Supporting Information for

Sediment-encased pressure-temperature maturation experiments elucidate the impact of diagenesis on melanin-based fossil color and its paleobiological implications.

Arindam Roy* (https://orcid.org/0000-0002-4890-6851)
Michael Pittman* (https://orcid.org/0000-0002-6149-3078)
Thomas G. Kaye (https://orcid.org/0000-0001-7996-618X)
Evan T. Saitta (https://orcid.org/0000-0002-9306-9060)
*Corresponding author(s)
Email: ar15313@bristol.ac.uk ; mpittman@cuhk.edu.hk

Supplementary tables

Table S1. Specimen data and experimental maturation treatments. Specimen data includes taxonomic information, and where applicable, museum accession codes, tissue types, fossil localities, and geological ages. PCA No. refers to the data point numbers assigned in the PCA score plots (Figs. 2, S2, S3).

Capsule matured enzymatically extracted melanin from extant feathers (Colleary et al. 2015)

PCA No.	Common Name	Scientific Name	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{P}($ bars $)$	Feather Colour	Melanin Type
1	Chicken	Gallus gallus	200	250	Brown	Phaeomelanin
2	Carrion crow	Corvus corone	200	250	Glossy Black	Eumelanin
3	Chicken	Gallus gallus	200	250	Black	Eumelanin
4	Dark-eyed junco	Junco hyemalis	200	250	Grey	Eumelanin, Phaeomelanin
5	Mallard	Anas platyrynchos	200	250	Grey	Eumelanin, Phaeomelanin
6	Grey catbird	Dumetella carolinensis	200	250	Brown	Phaeomelanin
7	Rock dove	Columba livia	200	250	Grey	Eumelanin, Phaeomelanin
8	Turkey	Meliagris gallopavo	200	250	Iridescent	Eumelanin
9	Chicken	Gallus gallus	250	250	Brown	Phaeomelanin
10	Carrion crow	Corvus corone	250	250	Glossy Black	Eumelanin
11	House wren	Troglodytes aedon	250	250	Brown	Phaeomelanin
12	Chicken	Gallus gallus	250	250	Black	Eumelanin, Phaeomelanin
13	Dark-eyed junco	Junco hyemalis	250	250	Grey	Eumelanin, Phaeomelanin
14	Grey catbird	Dumetella carolinensis	250	250	Brown	Phaeomelanin
15	Rock dove	Columba livia	250	250	Grey	Eumelanin, Phaeomelanin
16	Turkey	Meliagris gallopavo	250	250	Iridescent	Eumelanin

Melanin-bearing fossil specimens (Colleary et al. 2015, Xu et al. 2015)

PCA No.	Taxon	Accession No.	Clade	Tissue	Fossil Locality	Geological Age
17	Pipidae	MU 41-3	Anura	Skin	Mush Valley Ethiopia	Ypresian-Lutetian
18	Pipidae	MU 32-2A/B	Anura	Skin	Mush Valley Ethiopia	Ypresian-Lutetian
19	Indeterminate	FUM-N 2275	Aves	Feather	Fur, Denmark	Ypresian-Lutetian
20	Indeterminate	SMF-ME 3850	Aves	Feather	Messel, Germany	Ypresian-Lutetian
21	Hassianycteris	SMF-ME 11407b	Mammalia	Hair	Messel, Germany	Ypresian-Lutetian
22	Palaeochiropteryx	SMF-ME 11406a	Mammalia	Hair	Messel, Germany	Ypresian-Lutetian
23	Pelobates	PW2005-5034-LS-GDKE	Anura	Skin	Enspel, Germany	Chattian
24	Keuppia	NHMUK PI CC578	Cephalopoda	Ink Sac	Hakel/Hjoula, Lebanon	Cenomanian
25	Glyphiteuthis	BRSUG 29387	Cephalopoda	Ink Sac	Hakel/Hjoula, Lebanon	Cenomanian
26	Indeterminate	-	Cephalopoda	Ink Sac	Lyme Regis, UK	Sinemurian
27	Messelornis	SMF-ME 11402a	Aves	Feather	Messel, Germany	Ypresian-Lutetian
28	Palaeobatrachus	SMF-ME 11390a	Anura	Eye	Messel, Germany	Ypresian-Lutetian
29	Palaeobatrachus	SMF-ME 11390a	Anura	Skin	Messel, Germany	Ypresian-Lutetian
30	Indeterminate	-	Cyclostomata	Eye	Mazon Creek	Carboniferous
31	Sapeornis	STM 15-18	Avialae	Feather	Yixian, China	Aptian-Albian
32	Sapeornis	STM 15-18	Avialae	Feather	Yixian, China	Aptian-Albian
33	Yiqi	STM 31-2	Pennaraptora	Feather	Tiaojishan, China	Oxfordian
34	Yi qi	STM 31-2	Pennaraptora	Feather	Tiaojishan, China	Oxfordian
35	Sapeornis	STM 15-18	Avialae	Feather	Yixian, China	Aptian-Albian

Unmatured enzymatically extracted melanin samples (Colleary et al. 2015)

PCA No.	Common Name	Scientific Name	Tissue	Colour	Melanin Type
36	Chicken	Gallus gallus	Feather	Brown	Phaeomelanin
37	Carrion crow	Corvus corone	Feather	Glossy Black	Eumelanin
38	House wren	Troglodytes aedon	Feather	Brown	Phaeomelanin
39	Chicken	Gallus gallus	Feather	Black	Eumelanin
40	Dark-eyed junco	Junco hyemalis	Feather	Grey	Eumelanin, Phaeomelanin
41	Mallard	Anas platyrynchos	Feather	Grey	Eumelanin, Phaeomelanin
42	Dark-eyed junco	Dumetella carolinensis	Feather	Brown	Phaeomelanin
43	Rock dove	Columba livia	Feather	Grey	Eumelanin, Phaeomelanin
44	Turkey	Meliagris gallopavo	Feather	Iridescent	Eumelanin
45	Rock dove	Columba livia	Feather	Grey	Eumelanin, Phaeomelanin
46	Rock dove	Columba livia	Feather	Black	Eumelanin
47	Edible frog	Pelophylax kl. esculentus	Liver	Mixed	Eumelanin, Phaeomelanin
48	Edible frog	Pelophylax kl. esculentus	Eye	Mixed	Eumelanin, Phaeomelanin
49	Edible frog	Pelophylax kl. esculentus	Eye	Mixed	Eumelanin, Phaeomelanin
50	Eurasian magpie	Pica pica	Feather	Iridescent	Eumelanin
51	Purified Sepiamelanin (Sigma - Aldrich)	-	-	Eumelanin standard	

Sediment encased P/T- maturation samples of extant feathers

PCA No.	Common Name	Scientific Name	T $\left({ }^{\circ} \mathrm{C}\right)$	P (bars)	Colour	Melanin Type
52	Wrinkled hornbill	Rhabdotorrhinus corrugatus	~ 190	250	Black	Eumelanin
53	Common pheasant	Phasianus colchicus	~ 190	250	Brown	Phaeomelanin
54	Rock dove	Columba livia	~ 190	250	Grey	Eumelanin,
55	Wrinkled hornbill	Rhabdotorrhinus corrugatus	~ 190	250	Black	Phaeomelanin
56	Rock dove	Columba livia	~ 190	250	Iridescent	Eumelanin
57	White-rumped munia	Lonchura striata	~ 200	250	Black	Eumelanin
58	Von Shrenck's bittern	Ixobrychus eurhythmus	~ 200	250	Brown	Phaeomelanin
59	Von Shrenck's bittern	Ixobrychus eurhythmus	~ 200	250	Grey	Eumelanin,
60	Rock dove	Columba livia	~ 200	250	Iridescent	Phaeomelanin
61	Common pheasant	Phasianus colchicus	~ 225	250	Brown	Phaeomelanin
62	Turkey	Meliagris gallopavo	~ 225	250	Iridescent	Eumelanin
63	Wrinkled hornbill	Rhabdotorrhinus corrugatus	~ 225	250	Black	Eumelanin
64	Rock dove	Columba livia	~ 225	250	Grey	Eumelanin,
65	Common pheasant	Phasianus colchicus	~ 250	250	Brown	Phaeomelanin
66	Wrinkled hornbill	Rhabdotorrhinus corrugatus	~ 250	250	Black	Eumelanin
67	Rock dove	Columba livia	~ 250	250	Grey	Eumelanin,
68	Turkey	Meliagris gallopavo	~ 250	250	Iridescent	Phaeomelanin
69	Turkey	Eumelanin				
70	Common pheasant	Phasianus colchicus	~ 250	250	Iridescent	Eumelanin
71	Wrinkled hornbill	Rhabdotorrhinus corrugatus	~ 250	250	Brown	Phaeomelanin
72	Rock dove	Columba livia	~ 250	250	Black	Eumelanin
73	Wrinkled hornbill	Rhabdotorrhinus corrugatus	~ 300	250	Black	Eumelanin,
74	Common pheasant	Phasianus colchicus	~ 300	250	Brown	Phaeomelanin
75	White-rumped munia	Lonchura striata	~ 300	250	Black	Phaeomelanin
76	Von Shrenck's bittern	Ixobrychus eurhythmus	~ 300	250	Brown	Eumelanin
77	Von Shrenck's bittern	Ixobrychus eurhythmus	~ 300	250	Grey	Eumelanin,
78	Rock dove	Columba livia	~ 300	250	Iridescent	Phaeomelanin
9	Wrinkled hornbill	Rhabdotorrhinus corrugatus	~ 300	250	Black	Eumelanin

Supplementary Figures

Fig. S1. PCA on ToF-SIMS data of fossil and experimental samples. (A) Comparison of secondary ion spectra of fresh melanin extracts, capsule-matured melanin extracts, sediment-encased maturation (SEM) of whole feathers, and fossil samples. (B) Loading plot indicating the relative contributions of secondary ions on PC1 and PC2 axes (next page).

Fig. S2. Comparison of ToF-SIMS spectra of fresh, experimental, and fossil samples. Aligned time-of-flight secondary ion negative spectra for α-keratin reference (K0253, Sigma-Aldrich) (Schweitzer et al. 2018), white feather β-keratin (Schweitzer et al. 2018), fresh (unmatured) melanin extracted from black and brown feathers (Colleary et al. 2015), (spectra collected at room temperature under the same analytical parameters on the same make and model of equipment as used here and provided by Peter Sjövall, RISE Research Institutes of Sweden, Chemistry and Materials, Borås, Sweden), $200^{\circ} \mathrm{C}$ capsule-matured melanin extracted from black and brown feathers, $200^{\circ} \mathrm{C}$ sediment-encased P/T-matured black and brown feathers, and a fossil feather (Messelornis, SMF-ME 11402a). Spectra are colour coded as: feather β-keratin reference (red), unmatured melanin extract (purple), capsule-matured melanin extract (pink), sediment-matured feathers (green), and fossil feather (blue). Characteristic melanin fragments based on Colleary et al. (2015) and Lindgren et al. (2014) and Lindgren et al. (2012) are shown as dots above each spectrum. Black dots indicate eumelanin-specific fragments, whereas brown dots indicate phaeomelanin-specific fragments. A large peak present at $\mathrm{m} / \mathrm{Z} 75$ and two large peaks m / Z 90.84 and 92.93 , as well as the absence of peaks beyond $\mathrm{m} / \mathrm{Z} 120$, in the α-keratin spectrum indicate that experimental and fossil samples do not match α-keratin, but instead are dominated by melanin. β-keratin spectrum also largely shows peaks which do not match the unmatured melanin, experimental samples or fossil melanin. We expect melanin to be a more heavily cross-linked polymer in many of these samples than a polypeptide chain, possibly explaining the lack of large mass fragments in the feather β-keratin reference. ~ 190 $200^{\circ} \mathrm{C}$ experimentally matured samples are shown here because these appear to be most similar to fossil specimens in PCA (next page).

Fig. S3. Loadings of ToF-SIMS secondary ions on PC1-PC4 of the same PCA as shown in Fig. 2 (i.e., all 55 fragments included). Different chemical groups are colour coded. The black bar indicates $\mathrm{C}_{6} \mathrm{NSO}-(\mathrm{m} / \mathrm{Z} 134.00)$ but the fragment size is also very similar to that of $\mathrm{C}_{10} \mathrm{~N}-(\mathrm{m} / \mathrm{Z} 133.97)$ thus two chemical groups cannot be unambiguously identified (next page).

Fig. S4. PC2 and PC3 of the same PCA on TOF-SIMS data of fossil and modern/experimental samples as in Fig. 2 (i.e., all 55 fragments included).(A) Comparison of secondary ion spectra of modern melanin extracts, capsulematured melanin extracts, sediment-encased maturation (SEM) of whole feathers, and fossil samples along PC2 and PC3. (B) Loading plot indicating the relative contributions of secondary ions on PC2 and PC3. The black arrow indicates $\mathrm{C}_{6} \mathrm{NSO}-(\mathrm{m} / \mathrm{Z} 134.00)$ but the fragment size is also very similar to that of $\mathrm{C}_{10} \mathrm{~N}-(\mathrm{m} / \mathrm{Z} 133.97)$ thus two cannot be unambiguously identified. (C) Box plot of PC3 values according to sample category.

Fig. S5. A separate PCA on negative secondary ions in which hydrocarbon $\left(\mathrm{C}_{\mathrm{x}} \mathrm{H}^{-}\right)$fragments are excluded (i.e., the remaining 45 fragments) (A) Excluding hydrocarbon fragments lead to an increase in overlap between experimental categories (Capsule $200-250^{\circ} \mathrm{C} ; 195-225^{\circ} \mathrm{C}$) and fossils suggesting that fossils are depleted in hydrocarbon fragments due to early microbial decay or late oxidative weathering. PC1 scores of low temperature sediment matured samples $\left(\sim 190^{\circ} \mathrm{C}, \sim 200^{\circ} \mathrm{C}, \sim 225^{\circ} \mathrm{C}\right)$ become more comparable with fossil samples when this hydrocarbon discrepancy is accounted for. There is some heterogeneity in fossil samples probably due to differences in age, locality, and taphonomy. Fossils overlap with a few unmatured melanin extracts further supporting the idea that melanin, rather than protein, produces the stains of fossils. (B) Loading plot indicating the relative contributions of secondary ions on PC1 and PC2. The black arrow indicates $\mathrm{C}_{6} \mathrm{NSO}-(\mathrm{m} / \mathrm{z}$ 134.00) but the fragment size is also very similar to that of $\mathrm{C}_{10} \mathrm{~N}-(\mathrm{m} / z 133.97)$ thus two chemical groups cannot be unambiguously identified (next page).

Literature Cited

Colleary, C., A. Dolocan, J. Gardner, S. Singh, M. Wuttke, R. Rabenstein, J. Habersetzer, S. Schaal, M. Feseha, M. Clemens, B. F. Jacobs, E. D. Currano, L. L. Jacobs, R. L. Sylvestersen, S. E. Gabbott, and J. Vinther. 2015. Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils. Proceedings of the National Academy of Sciences USA 112(41):12592-7.
Lindgren, J., P. Sjovall, R. M. Carney, P. Uvdal, J. A. Gren, G. Dyke, B. P. Schultz, M. D. Shawkey, K. R. Barnes, and M. J. Polcyn. 2014. Skin pigmentation provides evidence of convergent melanism in extinct marine reptiles. Nature 506(7489):484-8.
Lindgren, J., P. Uvdal, P. Sjovall, D. E. Nilsson, A. Engdahl, B. P. Schultz, and V. Thiel. 2012. Molecular preservation of the pigment melanin in fossil melanosomes. Nature Communications 3:824.
Schweitzer, M. H., W. Zheng, A. E. Moyer, P. Sjövall, and J. Lindgren. 2018. Preservation potential of keratin in deep time. PloS One 13(11):e0206569.
Xu, X., X. Zheng, C. Sullivan, X. Wang, L. Xing, Y. Wang, X. Zhang, J. K. O'Connor, F. Zhang, and Y. Pan. 2015. A bizarre Jurassic maniraptoran theropod with preserved evidence of membranous wings. Nature 521(7550):70-3.

