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Summary 

This paper motivates the use of GPS traces to better understand the complexities of driver behaviour 
and movement, and introduces a new car trajectories dataset. This dataset, provided via the ESRC 

Consumer Data Research Centre, consist of connected car data for 50,000 vehicles over one month. We 

propose to analyse route choice through six cardinal statistical measures including travel distance, travel 
time, stop time, number of turns, angular deviation, and sinuosity. We report preliminary results on a 

450 trips sample and aim to extend the analysis to the entire dataset to better understand how individuals 

navigate in their daily journeys. 
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1. Introduction 

 
Understanding the complexities of human behaviour and movement are essential for advancements in 

various contexts, ranging from emergency services (Liu et al., 2022) to official statistics (Marchetti et 

al., 2016; Pappalardo et al., 2016). Traditional data collection methods, such as surveys, have been 
limited regarding collection frequency (Punzo et al., 2011). Though the use of mobile phones has been 

an invaluable source of data for studying movement behaviour, it does not offer the level of granularity 

provided by connected car data (Chen et al., 2019). 

 
Connected car data can fill this accuracy gap as it supplies high-level spatial and temporal detail. It 

enables analysis at a national scale, providing a more representative view of population mobility than 

was previously possible with traditional data. The abundance of connected car data enables high-level 
analysis of factors influencing individuals’ routing behaviour. We can now analyse an accurate record 

of individuals journeys, the time spent travelling, their stops and the routes taken over large areas. By 

comparing these routes to other optimal routes, the effects of adopting one route over another can be 
further analysed. This provides new insight into the general patterns of human mobility and a better 

understanding of behaviour variation over space and time. Such understanding informs more nuanced 

recommendations to policymakers regarding urban planning and infrastructure monitoring. 

 
Traditional approaches to route choice modelling assumes that all individuals make rational judgements 

with the same information concerning routes travelled (Wardrop, 1952). The availability of accurate 

transportation data has allowed the analysis of more realistic cognitive processes such as heuristic 
decision making (Golledge and Garling, 2001; Kaplan and Prato, 2012). Studies such as (Manley et al., 

2015) have found that urban structures have an important effect on individual route choice, highlighting 

a widespread deviation between observed and more optimal routes. Other studies have also shown the 

influences of urban infrastructure on route choice, indicating that individuals spend lots of time in 
particular places and tend to visit such places at specific times (Pappalardo and Simini, 2018). While 

several studies have analysed route choice using GPS data, analysis at the national level is lacking, 

which may raise representativeness issues. 
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In this paper, we contribute to the understanding of route choice by analysing route choice variation by 

time and space with a national scale dataset. To this end, we calculate six cardinal statistical measures: 
travel distance, travel time, stop time, number of turns, angular deviation, and sinuosity. In what follows, 

we describe the dataset and methods used for analysis before presenting some preliminary results. We 

then conclude by discussing the potential for further analysis.   
 

 

2. Data and methods 

 

2.1  Data overview 

 

The dataset is made up of over 400 million GPS data points across the United Kingdom (UK), as shown 
in Figure 1, collected from 3rd June 2022 to 1st August 2022. 

 

Figure 1 Distribution of connected car data. 

 

Recordings are taken at an approximate 3-second interval and demonstrate the precision and volume of 
data made available by current technology. Each recording is date-stamped in the ISO8601 format to 

the 3-digit millisecond. Each trip consists in a set of GPS recordings and can be identified by a unique 

journey key, as illustrated on a dummy example in Figure 2. The dataset contains approximately 
1,830,000 journeys. Each recording also includes information on vehicle speed, bearing angle (vehicle 

direction), and geographic location in the form of a geohash. To ensure privacy, the exact origin and 

destination of each trip are obfuscated. 

 
 

 

Figure 2 Illustrative dummy data example 
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Due to the size of the dataset, this paper focus on an exploratory process undertaken on a sample of 450 

trips across the North-East and North-West of the UK. 
 

An analysis of the dataset quality indicates that the dataset has a high level of detail, with low levels of 

missing values, inaccuracies, and duplications. 97% of inter-event times within the sample are under 3.2 
seconds, as shown in Figure 3.  

 

Figure 3 Cumulative distribution of inter-event time  

 

 

2.2 Route analysis framework 

 
This study aims to explore routing behaviour through the generation of descriptive statistics. No 

preprocessing was required as raw data is highly accurate. Scikit mobility, a Python library for human 

mobility analysis, was used to generate travel distance and stop time metrics (Pappalardo et al., 2019). 

The following statistics have been computed: 
 

Travel Distance - This statistic measures the length of a journey (L). This is calculated in Equation 1 

as the sum of the distances between consecutive time-ordered points of the journey, where n is the 
number of points, and rj-1 and rj are consecutive points.   

 

 L = ∑ 𝑑𝑖𝑠𝑡(𝑟𝑗− 1,
𝑛
𝑗=2  𝑟𝑗)     (1) 

                                                                                 

                                                                             

Travel Time – This statistic measures the duration of a journey (D). This is computed in Equation 2 as 
the difference between the timestamps of the first (t1) and last (tn) GPS recordings for a journey. 

 

 𝐷  =  𝑡𝑛   −  𝑡1      (2) 
 

Stop Time - This statistic measures the total stop time within a journey. GPS points which were 

stationary (i.e. within a spatial radius of 200 m) for a minute or more were identified as stops (see Table 
1 of Hariharan and Toyama, 2004 for a definition).  Places of interest, identified by long stop times, are 

considered pull factors in analysing route choice. Shorter stops resultant from traffic are also identified. 

 

Number of Turns - The number of turns along a journey is determined by the bearing change between 
two consecutive trajectory points. Bearing changes greater than 50° are considered as turns (Douglas 

and Peucker, 1973). This statistic helps to understand the patterns regarding routes taken, i.e. are people 

more likely to go along a route without many turns or not.  
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Cumulative Angular Deviation – The CAD measures the angularity of the trajectory. This is defined 

in Equation 3 as the sum of the absolute differences in bearing angle between consecutive time-ordered 

points of the journey, where n is the number of points, and θj-1 and θj are bearings of consecutive points.   
      

 CAD = ∑ |𝜃𝑗−1 − 𝜃𝑗|𝑛
𝑗=2       (3) 

                                                                           

 

Sinuosity – The sinuosity S measures the trajectory efficiency, compared to a straight line. It is the ratio 
of the route length L to the straight-line distance between origin (r1) and destination (rn), as defined in 

Equation 4. 

 
 

 𝑆  =  
𝐿

𝑑𝑖𝑠𝑡(𝑟1, 𝑟𝑛)
     (4) 

 

 
3. Preliminary results 

 

Preliminary results computed on a sample of 450 trips show a summary of descriptive statistics 
generated per journey (Table 1). 

 

 Table 1 Descriptive statistics of sample (450 trips) 

 

The preliminary results indicate a high level of variability in trip distance and duration within the sample. 

The results suggest that stop time may account for nearly half of the travel time. Sinuosity was calculated 
excluding round trips (n=129), to avoid biasing the results due to similar origins and destinations. The 

descriptive statistics presented above provide insight into the data distribution, which although not 

representative of the entire dataset, offers valuable information for further exploration and future 
research. 

 

 
 

 

 

 Min Max Mean 
1st 
quartile 

Median 
3rd 
quartile 

Standard 
deviation 

Travel distance L 

(km) 

 

0.000 172.366 25.491 5.379 12.354 31.365 34.622 

Travel time D 

(min) 

 

0.000 101.518 12.773 3.150 7.352 16.799 14.787 

Stop time (min) 1.000 43.799 6.0706 1.549 3.151 8.226 6.973 

Number of turns 0.000 92.000 14.328 5.00 10.00 20.00 13.801 

 
Cumulative 

Angular 
Deviation CAD 

(°) 

0.000 15836.839 2026.964 724.390 1484.699 2776.279 1933.864 

Sinuosity (one-
way trips) S  1.066 249.807 7.848 1.897 3.375 3.375 7.301 
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4. Discussion and conclusion  

 

Connected cars provide a level of data which has previously not been available within the transportation 
industry. The availability of digital footprints data will play an increasing role in understanding human 

behaviour and informing policy. In many cases, such data requires extensive processing and analysis 

before meaningful insights can be extracted. In this paper, we introduce a dataset from connected cars 
that has been made available via the ESRC Consumer Data Research Centre. We have presented an 

initial assessment of its quality and some preliminary results that can begin to inform new insights into 

human behaviour. We expect to use this dataset to identify new patterns associated with human mobility, 
and explore variations by day of the week, time, and UK region. 
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