMC with AI-supported image analysis. This innovative approach helps to reduce friction in the 
existing reporting process through a third-party application, which requires user input and can result in 
varying data accuracy. In addition, it provides emergency services with an initial impact assessment 
about where to allocate resources. In future, we aim to refine our approach to incident impact 
prioritisation. Based on the information obtained from the images, various prioritised actions can be 
derived for different stakeholders, including the police and fire departments. Further, pretrained 
language models can be used to generate structured text descriptions based on keywords and predicted 
class labels provided by Microsoft’s Azure Cognitive Image API. 
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