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Summary

The polycentric city model has gained popularity in spatial planning policy, since it is
believed to overcome some of the problems often present in monocentric metropolises, ranging
from congestion to difficult accessibility to jobs and services. However, the concept ‘polycentric
city’ has a fuzzy definition and as a result, the extent to which a city is polycentric cannot be

easily determined. Here, we leverage the fine spatio-temporal resolution of smart travel card
data from multiple cities to infer urban polycentricity by examining how a city departs from a
well-defined monocentric model.

KEYWORDS: Urban spatial structure, Smart card data, Polycentricity, Complexity, Mixture
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Extended abstract

The rapid urban growth and the recent developments in transport infrastructure and information
technologies have led to the emergence of new forms of urban structure, more sophisticated than
the traditional monocentric cities (Zhong et al., 2014). In particular, the polycentric city model has
gained popularity in spatial planning policy, since it is believed to overcome some of the problems
often present in monocentric metropolises, ranging from congestion to difficult accessibility to jobs
and services (Ahlfeldt and Wendland, 2013; Anas et al., 2000; Huai et al., 2021). However, the
concept of ‘polycentric city’ has a fuzzy definition and as a result, the extent to which a city is
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polycentric cannot be easily determined (Davoudi, 2003; Green, 2007; Kloosterman and Musterd,
2001; Meijers, 2008; Rauhut, 2017).

Here, we leverage the fine spatio-temporal resolution of smart travel card data to infer urban poly-
centricity by examining how a city departs from a well-defined monocentric model. In particular, we
analyse the human movements that arise as a result of sophisticated forms of urban structure by in-
troducing a novel probabilistic approach which captures the complexity of these human movements.
We focus on London (UK) and Seoul (South Korea) as our two case studies, and we specifically find
evidence that London displays a higher degree of monocentricity than Seoul, suggesting that Seoul
is likely to be more polycentric than London.

In our methodology, we first define the “nucleus” of each city as the station with the highest number
of smart-card tap-outs. We then consider the network structure of the public transport system in
order to measure the length of the journeys as a network distance between stations. Our working
hypothesis is: “If a city was perfectly monocentric, most of the socioeconomic activity that requires
travel on the public transport system would be concentrated around the nucleus. Consequently, the
average length of the journeys taken to a given station would be approximately equal to the length
of the shortest path between the nucleus and the destination station”. In reality, the perfectly
monocentric city does not exist and this is captured in Figure 1, where each data point corresponds
to a destination station. The x-coordinate represents the length of the shortest path between the
nucleus and the destination station, measured as the minimum number of stations that need to be
visited to travel from the origin to the destination stations. The y-coordinate represents the average
length of the journeys terminating at each station. If the cities were perfectly monocentric, the data
points would be lying exactly on the y = x line, but Figure 1 shows that this is not the case neither
for London or Seoul.

Poisson mixture models allow us to model the variability of the length of journeys terminating at
each station with greater precision. For example, a 2-component Poisson mixture model assumes
a bi-modal distribution for the length of the journeys terminating at each station. We refer to the
components corresponding to the shortest and longest journey lengths as the proximal and distal
components respectively. Figure 2 shows the relationship between the means of the proximal and
distal components corresponding to a given station and the network distance between that station
and the nucleus. As the network distance between a destination station and the nucleus becomes
larger, there is no significant increase in the proximal mean, since it remains around 5 and never
above 10. The effect is strikingly obvious in the case of Seoul, suggesting that this city departs from
the hypothesised monocentric behaviour more than London. These observations are likely to be
the consequence of the existence of other socioeconomic centres, closer to the destination station,
where passengers prefer to travel to carry out some socioeconomic activities at a more local level. In
contrast, the distal component displays a significant linear growth. The distal component captures
long-distance, city-wide journeys from stations that are possibly close to the nucleus, to stations
that are in the peripheral regions of the city

Even though the methodology described above can be expanded to Poisson mixture models with
more components, we recommend keeping the number to 2 or 3 as a good trade-off between cap-
turing the detail in the data variability whilst keeping the components meaningful without over-
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Figure 1: Relationship between the mean of the distribution of lengths of journeys terminating at
each station and the (network) distance between the nucleus and a given destination station.
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Figure 2: Relationship between the mean of the distribution of lengths of journeys terminating at
each station and the (network) distance between the nucleus and a given destination station.



complicating the model. In fact, the model with 3 components yields a lower value of the Bayesian
Information Criterion, suggesting that this model should be selected over the two-component model.
Furthermore, it should be noted that by performing a sensitivity analysis, we can show that similar
results hold for other choices of nuclei.
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