
 

 

 

Base Correlation Model 

 

 

The model serves the purpose of finding an appropriate correlation to value a collateral debt obligation 

(CDO) tranche from market information via base correlations. The model includes: 

 

1. Normal Copula Semi-closed Form Solution; 

2. New Method of Base Correlation Calibration; 

3. Extrapolation of Base Correlation Curve. 

 

In the following of the report, the collateral pool of a CDO trade is defined as a set of N reference 

names, },,2,1{ N= , in which each reference name is described by a hazard rate curve )(thi , recovery 

rate iR , and a notional amount iNotl .  The collateral pool is tranched into M tranches with the
thi tranche 

defined by an attachment point
1−iK , a detachment point 

iK , and a fixed time horizon ],0[ MT  with fee 

payments at interval MTTT  21 .   

 

Within the current GSP credit derivatives framework a reduced form of default probability of a reference 

name has been implemented and well maintained. Let the default time of 
thi  reference name in the 

collateral pool be i , a deterministic risk-neutral hazard rate, )(shi , is defined such that the default 

probability between s and s+ds dsshsdsssP iii )(]|[ =+  . With this definition the default 

probability functions built upon the hazard rate are 
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• Normal Copula Semi-Closed Form Model 

 



 

Normal copula model has become the market standard to compute the joint default probabilities of a 

collateral pool, which is essential to value a CDO trade [4,5]. Within the GSP credit derivative modeling 

framework, a normal copula Monte Carlo (MC) simulation model has already implemented and approved 

[6].  

 

A copula is a mathematical function that combines marginal probability into a joint distribution. For n 

uniform random variables, N21 U, U,U  , the joint distribution function is defined as the following. 

 

(4) ],uU,uU,uUPr[)u,,u,C(u NN2211N21 =       

 

The function C is called the copula function. 

 

The normal copula function is a multivariate cumulative normal distribution with correlation matrix  . 

Applying the normal copula function to the modelling of correlated default events of a collateral asset pool, 

the uniform random variables are mapped to the default probabilities with standard normal distribution. The 

default copula, or the cumulative joint default probability for the collateral pool with n assets, can be 

expressed as: 
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where  is the standard cumulative normal distribution function with correlation matrix  . 

 

⎯ One-Factor Normal Copula Model and Analytical Solution 

 

The normal copula function is actually an n-dimensional integral, which is hard to calculate directly if n is 

large.   We use the one-factor normal copula model to reduce the dimensionality in order to achieve an 

analytical solution. For the
thi obligor in the collateral pool, we assume that its asset process follows  

 

(6)  iiii ZZX 21  −+= ,         

 

where Z , ),2,1( NiZ i =  are independent standard normal random variables, that is 

== jiZZZZ jii ,0),cov(),cov( .  The latent variable Z  is shared by all reference names in the 



 

collateral pool. From the above equation, the correlation between
thi and 

thj  obligor, which could be 

viewed as the asset correlation 
ji, , can be found to have the following relationship  
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The assumption that 
jiji  =,
 can be easily achieved for a flat correlation matrix by assuming 

),,2,1( Nii ==  . With this assumption, the default probability of the 
thi  reference name 

conditional on the latent variable has the following form 
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The Normal copula can be proved to have the form 
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Finally, we can express the one-factor normal default and survival copulas as the following 
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The n-dimensional copula is computed through a one-dimensional integral.  

 

⎯ Valuation of a CDO Trade Using One-Factor Semi-Closed Form Solution 



 

 

Even if the normal copula can be reduced into a one-dimensional integral shown in Eqs. (10) and (11), it is 

still quite difficult to be used directly in the valuation of CDO trades. Instead, we proceed with a loss 

function defined as 
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where  )1( iii RNotlLGD −=  is the loss given default (LGD) for the 
thi reference name.  

 

In order to price a CDO tranche with an attachment point
1−iK  and a detachment point

iK , the expected 

loss function of the tranche is introduced, which has the form 
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The value of the protection leg and the fee leg can then be written as: 

 

 

Fee Leg: 

 

(14)  )]([)(),,(
0

1 tLdEsDKKV i

T

iiP

M

=−  . 

 

Annuity of the fee leg: 
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with the first term being the annuity of the fee payment stream and the second the fee accrual. 

 

The b/e spread for the CDO tranche can be calculated by 
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and, if the traded spread  
ii KKs ,1−
 is given, the MTM reads 
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⎯ Iteration Approach To Calculate Expected Loss Distribution Function 

 

In order to calculate the expected loss function denoted in Eq. (13), we need to the find the probability 

distribution function of the loss function. In general there are two approaches: 1) via the characteristic 

function and the moment generating function and 2) via iteration.  

 

By conditional independence, we could proceed with the characteristic function as proposed by Laurent and 

Gregory (2003)[4]:  
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within which the characteristic function of the single reference name can be calculated separately with the 

results shown as  
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The probability distribution of the loss function can be calculated from the characteristic function. 

 

The GSP toolbox adopts an iteration approach, which has been proved to be a more efficient method. This 

method was first proposed by L. Anderson et al. [8] and several other versions were later developed by 

several authors [7~10]. 



 

 

Conditional on the latent variable, we could find that the probability of zero loss is given by 
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while the probability of the
thi reference name default could be written as 
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From the above two equations, we could find an iteration relationship by assuming that the reference name 

is added one by one. For example, when the
thi reference is added, the following relationship holds  
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Once we got the default probability distribution conditional on the latent variable, the unconditional 

probability can be found: 
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Then the expected loss function can be written as 
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with )),(()()),(( ttLdFtdLttLf N=  being the probability density function of expected loss. 

 



 

With respect to the GSP iteration approach, it is worthy to note that 

 

1. The iteration adopted by the GSP model and denoted in this report is different from those specified by 

Anderson et al. [8] and Hull&White [7]. In the current GSP approach, the limitations on the LGD of 

each reference name are lifted by building loss function grid points without any approximation.  The 

iteration is then conducted by Eq. (22), which is directly over the reference name instead of the loss 

function. The advantage of this approach is that no approximation is needed; the disadvantage is that 

the simulation time will increase quickly as the heterogeneity of the LGD of the reference pool 

increases.  

 

2. Gauss-Hermite method is used for the integration over the latent variable. As shown in Eqs.(8) and (9), 

the function is no longer smooth enough if the correlation is very large. Hence 0.9 is set to be the 

maximum value that the semi-closed form solution can predict a reliable solution.  

 

3. The iteration is carried out quarterly and the integration over time, as denoted by Eqs.(14) and (15), is 

done by linear interpolation over the quarterly spaced expected loss function.  

 

The pertinent tests have been designed to assess these treatments and approximations in the following 

section. 

 

• Base Correlation Curve Calibration 

 

In the initial version of the GSP toolbox, the base correlation is calculated based on the implied correlation, 

bearing the assumption that base correlation and implied correlation generates the same expected loss and 

are internally consistent. However, research shows that they are different and the base correlation should be 

built in a more self-consistent way [12].   

 

Taking the standard CDX North America index as an example 

( %})100%,30%,15%,10%,7%,3,0{=iK , the base correlation curve is calculated by the following 

procedures: 

 

1. The 0~3% tranche base correlation is equal to the implied correlation. That is, the value of 

correlation is find such that the MTM of the 0~3% tranche is zero with  
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where %3~0U  is the up-front fee and %)5(%3~0 =s  is the quoted spread of the equity tranche. 

Eq.(25) can be solved using the normal copula model in reverse. 

 

2. For base correlation of 0~7% tranche, we solve for the value of 
%7

base  that solves 
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where )%,3,0( %3

basepV   and )%,3,0( %3

basefA   are the value of protection and annuity of the fee 

leg, which are implied from the 0~3% tranche market quote and calculated from the first step.   

 

3. The base correlation of the higher attachment point is calculated by following the same 

bootstrapping procedure based on the base correlation of the previous base tranche. 

 

The new method, called MTM in the toolbox, is consistent with Refs. [12] and [13].  

  

• Base Correlation Curve Extrapolation and Interpolation 

 

The base correlation curve is consisted of the correlation values of several base tranches. When applied to a 

bespoke tranche, it may encounter the situation that the bespoke tranche has the attachment point and/or 

detachment point below the first base tranche or higher than the last base tranche. For example, the first 

base tranche of CDX is 0~3% while the bespoke tranche could be 1.5%~2.5%. In order to find the 

appropriate correlation in this case, several extrapolation methods on the base correlation curve have been 

proposed in the submitted template. 

 

In the toolbox, one can pick an extrapolation method by assuming a correlation value for 0~0% and 

0~100% base tranches. For example, we could assume 0 point correlation be 1) 0, 2) the same as 0~3% 

tranche (a flat curve), and 3) an arbitrary value which could be a linear extrapolation of the curve up to 

0~7% base tranche.    

 



 

To the best of our knowledge, there is no generally acceptable methodology of such extrapolation. 

Moreover, it is even doubtful if we could apply such method, because we actually extending market 

information to the unknown range.   

 

We argue that, if we need to make a choice, the flat extrapolation is appropriate for two reasons. First, it is 

more self-consistent. As discussed in Ref. [12], the base correlation is not a proper model of correlation 

skew. A flat extrapolation assumes no correlation skew within the extrapolated region (0~3% and 30~100% 

for CDX). As shown in Eqs.(14) and (15), assuming a flat base correlation curve fulfils the arbitrage-free 

requirements claimed in Ref. [12], hence it is more self-consistent.  

 

Second, a flat extrapolation is robust when applied to a bespoke tranche. If the attachment point and 

detachment points of a tranche are within the extrapolation range, a positive value of protection is assured 

by the flat extrapolation while other methods have the possibility of failure. 

 

• Benchmarking/Comparison to Other Models 

 

Two models are employed as the benchmark/comparison model, which are: 

 

1. Normal Copula MC simulation 

 

The normal copula model was first proposed as an MC simulation approach [5]. The GSP normal copula 

MC simulation model could serve as the benchmark model to test the closed form solution.  

 

In order to generate correlated defaults times using normal copula, a series of random variables 

n21 X ,X ,X   are first generated from an n-dimensional normal distribution with correlation   in each 

MC scenario. The default times for each obligor in the collateral pool n21  , ,    are obtained using 

 

(25) .,2,1)),((1 NiXF ii == −  

 

 

2. FTD closed form solution  

 

If we assume a homogeneous collateral pool ( == jiConstLGDLGD ji , ) and set the notional of 

the first tranche equal to LGD , the first tranche becomes a first-to-default (FTD) trade.  

 



 

Within the one factor normal copula framework, this special FTD actually has a nice closed form solution. 

Instead of directly solving first default probability, we are interested in the probability that all names 

survive up to a particular point in time. 

 

The joint distribution for survival time can be defined as follows given the definition of survival copula: 
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We can then write the hazard rate and default probability density function for the collateral pool as the 

following: 
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Then we treat this FTD trade just like a single name credit default swap (see 

https://finpricing.com/product.html). Following this approach, the protection leg and fee leg have the 

forms. 
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This closed form solution does not involve iteration hence can be used as a alternative model to check the 

iteration method. 

 

https://finpricing.com/product.html

