
Dominant Trip Purposes within a Dockless Bicycle Sharing System

in London

James Todd∗1, Shunya Kimura†1, Oliver O’Brien‡1 and James Cheshire§1

1Department of Geography, UCL

GISRUK 2023

Summary

Implementing a zero-inflated multilevel negative binomial regression model, this research
identifies the relative increase in dockless bicycle sharing journey destinations within close
proximity to a range of built environment factors that enable inferences of trip purposes.
Results show that among users of the JUMP system in London there is nearly a fourfold

increase in bicycle drop-offs in locations within close proximity to train stations, showcasing
significant multi-modal first and last mile use, in addition to a significant proportion of users

likely to be students using the mode to get to university buildings.
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1 Introduction

Bicycle sharing systems (BSS) are a form of urban micromobility that have observed mass adoption
in cities around the world (with over 1,900 currently operational systems Meddin et al. (2022)). Most
recent iterations of BSS, dubbed the fifth-generation (Guidon et al., 2019), are characterised by their
dockless nature, enabling flexibility in picking-up and dropping-off bicycles within operational areas,
whilst also reducing the amount of physical excision required with the implementation electric pedal-
assistance. There is limited research surrounding these e-BSS, with researchers such as Becker et al.
(2017) suggesting that the differences between previous iterations of BSS being so stark that past
findings may not be transferable.

As such, this research aims to extend on current understandings of dockless e-BSS systems by
analysing trip purposes within the Uber JUMP e-BSS in London. Unlike prior analyses that have
sought to understand the determinants of BSS activity through understanding the effects of built
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environment factors that are within close proximity to journey locations, this research is unique
in three ways. Firstly, instead of using journey origin locations (Guidon et al., 2019; Shen et al.,
2018), journey destination locations have been elected due to their advantages in being able to infer
trip purposes as opposed to the terminus of previous journeys or operator redistributions. Secondly,
granular 50-metre radius hexagonal grid cells have been employed over preceding coarse geographical
aggregations (Mooney et al., 2019; Guidon et al., 2019; Shen et al., 2018) in order to better identify
likely trip purposes given the flexibility of the dockless system and reduce issues of ecological fallacy.
Finally, the number of bicycles dropped-off in each hexagonal grid cell were counted in four time
blocks - AM Peak Hours (weekdays 7am to 11am), PM Peak Hours (weekdays 4pm to 8pm),
Off-Peak Hours (weekdays 8pm to 7am and 11am to 4pm) and Weekend All (weekends 12am to
12am). In doing so, it was possible to employ a zero-inflated multilevel negative binomial regression
model with interaction effects, typically operationalised in fields such as spatial epidemiology and
environmental criminology, to measure the relative increase in bicycle drop-off occurrences for each
built environment factor and time block.

2 Data

Figure 1: JUMP e-BSS study region [orange areas depict permitted operating boroughs].

Data on the JUMP e-BSS in London were obtained from an openly published General Bikeshare
Feed Specification (GBFS) (see NABSA (2022)) feed between 26th December 2019 and 4th March
2020. The raw data undergo a rigorous cleaning process to identify each journey’s linked origin-
destination (OD) locations and remove all non-user movements, whether that be a result of data
anomalies or operator redistribution and maintenance efforts (such as battery swapping). Initially,
the dynamically rotating nature of bicycle IDs after the end of each journey are exploited to remove
logs of bicycle locations in situ. It is then possible to reconstruct OD records between each pair
of bicycle IDs and estimate trip attributes such as their duration, distance, speed and battery use
to further process and identify non-user records within these data. Such processes result in a final



collection of 58,682 journeys that occurred between 1st January and 3rd March 2020 which form the
foundations of this analysis. Figure 1 provides an overview of the study area that have been defined
that include non-permitted boroughs due to its disjointed and incomplete geographical nature that
reduce but still constitute a significant proportion of total journeys throughout the study period,
as identified in Table 1.

Table 1: Total and average daily journeys that end in each borough across the study area.

Borough Total Journeys
Average No. of
Daily Journeys

Camden 19,974 312.1

City of London 945 14.8

Hackney 8,106 126.7

Islington 23,547 367.9

Kensington and Chelsea 2,309 36.1

Tower Hamlets 2,099 32.8

Westminster 1,702 26.6

Table 2: OSM feature keys and values used to identify built environment factors.
Variable
Name

OSM Feature
Key

OSM Feature
Value

Shops shop all

Sustenance amenity
pub, bar, restaurant, fast food,
café, food court, ice cream

Tourism tourism
artwork, attraction, gallery,
museum, zoo, viewpoint

Train
railway
building

subway entrance
train station

Bus highway bus stop

Park leisure park

University building university

In addition, independent built environment factors and population distribution characteristics of
the study area were necessary to be derived from a number of data sources. These were primarily
obtained from OpenStreetMap (OSM) due to its accessibility and completeness in London. The
names of each built environment variable and their corresponding OSM feature names and keys
used to extract their locations are detailed in Table 2. Cycle lane locations have been derived from
a 2018 Transport for London dataset. Population distribution characteristics that are unattainable
from OSM have been gathered from the datasets detailed in Table 3 to provide further contextual
information. Combining these data sources together a multilevel data structure consisting of 70,796
observations are created, full details of which are detailed in Section 7.4 of Todd (2022). The
distribution of these variables are detailed in Table 4.



Table 3: Additional data sources used in regression analysis.

Variable Description
Spatial

Resolution
Source

Population
Official source of
population sizes

inbetween censuses
MSOA

Office for National
Statistics (2020)

Employee

Workplace and employee
estimations using the
Inter-Departmental
Business Register

Workplace
Zones

Office for National
Statistics (2015)

Cycle Lane
Location of cycling
lanes and tracks

Linestring
JSON

Transport for London
(2018)

Table 4: Descriptive statistics of variables included in regression model.
Variable
Name

Descriptive Statistics

Min. Mean
Std.

Deviation
Max.

Proportion of
Zeros

Journeys 0 0.83 2.36 243 75.9%

Shops 0 0.45 1.72 48 85.9%

Sustenance 0 0.33 1.06 18 85.3%

Tourism 0 0.05 0.27 8 96.1%

Population 0 13,879 6,273 29,450 1.0%

Employees 0 16,650 28,475 125,204 2.7%

Train 0 - - 1 97.7%

Bus 0 - - 1 87.8%

Park 0 - - 1 75.1%

University 0 - - 1 98.8%

Cycle Lane 0 - - 1 72.5%

https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/middlesuperoutputareamidyearpopulationestimates
https://www.ons.gov.uk/businessindustryandtrade/business/activitysizeandlocation/adhocs/005995numberofworkplacesandemployeesinworkplacezonesinlondon2015
https://cycling.data.tfl.gov.uk


3 Methods

The data structure raised several challenges regarding the model specification due to the hierarchical
nature of spatial units and the considerable proportion of zero values, most importantly in the
outcome variable of journey counts. In this context, the excess number of zero counts of journey
drop-offs in hexagons are caused as a result of the study area, which include non-permitted boroughs
and penalties for parking in no-parking zones marked within the application (e.g. parks). As
such, linear regression methods are unsuitable due to issues surrounding overdispersion, meaning
that variable distributions do not meet the model assumptions and would cause over estimations
of desired regression parameters, leading to biased standard errors and p-values (Hilbe, 2011).
Therefore, to overcome this data artefact, a zero-inflated multilevel negative binomial regression
was conducted allowing for both levels to be included in a single model whilst accounting for
the overdispersion. Accordingly, varying-intercept and varying-slope model with interaction effects
between the time blocks and geographic attributes were fitted, the statistical formulation of which
is defined as follows:

yi,j ∽ Pois(θij , κ)

log(θij) = αj[i] +
3∑

t=1

βj[i]tTti +
3∑

t=0

8∑
h=0

βj[i]thTtiHhi (1)

Here, θij , κ is a Poisson parameter with a log-link function equal to the expected count of bicycle
drop-offs in the ith hexagon (i = 1,2,3, ...,70796) in the jth MSOA (j = 1,2,3, ..., 190), where κ is the
zero-inflated parameter that accounts for the overdispersion in the data by considering whether the
ith hexagon is located in non-permitted borough or a no-parking zone. The predictors are denoted
as Tt, Hh, which in turn corresponds to the tth time block dummy indicator (t = 0,1,2,3) and
hth hexagonal-level characteristic (h = 1,2,3, ..., 8), respectively. This means that the regression
coefficient βj[i] reflects the overall relationship between the hth hexagon-level variable and bicycle
count in the reference class (i.e., AM Peak Hours) in MSOA j where hexagon i is located and also
produce an overall effect when t ̸= 0. αj[i] represents the average count of bicycles dropped-off at

the jth MSOA within the study area. In order to derive a relative Risk Ratio (RR) all βj[i] and
αj[i] coefficients are hence exponentiated, where a value of 1 indicates null effect and values larger
or smaller indicate an increase or decrease from the population average, respectively.

4 Results

The model results in Table 5 suggest that the vast majority of built environment factors are sig-
nificantly associated with journey destinations but these effects differ both in direction and magni-
tude.

Shops appear to have the smallest positive association to journey destinations, where, for every
additional shop within a hexagon there is expected to be a 8% increase in the rate of bicycle drop-
offs (1.08, 95% CI 1.05-1.10). Sustenance amenities observe marginally greater journeys at 16%



Table 5: Zero-inflated multilevel negative binomial regression results.
Fixed Effects RR (95% CI) p-value

Intercept 0.04 (0.02 - 0.09) < 0.001 ***
Time block: PM Peak Hours 2.09 (1.79 - 2.44) < 0.001 ***
Time block: Off-Peak Hours 2.43 (2.11 - 2.79) < 0.001 ***
Time block: Weekend All 2.04 (1.71 - 2.44) < 0.001 ***
Hexagon-level Characteristics
Shops 1.08 (1.05 - 1.10) < 0.001 ***
Shops × PM Peak Hours 1.00 (0.98 - 1.04) 0.743
Shops × Off-Peak Hours 1.00 (0.97 - 1.03) 0.904
Shops × Weekend All 1.02 (0.98 - 1.05) 0.333
Sustenance 1.16 (1.12 - 1.20) < 0.001 ***
Sustenance × PM Peak Hours 0.97 (0.92 - 1.02) 0.192
Sustenance × Off-Peak Hours 0.98 (0.94 - 1.03) 0.503
Sustenance × Weekend All 0.99 (0.94 - 1.04) 0.587
Tourism 1.37 (1.21 - 1.56) < 0.001 ***
Tourism × PM Peak Hours 0.85 (0.71 - 1.02) 0.078 ·
Tourism × Off-Peak Hours 0.86 (0.72 - 1.03) 0.101
Tourism × Weekend All 0.85 (0.71 - 1.02) 0.083 ·
Train 3.92 (3.27 - 4.70) < 0.001 ***
Train × PM Peak Hour 0.67 (0.52 - 0.87) 0.002 **
Train × Off-Peak Hour 0.63 (0.49 - 0.81) < 0.001 ***
Train × Weekend All 0.70 (0.54 - 0.90) 0.005 **
Bus 1.75 (1.59 - 1.93) < 0.001 ***
Bus × PM Peak Hours 0.97 (0.85 - 1.11) 0.693
Bus × Off-Peak Hours 0.86 (0.76 - 0.99) 0.031 *
Bus × Weekend All 0.96 (0.84 - 1.10) 0.565
Park 0.98 (0.89 - 1.08) 0.715
Park × PM Peak Hours 0.88 (0.77 - 1.01) 0.066 ·
Park × Off-Peak Hours 0.83 (0.73 - 0.95) 0.006 **
Park × Weekend All 1.00 (0.87 - 1.14) 0.973
University 1.97 (1.52 - 2.55) < 0.001 ***
University × PM Peak Hours 0.65 (0.45 - 0.93) 0.018 *
University × Off-Peak Hours 0.96 (0.67 - 1.35) 0.798
University × Weekend All 0.72 (0.50 - 1.05) 0.085 ·
Cycle lane 1.80 (1.66 - 1.95) < 0.001 ***
Cycle lane × PM Peak Hours 0.88 (0.79 - 0.98) 0.019 *
Cycle lane × Off-Peak Hours 0.88 (0.79 - 0.98) 0.017 *
Cycle lane × Weekend All 0.88 (0.79 - 0.99) 0.027 *
MSOA-level Characteristics
Population (÷ 1000) 1.05 (1.00 - 1.09) 0.052 ·
Employees (÷ 1000) 1.01 (1.00 - 1.02) 0.049 *

Notes: reference category = AM Peak Hours; ‘***’ < 0.001, ‘**’ <
0.01, ‘*’ < 0.05, ‘·’ < 0.1



(1.16, 95% CI 1.12-1.20), followed by tourist attractions by 37% (1.37, 95% CI 1.21 - 1.56). Each of
these do not show any significant differences between time blocks. On average, cycle lanes observe
an 80% increase (1.80, 95% CI 1.66-1.95) but AM Peak Hours are consistently observed to have
12% greater rates of drop-off to all other time blocks that is likely an artefact of cycle lane and
bicycle converge towards the City. The presence of university buildings are found nearly double the
RR (1.97, 95% CI 1.52-2.55), the second largest of all built environment factors. Therefore, it is safe
to assume that a considerable proportion of JUMP e-BSS users are students. The only significant
difference in temporality are observed during PM Peak Hours, where journey rates are found to
decrease by 35% (0.65, 95% CI 0.45-0.93) in comparison to AM Peak Hours. Parks within the
study area appear to to exhibit no significant relationship. Finally, considering JUMP activity in
close proximity to transit related features indicate some of the largest increases in RR, showcasing
the importance of e-BSS in facilitating multimodal journeys. The presence of a bus stop is found
to increase the journey terminations by 75% (1.75, 95% CI 1.59-1.93) whilst train stations exhibit
nearly four times higher drop-off rates (3.92, 95% CI 3.27-4.70). Across both public transit features,
Off-Peak Hours exhibit the largest decreases in journey terminations at 14% (0.86, 95% CI 0.76-0.99)
and 37% (0.63, 95% CI 0.49-0.81) in close proximity to bus stops and train stations respectively.
This suggests that there are fewer multimodal connections during Off-Peak Hours that are likely
due to a lack of commuters.

5 Conclusions

The research presented here provide a holistic indication of the most dominant built environment
factors that are associated with e-BSS use in London. The results highlight the importance of such
systems in facilitating multi-modal journeys and the considerable use by university students whilst
also identifying the lack of journeys to green spaces due to the parking restrictions. The interaction
terms between built environment factors and time blocks enable a more granular understand of how
such relationships change depending on the time of day, with some unexpected findings, including
cycle lanes during AM Peak Hours and the converse relationship to train stations. These are likely
to be an artefact of the segregated nature of permitted operating areas as well as the geographical
arrangement of the study area.
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