RESEARCH

РАЗДЕЛ. ТЕХНИЧЕСКИЕ НАУКИ

https://doi.org/10.5281/zenodo.7834886 УДК 536.63

ИССЛЕДОВАНИЕ ТЕПЛОЕМКОСТИ СПЕЧЕННЫХ ОБРАЗЦОВ ГАФНАТОВ ЕВРОПИЯ, ДИСПРОЗИЯ, ЛАНТАНА И САМАРИЯ

Г.Х. Шарипзянова,

к.т.н., доц. кафедры металлургии, Московский политехнический университет **Ж.В. Еремеева,** д.т.н., проф., НИТУ МИСИС

Аннотация: В работе рассматривается получение порошков европия, диспрозия, гафнатов лантана И самария методом механохимического синтеза и их последующее искровое плазменное спекание. Изучены технологические свойства порошков гафнатов европия, диспрозия, лантана и самария, а именно средний размер плотность. Методом частиц. текучесть, насыпная искрового образцы гафнатов европия, плазменного спекания получены диспрозия, лантана и самария с относительной плотностью 92-98 %. Искровое плазменное спекание проводили при температуре 1200 °С в вакууме, давлении 350 кН и выдержки под давлением 15минут. удельной теплоемкости Проведено исследование полученных искровым плазменным спеканием образцов гафнатов европия, диспрозия, лантана и самария.

Ключевые слова: механохимический синтез, порошки, гафнаты европия, диспрозия, лантана и самария, искровое плазменное спекание, удельная теплоемкость, свойства

RESEARCH OF HEAT CAPACITY OF SINTERED SAMPLES OF EUROPIUM, DYSPROSIUM, LANTHANUM AND SAMARIUM HAFNATES

G.H. Sharipzyanova,

Candidate of Technical Sciences, Associate Professor of the Department of Metallurgy, Moscow Polytechnic University **Zh.V. Eremeeva**, Doctor of Technical Sciences, Professor, NUST MISIS

Annotation: The paper considers the production of hafnate powders of europium, dysprosium, lanthanum and samarium by mechanochemical synthesis and their subsequent spark plasma sintering. Technological properties of europium, dysprosium, lanthanum and samarium hafnate powders were studied, namely, average particle size, fluidity, bulk density. By the method of spark plasma sintering samples of europium, dysprosium, lanthanum and samarium hafnates with relative density of 92-98 % were obtained. Spark plasma sintering was carried out at a temperature of 1200 oC in a vacuum, pressure of 350 kN and holding under pressure for 15 minutes. The specific heat capacity of europium, dysprosium, lanthanum and samarium hafnates obtained by spark plasma sintering was studied.

Keywords: mechanochemical synthesis, powders, europium, dysprosium, lanthanum and samarium hafnates, spark plasma sintering, specific heat capacity, properties

Введение

Сложные оксиды лантаноидов имеющие структуру пирохлора, вызывают большой интерес из-за их высокой структурной гибкости, которая может быть изменена путем обработки и/или легирования. Они имеют широкий спектр химических и физических свойств представляющих научный и технологический интерес, как например высокая ионная проводимость, высокая термостойкость, высокая термохимическая стабильность и др. [1-3].

Сложные оксиды лантаноидов могут применяться в электрохимии, как теплоизоляционные и оптические покрытия, выдерживать длительное воздействие радиации, сохраняя при этом сохраняя кристаллической структуры, целостность они рассматриваются и для хранения и последующей иммобилизации [4-6]. Также в научной высокоактивных отходов литературе встречается информация об их структурных особенностях [7, 8], к сожалению недостаточно информации о их физических и химических свойствах [9, 10].

Цель данной работы заключалась в исследовании технологических и физических свойствах механосинтезированных порошков гафнатов европия, диспрозия, лантана и самария и последующее получение из данных порошков высокоплотных образцов керамик методом искрового плазменного спекания и исследовании их удельной теплоемкости.

Механохимический синтез является перспективным методом получения порошков сложных оксидов лантаноидов, данный метод прост в реализации и является экономичным и с помощью данного метода можно получать достаточно большие объемы порошка [11, 12]. Но имеются и определенные недостатки, например это неравновесный Механохимический необычные синтез часто метол. лает И высокодефектные метастабильные фазы. Более того, преобразование в наиболее стабильные фазы, вызванное дополнительной обработкой (например, отжигом), позволяет изолировать достаточно стабильные промежуточные состояния, которые недоступны для более традиционных методов обработки. Также механохимический синтез позволяет адаптировать характеристики любого материала, представляющего интерес для выполнения конкретной функции с оптимизированными характеристиками.

Материалы и оборудование

Для синтеза использовались следующие порошки: порошок Dy₂O₃ класса XЧ(содержание примесей не более 0,2 %), HfO₂ класса XЧ (содержание примесей не более 0,4 %), Eu₂O₃ класса XЧ (содержание примесей не более 0,4 %), La₂O₃ класса XЧ (содержание примесей не более 0,4 %), La₂O₃ класса XЧ (содержание примесей не более 0,4 %), La₂O₃ класса XЧ (содержание примесей не более 0,3 %). Морфология исходных порошков была изучена методом РЭМ. Морфология частиц порошка оксида европия представлена на рисунке 1а.

д

Рисунок 1 – СЭМ- изображение частиц порошков (а - оксид европия; б - оксид лантана; в - оксид самария; г - оксид диспрозия; д - оксид гафния)

Исходный порошок – оксид европия имеет осколочную форму и размер 1-3 мкм. Морфология частиц порошка оксида лантана

представлена на рисунке 16. Исходный порошок – оксид лантана имеет осколочную форму и размер 500 нм – 1 мкм, агломерирован. Морфология частиц порошка оксида самария представлена на рисунке 1в. Порошок оксид самария имеет осколочную форму и размер 1 – 3 мкм. Морфология частиц порошка оксида диспрозия представлена на рисунке 1г. Порошки Dy_2O_3 характеризуются осколочной морфологией. Частицы оксида гафния имеют пластинчатую форму, имеется сильный разброс по размерам частиц от 200 мкм до 40 мкм. Изображение частиц представлено на рисунке 1д. Технологические свойства исходных порошков представлены в таблице 1.

Материал	Текучесть, с	Насыпная плотность, г/см ³	Удельная поверхность, ^{M²/Г}	Ср. размер агломератов, мкм	Размер частиц, мкм
Оксид диспрозия	Не течет	1,02	3,5-5,4	80	4-10
Оксид европия	Не течет	0,95	23-24	50-60	2-6
Оксид лантана	Не течет	0,89	32-34	20-40	5-10
Оксид самария	Не течет	1,1	18-21	40-50	2-4
Оксид гафния	Не течет	1,87	0,9-1,1	5-50	2-10

Таблица 1 – Технологические свойства исходных порошков

Механохимический синтез проводили с использованием планетарной шаровой мельницы «Активатор-2С» с барабанами и шарами из отожженной стали. Для измерения распределения по порошка лантана, частиц гафната размерам использовали универсальное устройство для измерения размера частиц FRITSCH MicroTec установкой ANALYSETTE мокрого 22 plus с диспергирования. Пределы измерения составляют от 0,08 до 2000 мкм, погрешность измерения соответствует ISO 13320.

Насыпная плотность измерялась по ГОСТ 19440 – 94 с помощью волюмометра Скотта. Текучесть измерялась по ГОСТ 20899 – 98.

Сканирующий электронный микроскоп Hitachi S-3400N, NORAN, энергодисперсионным спектрометром оснащенный использовался для исследования морфологии исходных порошков и синтезированного продукта. Для прессования порошков использовали пресс-форму стальную цилиндрическую диаметром MM. 8 Прессование проводили по двухсторонней схеме приложения нагрузки при осевом давлении 600 МПа на гидравлическом прессе 2ПГ – 125. Относительная плотность образцов определялась по ГОСТ Искровое плазменное спекание 18898 - 89. проводили на установке Spark Plasma Sintering - Labox 650 при температуре 1200 оС давление 350 кН и времени выдержки 15 мин. Измерение проводили THB-100 приборе Linseis теплоемкости на (TransientHotBridge), температурный диапазон прибора от комнатной температуры до 300 °С.

Получение порошков гафнатов европия, диспрозия, лантана и самария и проведение ИПС данных порошков

Механохимический синтез (МХС) гафната лантана осуществляли с использованием шаровой планетарной мельницы «Активатор 2S» при скорости вращения планетарного диска – 500 - 900 об/мин, скорости вращения барабанов – 1200 - 2200 об/мин., при отношении массы шаров к массе шихты - 30 - 45: 1 в атмосфере аргона при P = 3 - 5 атм. в течение 5-120 минут.

Как указывается в работах [3, 5, 8, 11] полное превращение исходных оксидов в нанокристаллические порошки сложных оксидов лантаноидов, а именно гафнат лантана, гафнат диспрозия, гафнат европия, гафнтат самария происходит при обработке смесей оксида гафния и оксида лантаноида взятых в стехиометрическом соотношении в течение 30-60 мин.

СЭМ-изображения порошков сложных гафнатов лантаноидов представлены на рисунке 2.

Полученные механосинтезом порошки сложных оксидов лантаноидов, а именно гафнат лантана, гафнат диспрозия, гафнат европия, гафнат самария являются ультрамелкодисперсными.

RESEARCH

Рисунок 2 – Механосинтезированные порошки гафнатов лантаноидов

В таблице 2 приведены основные технологические и физические свойства механосинтезированых порошков гафнатов диспрозия, европия, свмврия и лантана.

Материал	Текучесть, с	Насыпная плотность, г/см ³	Удельная поверхность, ^{M²/Г}	Ср. размер агломератов, нм	Размер частиц, нм
Eu ₂ HfO ₅ мехсинтез	Не течет	1,75-1,77	18-28	300 - 400	40-70
Dy2HfO5 мехсинтез.	Не течет	1,87-1,89	16-24	2-5	60-95
La2HfO5мexсинтез	Не течет	1,85-1,87	18-26	200 - 400	50-80
Sm2Hf2O7	не течет	1,92-1,95	20-24	300-500	50- 120

Таблица 2 – Свойства порошков гафнатов лантаноидов, полученного механосинтезом

С помощью процесса искрового плазменного спекания можно получать готовые изделия из порошков различных материалов практически за одну операцию. В этом случае процессы формования и спекания осуществляются одновременно, что благоприятствует получению заготовок с малой остаточной пористостью. Было проведено исследование по определению возможности искрового плазменного спекания механосинтезированных порошков гафнатов лантаноидов. Искровое плазменное спекание проводилось на установке Spark Plasma Sintering - Labox 650 при температуре 1200 °C в вакууме, давлении 350 кН и выдержки под давлением 15минут. Относительная плотность образцов после проведения искрового плазменного спекания приведена в таблице 3.

Порошок	Относительная плотность, %			
гафнат европия	92			
гафнат диспрозия	96			
гафнат лантана	98			
гафнат самария	94			

Таблица 3 – Относительная плотность образцов после ИПС

На рисунке 3 представлены СЭМ-изображения изломов образцов после искрового плазменного спекания

Рисунок 3 – СЭМ-изображения изломов спеченных методом ИПС образцов гафнатов лантаноидов

проведения ИПС была После определена удельная теплоемкость полученных образцов гафнатов европия, диспрозия, лантана и самария, результаты определения удельная теплоемкости представлены в таблице 4.

Таблица 4 – Улельная теплоемкость гафиатов лиспрозия, дантана.

самария и европия					
Температу ра, ⁰С	удельная теплоемкос ть гафната европия, Дж моль ⁻ ¹ К ⁻¹	удельная теплоемкос ть гафната диспрозия, Дж моль ⁻ ¹ К ⁻¹	удельная теплоемкос ть гафната самария Дж моль ⁻ ¹ К ⁻¹	удельная теплоемкос ть гафната лантана, Дж моль ⁻ ¹ К ⁻¹	
75	370	320	340	380	
100	380	330	360	390	
150	390	340	375	400	

ISSN 2713-0010

Температу ра, ⁰С	удельная теплоемкос ть гафната европия, Дж моль ⁻ ¹ К ⁻¹	удельная теплоемкос ть гафната диспрозия, Дж моль ⁻ ¹ К ⁻¹	удельная теплоемкос ть гафната самария Дж моль ⁻ ¹ К ⁻¹	удельная теплоемкос ть гафната лантана, Дж моль ⁻ ¹ К ⁻¹
200	400	360	390	410
250	420	380	400	420
300	430	400	410	440

Выводы:

При сравнении значений удельной теплоемкости, полученных для образцов исследуемых гафнатов, все образцы демонстрируют аналогичную температурную зависимость сопоставимыми с значениями для образцов гафнатов европия, диспрозия, лантана и полученных сплавлением имеюших самария И изначально кристаллическую решетку. Установлено, что значения удельной теплоемкости гафнатов европия, диспрозия, лантана и самария с повышением температуры монотонно увеличиваются.

Список литературы

[1] Vassen R. Zirconates as new materials for thermal barrier coatings. / R Vassen, X Cao, F Tietz, D Basu, D. St€over // J Am Ceram Soc. – 2000. № 83. 2023-2028 p.

[2] Levi C.G. Emerging materials and processes for thermal barrier systems. / C.G. Levi // Curr Opin Solid State Mat Sci. – 2004. № 8. 77-91 p.

[3] Механизм образования титанатов редкоземельных элементов с использованием метода механической активации / А.В. Шляхтина, И.В. Колбанев, Л.Г. Щербакова, Н.А. Минаева // Химическая физика. – 2001. Т. 20. 94-97 с.

[4] Синтез и высокотемпературная проводимость Ln2Ti2O7 и LnYTi2O7 (Ln= Dy, Ho) / А.В. Шляхтина, С.Н. Саввин, А.В. Левченко, И.В. Колбанев, О.К. Карягина, Л.Г. Щербакова // Неорганические материалы. – 2008. Т. 44. 354-359 с.

[5] Ewing RC. Nuclear waste disposal-pyrochlore (A2B2O7): nuclear waste form for the immobilization of plutonium and minor actinides. / RC Ewing, WJ Weber, J. Lian // J Appl Phys. – 2004. № 95. 5949-5971 p.

[6] Brixner LH. Structural and luminescent properties of the Ln2Hf2O7-type rare earth hafnates. / LH. Brixner // Mat Res Bull. – 1984. N_{0} 19. 143-149 p.

[7] Mandal BP, Garg N, Sharma SM, Tyagi AK. Preparation, XRD and Raman spectroscopic studies on new compounds RE2Hf2O7 (RE = Dy, Ho, Er, Tm, Lu, Y): pyrochlores or defect fluorite? JSolid State Chem. -2006. No 179. 1990-1994 p.

[8] Fuentes AF. Preparation of multicomponent oxides by mechanochemical methods. / AF Fuentes, L. Takacs // J Mater Sci. -2013. No 48. 598-611 p.

[9] Glerup M, Nielsen OF, Poulsen FW. The structural transformation from the pyrochlore structure, A2B2O7, to the fluorite structure, AO2, studied by Raman spectroscopy and defect chemistrymodeling. / M Glerup, OF Nielsen, FW. Poulsen // J Solid State Chem. – 2001. № 160. 25-32 p.

[10] Особенности структуры и электропроводность Ln2+xHf2-xO7x/2 (Ln=Sm-Gd, x=0, 0.096) / А.В. Шляхтина, М.В. Богуславский, С.Ю. Стефанович, И.В. Колбанев, А.В. Кнотько, О.К.Карягина, С.А. Борисов, Л.Г. Щербакова // Неорганические материалы. – 2006. Т. 42. 579-586 с.

[11] Новые ионные проводники Ln2+xTi2-xO7-x/2 (Ln = Dy-Lu, x = 0.132) / А.В. Шляхтина, А.В. Мосунов, С.Ю. Стефанович, О.К. Карягина, Л.Г. Щербакова // Неорганические материалы. – 2004. Т. 40. 1501-1504 с.

[12] Евдокимов А.А. Соединения редкоземельных элементов. Молибдаты, вольфраматы. / А.А. Евдокимов, В.А. Ефремов, Трунов В. К., Клейман И.А., Тананаев И.В. – М.: Наука, 1991. 267 с.

Bibliography (Transliterated)

[1] Vassen R. Zirconates as new materials for thermal barrier coatings. / R Vassen, X Cao, F Tietz, D Basu, D. Stover // J Am Ceram Soc. – 2000. No. 83. 2023-2028 p.

[2] Levi C.G. Emerging materials and processes for thermal barrier systems. /C.G. Levi // Curr Opin Solid State Mat Sci. – 2004. No. 8. 77-91 p.

[3] The mechanism of formation of titanates of rare earth elements using the method of mechanical activation / A.V. Shlyakhtina, I.V. Kolbanev, L.G. Shcherbakova, N.A. Minaeva // Chemical Physics. - 2001. T. 20. 94-97 p.

[4] Synthesis and high-temperature conductivity of Ln2Ti2O7 and LnYTi2O7 (Ln= Dy, Ho) / A.V. Shlyakhtina, S.N. Savvin, A.V. Levchenko, I.V. Kolbanev, O.K. Karyagin, L.G. Shcherbakova // Inorganic materials. – 2008. T. 44. 354-359 p.

[5] Ewing RC. Nuclear waste disposal-pyrochlore (A2B2O7): nuclear waste form for the immobilization of plutonium and minor actinides. / RC Ewing, WJ Weber, J. Lian // J Appl Phys. - 2004. No. 95. 5949-5971 p.

[6] Brixner LH. Structural and luminescent properties of the Ln2Hf2O7-type rare earth hafnates. /L.H. Brixner // Mat Res Bull. - 1984. No. 19. 143-149 p.

[7] Mandal BP, Garg N, Sharma SM, Tyagi AK. Preparation, XRD and Raman spectroscopic studies on new compounds RE2Hf2O7 (RE = Dy, Ho, Er, Tm, Lu, Y): pyrochlores or defect fluorite? JSolid State Chem. - 2006. No. 179. 1990-1994 p.

[8] Fuentes A.F. Preparation of multicomponent oxides by mechanochemical methods. / A. F. Fuentes, L. Takacs // J Mater Sci. – 2013. No. 48. 598-611 p.

[9] Glerup M, Nielsen OF, Poulsen FW. The structural transformation from the pyrochlore structure, A2B2O7, to the fluorite structure, AO2, studied by Raman spectroscopy and defect chemistrymodeling. / M Glerup, OF Nielsen, FW. Poulsen // J Solid State Chem. - 2001. No. 160. 25-32 p.

[10] Structural features and electrical conductivity of Ln2+xHf2-xO7x/2 (Ln=Sm-Gd, x=0, 0.096) / A.V. Shlyakhtina, M.V. Boguslavsky, S.Yu. Stefanovich, I.V. Kolbanev, A.V. Knotko, O.K. Karyagina, S.A. Borisov, L.G. Shcherbakova // Inorganic materials. - 2006. T. 42. 579-586 p.

[11] New ionic conductors Ln2+xTi2-xO7-x/2 (Ln = Dy-Lu, x = 0.132) / A.V. Shlyakhtina, A.V. Mosunov, S.Yu. Stefanovich, O.K. Karyagin, L.G. Shcherbakova // Inorganic materials. - 2004. T. 40. 1501-1504 p. [12] Evdokimov A.A. Compounds of rare earth elements. Molybdates, tungstates. / A.A. Evdokimov, V.A. Efremov, Trunov V.K., Kleiman I.A., Tananaev I.V. – M.: Nauka, 1991. 267 p.

© Г.Х. Шарипзянова, Ж.В. Еремеева, 2023

Поступила в редакцию15.03.2023 Принята к публикации 30.03.2023

Для цитирования:

Шарипзянова Г.Х., Еремеева Ж.В. Исследование теплоемкости спеченных образцов гафнатов европия, диспрозия, лантана и самария // Инновационные научные исследования. 2023. № 3-2(27). С. 16-28. URL: <u>https://ip-journal.ru/</u>