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Abstract

1. Inferring ecological interactions is hard because we often lack suitable parametric representa-

tions to portray them. Neural ordinary differential equations (NODEs) provide a way of estimating

interactions nonparametrically from time series data. NODEs, however, are slow to fit, and inferred

interactions have not been compared to the truth.

2. We provide a fast NODE fitting method, Bayesian neural gradient matching (BNGM), which

relies on interpolating time series with neural networks, and fitting NODEs to the interpolated dy-

namics with Bayesian regularisation. We test the accuracy of the approach by inferring ecological

interactions in time series generated by an ODE model with known interactions. We compare these

results against three existing approaches for estimating ecological interactions, standard NODEs,

ODE models, and convergent cross mapping (CCM). We also infer interactions in experimentally

replicated time series of a microcosm featuring an algae, flagellate, and rotifer population, in the

hare and lynx system, and the Maizuru bay community featuring 11 species.

3. Our BNGM approach allows us to cut down the fitting time of NODE systems to only a few

seconds and provides accurate estimates of ecological interactions in the artificial system, as true

ecological interactions are estimated with minimal error. Our benchmark analysis reveals that our

approach is both faster and more accurate than standard NODEs and parametric ODEs, while CCM

was found to be faster but less accurate. The analysis of the replicated time series reveals that only

strongest interactions are consistent across replicates, while the analysis of the Maizuru community

shows the strong negative impact of the chameleon goby on most species of the community, and a

potential indirect negative effect of temperature by favouring goby population growth.

4. Overall, NODEs alleviate the need for a mechanistic understanding of interactions, and BNGM

alleviates the heavy computational cost. This is a crucial step availing quick NODE fitting, cross-

validation, and uncertainty quantification, as well as more objective estimation of interactions, and

complex context dependence, than parametric models.



1 Introduction1

The concepts of population and community (i.e. groups of populations) are central in ecology2

(Berryman 2002). Ecologists have had a longstanding interest in finding laws that govern popu-3

lation and community dynamics, namely changes in the number of individuals in the populations4

present in a community (Lawton 1999; Turchin 1999). Population dynamics can be characterised5

by a logistic growth, or similar forms, limited by ecological interactions with other organisms,6

and by the state of the environment (Turchin 2001; Berryman 2003). Intra-specific interactions7

correspond to interactions between individuals of different sex, age or size classes, belonging to8

the same species (Turchin 2001). Inter-specific interactions are interactions between individuals9

from different species, be it competitors, preys, predators, or pathogens (Turchin 2001; Berryman10

2003). These interactions can cause populations to have lagged effects impacting their own growth,11

often called feedback effects, mediated by their impact on the other populations they interact with12

(Berryman and Turchin 1997).13

Characterising these interactions has been a longtime challenge. Ecologists started analysing time14

series data with parametric models (Royama 1984; Kendall et al. 1999; Ives et al. 2003; Gross, Ives,15

and Nordheim 2005), as time series of population counts are the most commonly collected long-16

term data in biology (Kendall et al. 1999). Initial analysis involved fitting simple auto-regressive17

linear models to time series of a single species, leading to contentious interpretations of interactions18

thereby inferred (e.g. Berryman and Turchin 1997). For instance, Royama et al. interpreted higher19

order lags as evidence of species interactions (Royama 1984), while Lande et al. interpreted them20

1



as age-structure signatures (Lande et al. 2002). Coulson et al. showed they can even be caused by21

interactions between the sexes (Mysterud, Coulson, and Stenseth 2002). Jonzen et al. added doubt22

over interpreting lags by demonstrating that autocorrelation in environmental noise could prevent23

altogether the reliable estimation of lag effects in single species time series data (Jonzén et al.24

2002). More recent work has investigated time series of multiple species, environmental factors,25

and has mechanistically modelled various ecological interactions (e.g. Bruijning, Jongejans, and26

Turcotte 2019; Rosenbaum et al. 2019; Adams et al. 2020). In these models, ecological interactions27

are quantified explicitly by specific parameters, rather than phenomenologically with lags. This28

allowed for a more thorough quantification of interactions and comparison of alternative ecological29

interactions architectures.30

However, ecologists still face two main obstacles when estimating ecological interactions from time31

series data. The first is that interactions are highly context-dependent, so that they change in time32

with the state of the ecosystem and of the environment (Song et al. 2020). Ecological interactions33

were traditionally considered linear or fixed, yet there is substantial evidence that this is not the34

case in nature (e.g. Bonsall, Meijden, and Crawley 2003; Gross, Ives, and Nordheim 2005; Kendall35

et al. 2005; Ushio et al. 2018; Bruijning, Jongejans, and Turcotte 2019; Rosenbaum et al. 2019;36

Bonnaffé et al. 2021). The effect of the population on itself depends on the density of individuals37

(e.g. Lingjaerde et al. 2001; Moe et al. 2005; Brook and Bradshaw 2006); while predation rates can38

depend on the density of the predator (Jost and Ellner 2000; Yoshida et al. 2003). Many vital rates39

underpinning ecological interactions are age- and size-dependent (Bonnaffé et al. 2018; Bonnaffé40
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et al. 2021), and governed by environmental variables, such as temperature (Brown et al. 2004).41

Interactions also change following evolution of the traits that underpin them (Turchin et al. 2003;42

Yoshida et al. 2003). This makes it virtually impossible to model the full complexity of ecological43

interactions (Lawton 1999; Kendall et al. 1999).44

This leads to the second obstacle, known as structural sensitivity, namely sensitivity of the results45

to the structure of the model (Wood 2001; Adamson and Morozov 2013). Because of the com-46

plexity of the interactions, we often lack suitable mathematical representations to portray them47

(Jost and Ellner 2000; Wood 2001; Ellner, Seifu, and Smith 2002; Wu, Fukuhara, and Takeda48

2005). Parametric representations of the interactions are assumed a priori, which means that any49

interaction quantified is ultimately contingent on this arbitrary choice, and hence potentially bi-50

ased (Jost and Ellner 2000; Wood 2001; Ellner, Seifu, and Smith 2002; Wu, Fukuhara, and Takeda51

2005). Parametric inference of ecological interactions from time series data therefore only provides52

qualitative evidence, requiring further experimental verification and quantification (Kendall et al.53

1999).54

Nonparametric modelling provides a powerful alternative that can help solve these problems (e.g.55

Jost and Ellner 2000; Wood 2001; Ellner, Seifu, and Smith 2002; Wu, Fukuhara, and Takeda 2005;56

Pasquali and Soresina 2018). Nonparametric forms give more freedom to researchers wishing57

to model population dynamics, and allow a test of whether the linear or linearised assumption of58

standard models is warranted. Interactions are quantified as the sensitivity of the nonparametric ap-59

proximation of the dynamics with respect to other state variables (Sugihara et al. 2012; Ushio et al.60
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2018). Nonparametric models require minimal assumptions regarding the mathematical nature of61

ecological interactions (Jost and Ellner 2000; Gross, Ives, and Nordheim 2005), and hence provide62

interaction estimates that are more robust to model structure (Wood 2001). In particular, artifi-63

cial neural networks (ANNs) offer a promising, yet underused, nonparametric alternative to linear64

functional forms. In previous work, we introduced a powerful framework, relying on neural ordi-65

nary differential equations (NODEs, Chen et al. 2019) to approximate the dynamics of populations66

nonparametrically, from which we derive ecological interactions (Bonnaffé, Sheldon, and Coulson67

2021). More specifically, the ANNs embedded in the ODEs learn nonparametrically the shape of68

the per capita growth rate of the populations and its dependence on the state variables of the system69

(Bonnaffé, Sheldon, and Coulson 2021). Combined with the Geber method (Hairston et al. 2005),70

we are able to estimate the direction, strength, and degree of nonlinearity of interactions.71

One limitation of the approach lies in the computational cost of fitting the NODEs (Chen et al.72

2019; Bonnaffé, Sheldon, and Coulson 2021). This is due to the fact that NODEs, as with ODEs,73

need to be simulated over the entire range of the time series in order to compute the likelihood74

of the trajectories of the model. This can be avoided by using gradient matching, which requires75

interpolating the time series, and fitting the ODEs directly to the interpolated dynamics (Jost and76

Ellner 2000; Aarts and Veer 2001; Ellner, Seifu, and Smith 2002). Although a similar approach77

has been proposed (see Treven et al. 2021), there are no implementations of it to fitting NODEs,78

in spite of its great potential for cutting down computational costs. In addition, given the novelty79

of the framework, the accuracy and robustness of NODEs in estimating ecological interactions80
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remain largely unexplored. Most of the work to date is concerned with the accuracy of the fitted81

trajectories and of the forecasts (Mai, Shattuck, and O’Hern 2016; Treven et al. 2021; Frank 2022),82

while little attention has been given to the functional form of the processes that are producing83

the dynamics approximated by NODEs (but see Hu et al. 2020 for a step in this direction). It84

is important to understand to what extent the neural networks embedded within NODEs carry85

meaningful biological information (Novak and Stouffer 2021).86

In this manuscript, we first introduce a novel fitting technique for NODEs, Bayesian neural gradient87

matching (BNGM). The method extends gradient matching by using neural networks to interpolate88

the time series data instead of splines (Ellner, Seifu, and Smith 2002), and Bayesian regularisa-89

tion to fit NODEs to the interpolated dynamics (Cawley and Talbot 2007). This cuts down the90

fitting time of NODEs to only a few seconds, compared to about 30 minutes in our previous work91

(Bonnaffé, Sheldon, and Coulson 2021), allowing for efficient cross-validation, and uncertainty92

quantification. We then demonstrate that NODEs are highly accurate in recovering ecological in-93

teractions in an artificial three-species prey-predator system where truth is known. Finally, we94

conclude the work by characterising ecological interactions in three replicates of an experimental95

three-species prey-predator system with an algae, flagellate, and rotifer (Hiltunen et al. 2013), in96

the classic hare and lynx time series (Odum and Barrett 1972), as well as in the larger aquatic97

community of the Maizuru bay in Japan (Ushio et al. 2018). We find that only main interactions,98

between the algae and the rotifer, are conserved across the three replicates, and not the interactions99

of the flagellate with the other species. We also find that in most cases linear interactions are suffi-100
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cient to explain the dynamics apart from nonlinearity in the effect of the prey on the top predator in101

both the rotifer and lynx. Finally, we find that the dynamics of the aquatic species of the Maizuru102

bay community are largely determined by a single species, the chameleon goby, and by an indirect103

effect of temperature via its impact on goby population dynamics.104

2 Material and Methods105

2.1 Method overview106

We provide a nonparametric method for estimating ecological interactions from time series data of107

species density. We do this by approximating the dynamics of each species with neural ordinary108

differential equations (NODEs, Bonnaffé, Sheldon, and Coulson 2021). We then compute ecolog-109

ical interactions as the sensitivity of these dynamics to a change in the respective species densi-110

ties (Sugihara et al. 2012; Bonnaffé, Sheldon, and Coulson 2021). We provide a novel method,111

Bayesian neural gradient matching (BNGM), allowing us to fit NODE systems in a only a few112

seconds.113

2.2 Neural ordinary differential equation114

A NODE is a class of ordinary differential equation (ODE) that is partly or entirely defined as an ar-115

tificial neural network (ANN) (Chen et al. 2019). They are useful to infer dynamical processes non-116

parametrically from time series data (Bonnaffé, Sheldon, and Coulson 2021). We choose NODEs117

over standard statistical approaches because they offer two advantages. The first is that NODEs118
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approximate the dynamics of populations nonparametrically. NODEs are therefore not subjected119

to incorrect model specifications (Jost and Ellner 2000; Adamson and Morozov 2013). This pro-120

vides a more objective estimation of the inter-dependences between state variables. The second121

advantage is that it is a dynamical systems approach. So that the approach includes lag effects122

through interacting state variables, not only direct effects between them.123

We first consider a general NODE system,124

dyi

dt
= fp (y,θi) , (1)

where dyi/dt denotes the temporal change in the ith variable of the system, yi, as a function of the125

other state variables y = {y1,y2, ...,yI}. The function fp is a nonparametric function of the state126

variables and its shape is controlled by the parameter vector θi. In the context of NODEs, fp is127

an ANN. The most common class of ANN used in NODEs are single-layer fully connected feed-128

forward ANNs (e.g. Wu, Fukuhara, and Takeda 2005), also referred to by single layer perceptrons129

(SLPs, e.g. Bonnaffé, Sheldon, and Coulson 2021),130

fp (y,θi) = fλ

(
θ
(0)
i +

J

∑
j=1

θ
(1)
i j fσ

(
θ
(2)
i j +

I

∑
k=1

θ
(3)
i jk yk

))
, (2)

which feature a single layer, containing J neurons, that maps the inputs, here the state variables y,131

to a single output, the dynamics of state variable i, dyi/dt. The parameter vector θi contains the132

weights θ (l) of the connections in the SLPs. SLPs can be viewed as weighted sums of activation133
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functions fσ , which are usually chosen to be sigmoid functions f (x) = 1/(1+ exp(−x)). The link134

function fλ allows to map the output of the network to a specific domain, for instance applying tanh135

will constrain the dynamics between -1 and 1, dyi/dt ∈ ]− 1,1[. Multi-layer networks can also136

be used but are generally considered unnecessary since pioneering work established that a single137

layer is sufficient to approximate any continuous function to a desired level of error (Funahashi and138

Nakamura 1993).139

This general form can be changed to represent biological constraints on the state variables. In140

particular for population dynamics, the state variables are strictly positive population densities,141

yi = Ni ∈ R+. We could hence re-write equation (1) as, dNi/dt = fp(N,θi)Ni, where the SLPs142

approximate the per-capita growth rate of the populations. More details regarding these models143

can be found in our previous work (Bonnaffé, Sheldon, and Coulson 2021).144

2.3 Fitting NODEs by Bayesian neural gradient matching145

In this section, we describe how to estimate the parameters θ of the NODE system given a set of146

time series. Fitting NODEs can be highly computationally intensive, which hinders uncertainty147

quantification, cross-validation, and model selection (Bonnaffé, Sheldon, and Coulson 2021). We148

solve this issue by introducing BNGM, a computationally efficient approach to fit NODEs. The149

approach involves two steps (Fig. 1). First, we interpolate the state variables and their dynamics150

with neural networks (Fig. 1, red boxes). Second, we train each NODE to satisfy the interpolated151

state and dynamics (Fig. 1, blue boxes). This bypasses the costly numerical integration of the152
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NODE system and provides a fully mathematically tractable expression for the posterior distribu-153

tion of the parameter vector θ , and hence analytical expressions for the gradients. We coin the154

term BNGM to emphasise two important refinements of the standard gradient matching algorithm155

(Ellner, Seifu, and Smith 2002). The first is that we use neural networks as interpolation functions,156

and the second is that we use Bayesian regularisation to limit overfitting and estimate uncertainty157

around parameters (Cawley and Talbot 2007).158

Interpolating the time series159

The first step is to interpolate the time series and differentiate it with respect to time in order to ap-160

proximate the state and dynamics of the variables. We perform the interpolation via nonparametric161

regression of the interpolating functions on the time series data,162

Yit = ỹi(t,ωi)+ ε
(o)
it , (3)

where Yit is observed value of the state variable i at time t, ỹi(t,ωi) is the value predicted by the163

interpolation function given the parameter vector ωi, and ε
(o)
it is the observation error between the164

observation and prediction. The interpolation function is chosen to be a neural network,165

ỹi(t,ωi) = fλ

(
ω

(0)
i +

J

∑
j=1

ω
(1)
i j fσ

(
ω

(2)
i j +ω

(3)
i j t
))

, (4)

where the parameter vector ωi contains the weights ω(l) of the network. We can further differentiate166

this expression with respect to time to obtain an interpolation of the dynamics of the state variables167
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(Fig. 1, red boxes),168

∂ ỹi

∂ t
(t,ωi) =

J

∑
j=1

ω
(1)
i j ω

(3)
i j

∂ fσ

∂ t

(
ω

(2)
i j +ω

(3)
i j t
)

∂ fλ

∂ t

(
ω

(0)
i +

J

∑
k=1

ω
(1)
ik fσ

(
ω

(2)
ik +ω

(3)
ik t
))

. (5)

Fitting NODEs to the interpolated time series169

The second step is to train the NODE system (Eq. 1) to satisfy the interpolated dynamics. Thanks170

to the interpolation step, this simply amounts to performing a nonparametric regression of each171

NODE (Eq. 1) on the interpolated dynamics (Eq. 5),172

∂ ỹi

∂ t
(t,ωi) =

dyi

dt
(ỹ,θi)+ ε

(p)
it , (6)

where ε
(p)
it is the process error, namely the difference between the interpolated dynamics, ∂ ỹi/∂ t173

and the NODE, dyi/dt, given the interpolated state variables ỹ = {ỹ1, ỹ2, ..., ỹI} (Fig. 1, blue174

boxes).175

Bayesian regularisation176

In the context of standard gradient matching, defining the observation model (Eq. 3) and process177

model (Eq. 6) would be sufficient to fit the NODE system (Eq. 1) to the time series via optimisation178

(Jost and Ellner 2000; Ellner, Seifu, and Smith 2002; Wu, Fukuhara, and Takeda 2005). We could179

find the parameter vector ωi and θi that minimise the sum of squared observation and process errors,180

ε
(o)
it and ε

(p)
it (Eq. 3 and 6). However, this approach is prone to overfitting, and does not provide181
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estimates of uncertainty around model predictions. To account for this, we introduce Bayesian182

regularisation, which allows us to control for overfitting by constraining parameters with prior183

distributions (Cawley and Talbot 2007), and to root our interpretation of uncertainty in a Bayesian184

framework.185

First, we define a simple Bayesian model to fit the interpolation functions (Eq. 3) to the time series186

data. We assume normal distributions for the observation error, ε
(o)
i j ∼ N (0,σi), and for the pa-187

rameters, ωi j ∼ N (0,γi j). Here, we are only interested in interpolating the time series accurately,188

irrespective of the value of σi and γi j. Therefore, we use the approach developed by Cawley and189

Talbot to average out the value of the parameters σi and γi j in the full posterior distribution (Cawley190

and Talbot 2007), assuming hyperpriors p(ξ ) ∝
1
ξ

exp{−ξ/2} for both parameters. This yields the191

following expression for the log marginal posterior density of the parameters,192

logP(ωi | Yi) ∝ −N(o)

2
log

(
1+

N(o)

∑
t=1

(
ε
(o)
it

)2
)
− M(o)

2
log

(
1+

M(o)

∑
j=1

ω
2
i j

)
(7)

where P is the marginal posterior density, ωi = {ωi1,ωi2, ...,ωiM(o)} is the observation parameter193

vector controlling the interpolation function, Yi = {Yi1,Yi2, ...,YiN(o)} corresponds to the sequence194

of observations of state variable i at time step t, N(o) is the total number of time steps in the time195

series, ε
(o)
it is the observation error at time step t between the interpolated and observed value of196

variable i, M(o) is the total number of parameters. More details on how to derive this expression197

can be found in a supplementary file (Supplementary A).198

Then, we define a simple Bayesian model to fit the NODEs to the interpolated dynamics, given the199
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interpolated states. We assume normal distributions for the observation error, ε
(p)
it ∼N (0,σi), and200

parameters, θi j ∼ N (0,δi j). This gives the following expression for the log posterior density of201

the parameters given the interpolations,202

log p(θi | ω) ∝ −1
2

N(p)

∑
t=1

(
ε
(p)
it
σi

)2

− 1
2

M(p)

∑
j=1

(
θi j

δi j

)2

(8)

where θi = {θi1,θi2, ...,θiM(p)} are the NODE parameters of the ith variable, ω = {ω1,ω2, ...,ωI}203

are the interpolation parameters of each state variable, ε
(p)
it is the process error of variable i at time204

step t between the interpolated dynamics and NODE prediction, σi is the standard deviation of205

the likelihood, M(p) is the total number of parameters, δi j is the standard deviation of the prior206

distribution of parameter θi j.207

This approach allows us to limit overfitting by adjusting the constraint on the parameters, which208

is controlled by the standard deviation of the parameter prior distributions, δi j (Cawley and Talbot209

2007; Bonnaffé, Sheldon, and Coulson 2021). We could set small values of δ to limit the degree210

of nonlinearity in the response, or to eliminate specific variables from the model by constraining211

their parameters to be close to zero. We identify the appropriate degree of constraint δi on NODE212

parameters via cross-validation. We split the interpolated data into a train, validation, and test set,213

for instance, in three thirds. We fit the NODE model to the train set and predict the validation214

set. We repeat this process for increasing values of δi, until we find the value that maximises the215

log likelihood of the validation data. We can perform multiple folds of validation by swapping the216

train and validation set, or by varying the size of the train/validation split. Ultimately, once we have217
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identified the appropriate value of the constraint parameters δi, we fit the model to both the training218

and validation set, and assess the accuarcy of the predictions on the test data, which is never seen219

by the model during training.220

2.4 Inference and uncertainty quantification221

Finally, we estimate uncertainty in parameter values by anchored ensembling, which produces ap-222

proximate Bayesian estimates of the posterior distribution of the parameters (Pearce et al. 2018).223

This involves sampling a parameter vector from the prior distributions, θi ∼ N (0,δi), and then224

optimising the posterior distribution from this starting point, θ ∗
i = argmax

θi

log p(θi | ω). By repeat-225

edly taking samples, the sampled distribution θ ∗ approaches the posterior distribution and provides226

estimates and error around the quantities that can be derived from the models. The expectation and227

uncertainty around derived quantities can then be obtained by computing the mean and variance of228

the approximated posterior distributions. The strength of this approach is that it is unlikely to get229

stuck in local maxima hence providing a more thorough exploration of the parameter space.230

2.5 Analysing NODEs231

In this study we are mainly interested in two outcomes of NODEs, namely inferring the direction232

(or effect) and strength (or contribution) of interactions between the state variables (Bonnaffé,233

Sheldon, and Coulson 2021). We define the direction of the interaction between variable yi and y j as234

the derivative of the dynamics of yi with respect to y j, and vice versa (Sugihara et al. 2012),235
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ei jt =
∂

∂y j

dyi

dt
. (9)

Knowing the direction, however, is not sufficient to determine the importance of a variable for the236

dynamics of another. Given the same effects, a variable that fluctuates a lot will have a greater237

impact on the dynamics of a focal variable, compared to a variable that remains quasi-constant.238

For example, a predator can have a negative effect on the prey population, but its actual im-239

pact/contribution to the dynamics of the prey population depends on its own dynamics, that is240

if the predator population decreases, it has a positive contribution to the change in growth rate of241

the prey population. We hence compute the strength of the interaction by multiplying the dynamics242

of a variable y j by its effect on the focal variable yi, also known as the Geber method (Eq. 3 in243

Hairston et al. 2005),244

ci jt =
dy j

dt
∂

∂y j

dyi

dt
. (10)

To summarise results across the entire time series we can compute the mean effects ei j by aver-245

aging ei jt across all time steps, ei j = 1/N(p)
∑t ei jt , as well as the relative total contribution, ci j,246

of a variable to the dynamics of another by computing the relative sum of square contributions,247

ci j =
(

∑i jt c2
i jt

)−1
∑t c2

i jt . By computing the direction and strength of interactions between all the248

variables in the system we can build dynamically informed ecological interaction networks (e.g.249

Fig. 5). Other metrics can be computed by analysing the NODEs, such as equilibrium states, these250
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are discussed in our previous work (Bonnaffé, Sheldon, and Coulson 2021).251

3 Case studies252

3.1 Case study 1: artificial tri-trophic prey-predator oscillations253

In this first case study, we aim to demonstrate the accuracy of the NODE fitted by BNGM in254

inferring nonlinear per-capita growth rates in a system where truth is known. Hence, we simulate255

a set of time series from a tri-trophic ODE model with known equations and parameters, and we256

compare the fitted NODEs to the actual ODEs.257

System258

We consider a tri-trophic ODE system consisting of a prey, an intermediate predator, and a top259

predator. The system is built on the real tri-trophic system featuring algae, flagellates, and rotifers,260

considered in case study 2 (Hiltunen et al. 2013),261

dG
dt

=

(
α

(
1− G

κ

)
− βB

1+δG
− γR

1+δG

)
G

dB
dt

=

(
βG

1+δG
−φR−µ

)
B

dR
dt

=

(
γG

1+δG
+φB−ν

)
R,

(11)

where G, B, and R, correspond to the prey, intermediate, and top predator population densities,262

respectively, α is the prey intrinsic growth rate, limited by a carrying capacity κ , β and γ are the263

predation rates by the intermediate and top predator, δ is the saturation rate of prey predation, which264
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emulates the capacity of the algae to display predator defense at higher algal density (Hiltunen et265

al. 2013), φ is the predation rate of the intermediate predator by the top predator, µ and ν are the266

intrinsic mortality of the intermediate and top predator.267

We simulate a case of invasion, by introducing the top predator at a low density, with a set of268

parameters that result in dampening prey-predator oscillations, namely α = 1, β = 2.5, γ = 1.5,269

κ = 3, δ = φ = µ = ν = 1. We focus on the middle section of the time series, t ∈ [20,50], as in270

the initial section the top predator is rare, and in the later section populations have attained a fixed271

equilibrium point. The resulting time series are presented in Figure 2.272

NODE model273

In order to nonparametrically learn the per-capita growth rate of each species, and to derive eco-274

logical interactions, we define a three-species NODE system,275

dR
dt

= rR(R,G,B,βR)R

dG
dt

= rG(R,G,B,βG)G

dB
dt

= rB(R,G,B,βB)B,

(12)

where the per-capita growth rates rR, rG, and rB are neural network functions of the density R, G, B276

of each species (function fp, Eq. 2). We choose a combination of linear and exponential activation277

functions fσ , j≤J/2(x) = x, and fσ , j>J/2(x) = exp(x). This allows us to progressively switch from278

a simple linear model to a nonlinear model by releasing the constraint on the parameters of the279

network during cross-validation. The number of units in the hidden layer J is chosen to be 10, as280
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this is a commonly used number for systems of that size (e.g. Wu, Fukuhara, and Takeda 2005;281

Bonnaffé, Sheldon, and Coulson 2021).282

Time series interpolation283

We interpolate the time series using the neural network described in section 2.3 (Eq. 4). We set284

the number of neurons in the network to J = 30. We use sinusoid activation functions, fσ (x) =285

sin(x), so that the weights ω
(1)
i j , ω

(2)
i j , and ω

(3)
i j control the amplitude, shift, and frequency of the286

oscillations in the time series, respectively. Given that the population densities are strictly positive287

R, G, B ∈ R+, we use an exponential link function, fλ (x) = exp(x). We then approximate the288

marginal posterior distribution of the interpolation parameters, and thereby of interpolated states289

and dynamics, by taking 100 samples from the log marginal posterior distribution (Eq. 7) via290

anchored ensembling. In practice, the high number of parameters in the neural network equation291

may impede the fit of the time series, especially for short time series. We found that dividing the292

number of parameters M(o) (Eq. 7) by the number of neurons in the network J (Eq. 2) yields293

consistent fitting results. Interpolated states and dynamics are presented in Figure 2.294

Fitting NODEs to the interpolated time series295

We fit the NODE system to the interpolated time series. In practice, we fit the NODE to the expec-296

tation of the interpolated state and dynamics, E(ỹi) and E(dỹi/dt), by averaging over all sampled297

interpolation parameters. An alternative approach could be to consider the interpolation that max-298

imises the log marginal posterior density, but this may decrease repeatability due to the difficulty of299

reliably identifying a global maximum. Averaging across multiple interpolations ensures an overall300
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smoother and robust interpolation. In addition, we standardise the response and explanatory vari-301

ables with respect the their mean and standard deviation (i.e. Z = (Y −µ)/σ ). This is to facilitate302

the training of the NODE by equalizing the scale of the different parameters in the neural network.303

Then, we identify the optimal regularisation parameter δ (Eq. 8) by cross-validation. To do that,304

we split the data in three thirds, train NODEs on the first third, and calculate the log likelihood of305

the validation set for increasing values of δ , from 0.1 (linear) to 1.0 (highly nonlinear), by incre-306

ments of 0.1. This allows us to identify the maximum degree of nonlinearity, δ , in the per-capita307

growth rate that ensures generalisability throughout the time series. Then, we approximate the308

posterior distribution of the NODE parameters by taking 30 samples from the posterior distribution309

(Eq. 8). We ensure moderate temporal autocorrelation and normality by visualising the residuals310

of the models. We also ensure results repeatability by running the entire fitting process a second311

time.312

Computing ecological interactions313

Finally, we analyse the shape of the per-capita growth rates to recover the interaction between the314

three species in the system. In particular, we look at the effect and contribution of each species315

to the dynamics of the others. The effect is computed as the sensitivity (i.e. the gradient) of the316

per-capita growth rate of a given species with respect to the density of the other species (Sugihara317

et al. 2012; Bonnaffé, Sheldon, and Coulson 2021). The contribution is computed following the318

Geber method (Hairston et al. 2005), which consists in multiplying the dynamics of a variable by319

its effects on the other variables. We further compute the importance of a species in driving the320
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dynamics of another by computing its relative total contribution compared to other species. More321

details on how to compute these quantities can be found in section 2.5 and in our previous study322

(Bonnaffé, Sheldon, and Coulson 2021).323

Benchmark324

In order to demonstrate the suitability of BNGM for fitting NODEs and inferring ecological in-325

teractions we compare our approach to three existing methods. For this purpose, we focus on the326

artificial time series, as this offers the possibility for comparing predictions to the truth, known327

from the equations that generated the time series.328

We first consider a standard NODE model (Bonnaffé, Sheldon, and Coulson 2021), as our BNGM329

approach seeks to alleviate the computational cost of fitting NODEs. We define the per capita330

growth rate as an ANN with a single layer, 3 inputs, 10 hidden nodes, and exponential activa-331

tion functions. We use a Bayesian model, assuming log normal distributions for species den-332

sity Yi ∼ logN (yi,σi), and uniform uninformative prior distributions for the network parameters333

θi ∼ U (−10,10), initial densities yi0 ∼ U (0,10), and variance σi ∼ logN (0.5,0.5). Our imple-334

mentation of standard NODEs differs from our BNGM approach in three ways. First, the standard335

NODE ANN has 3 outputs instead of one, as variables are fitted jointly. Second, computing the336

posterior density of the parameters requires to solve the NODE system with a numerical ODE337

solver (Runge-Kutta, package deSolve). Third, we do not constrain the parameters of the network338

given that the prohibitive fitting times prevent the tuning of the regularisation parameters.339

We also consider a parametric ODE model, as this is the closest parametric alternative to NODEs340
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to infer ecological interactions. This model only differs from the standard NODE model in that341

the per-capita growth rate is approximated by second order polynomial functions ri(y,θi) = θ
(0)
i +342

∑ j θ
(1)
i j y j +∑ j ∑k θ

(2)
i jk yi jyik, instead of an ANN, which can handle simple nonlinearities.343

To ensure the most meaningful comparison, we implemented the NODEBNGM, standard NODE,344

and parametric ODE models in base R, using BFGS for optimisation (function optim, R v4.2.0). We345

also followed a similar fitting procedure by independently training 30 models on the train/validation346

set (i.e. 2/3 of the time series) and predicting the test set (remaining third).347

Finally, we implement convergent cross-mapping (CCM). This technique performs locally linear348

approximations of the state space of the system to estimate the sensitivity of the dynamics of a349

variable to a change in other variables (Sugihara et al. 2012). For this we use the package rEDM350

(v1.13.1, Sugihara et al. 2012), and adapt the example code provided for the three species system.351

We train the CCM model on the train set and predict outcomes on the test set. We then retrieve352

s-map coefficients (i.e. the interactions) and approximate the population dynamics and per-capita353

growth using finite differences, given that the standard implementation of CCM does not provide354

these estimates by default.355

For all four methods, we compute the runtime as the average time required to train a single model.356

Using the best preforming model on the train set, we then predict the population dynamics, growth357

rate, and ecological effects for the entire time series, including the test set. We compute the accu-358

racy of the predictions by computing the mean sum of squared error (MSE) of predictions versus359

the truth for both the per capita growth rate and ecological effects, on the train and test set. We also360
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build the corresponding dynamical interaction networks, using the inferred mean effects and total361

contributions, and compare them to the true network of interactions. Results are shown in Figure 4362

and presented in detail in supplementary figures (Fig. S1-5).363

3.2 Case study 2: real tri-trophic prey-predator oscillations364

In this second case study, we want to assess the quality of the NODE analysis when performed on365

a real time series. We are further interested in comparing the direction and strength of uncovered366

ecological interactions across virtually identical replicated time series.367

System368

We consider a three-species laboratory microcosm consisting of an algal prey (Chlorella autroph-369

ica), a flagellate intermediate predator (Oxyrrhis marina), and a rotifer top predator (Brachionus370

plicatilis). The algal prey is consumed by the intermediate and top predator, which also consumes371

the intermediate predator (Arndt 1993). The dynamics of this system, here the daily change in372

the density of each species, were recorded in three replicated time series experiments performed373

by Hiltunen and colleagues (Hiltunen et al. 2013). We use their time series because they describe374

a simple yet biologically realistic ecosystem, and because the quality of the replication of their375

microcosm reduces as much as possible observational and experimental error, and rules out envi-376

ronmental variation (Hiltunen et al. 2013). We digitised these time series by extracting by hand377

the coordinates of every points in the referential of the axis of the graph of the original study, and378

analysed them.379
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NODE analysis380

We apply the same analysis as performed on the artificial tri-trophic prey-predator oscillations.381

This allows us to recover a nonparametric approximation of the growth rate of each species, and382

then derive the direction and strength of the ecological interactions that underpin their dynamics.383

We present detailed results of the analysis of the second time series (Fig. 5), and a summary384

comparison of the three time series (Fig. 6). Complementary results, including cross-validation385

plots, and detailed results for the other two replicates can be found in the supplementary material386

(Supplementary C-E).387

3.3 Case study 3: real di-trophic prey-predator oscillations388

We infer ecological interactions by NODE BNGM in the hare-lynx system (Odum and Barrett389

1972). This is to provide an example of a longer time series, and to offer a point of comparison390

with previous and future implementations of NODEs, which commonly use this time series (e.g.391

Bonnaffé, Sheldon, and Coulson 2021; Frank 2022).392

System393

The system is described in details in our previous work (Bonnaffé, Sheldon, and Coulson 2021).394

The data consist in a 90-year long time series of counts of hare and lynx pelts collected by trappers395

in the Hudson bay area in Canada (Odum and Barrett 1972). The time series displays characteristic396

10-year long prey-predator oscillations.397

NODE analysis398
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We apply the same analysis as previously described, to the exception that the NODE system only399

features two variables, H and L, instead of 3. Results are presented in Figure 7.400

3.4 Case study 4: Maizuru bay aquatic community401

Finally, we demonstrate the capacity of NODEs to analyse the drivers of the dynamics of a larger402

community by analysing the time series of the Maizuru bay community (Ushio et al. 2018).403

System404

The dataset for this system consists of 12-year long time series of fortnight abundance estimates of405

the 15 dominant species in the Maizuru bay, Japan. The data was collected every two weeks along406

three 200m long and 2m wide transects by underwater visual census conducted along the coast of407

the Maizuru fishery research station of Kyoto University from 2002 to 2014 (for more details see408

Ushio et al. 2018). Bottom sea temperature (at 10m depth) was also recorded on each census. The409

dataset contains 14 dominant species of fish and 1 genus of jellyfish. Only species with more than410

1000 sightings were included in the final dataset.411

We focussed our analysis on the species with the least sparse records. We discarded the follow-412

ing species from our analysis Engraulis japonicus, Plotosus lineatus, Chaenogobius gulosus, and413

Siganus fuscescens. We also excluded periods which presented jellyfish blooms, as these were414

isolated events which could cause numerical errors in the estimation of the dynamics of species415

abundance. In total, we considered a time period of a hundred time steps from June 2004 to416

August 2008, and 11 species out of 15, namely Aurelia sp, Sebastes inermis, Trachurus japoni-417
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cus, Girella punctata, Pseudolabrus sieboldi, Halichoeres poecilopterus, Halichoeres tenuispinnis,418

Pterogobius zonoleucus, Tridentiger trigonocephalus, Sphyraena pinguis, and Rudarius ercodes.419

We included the sea bottom temperature (in degrees celsius) as an additional environmental vari-420

able.421

NODE analysis422

We then analysed this dataset following the approach described in the method section. We split423

the data into three thirds to create a training, validation, testing set (final third), and we followed424

the same procedure as described before to tune the regularisation parameters. The NODE system425

consisted of 11 NODEs, where the per-capita growth rate is determined by a single-layer ANN with426

12 input nodes, 10 hidden nodes, exponential activation functions, and 1 output node. Due to the427

high dimensionality of the effects obtained (11 by 12), we only present mean effects and relative428

total contributions, obtained by taking the mean, and the relative mean squares, respectively, of429

the effects and contributions across the entire time series (Fig. 8). The time series of effects430

and contributions are presented in greater details in the supplementary material (Supplementary431

G).432
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4 Results433

4.1 Case study 1: artificial tri-trophic system434

We present the results of fitting NODEs by BNGM to the artificial tri-trophic time series in Figure435

2 and 3. We find that both the interpolation of the state variables and dynamics are highly accurate436

(Fig. 2), given that they closely match the ground truth, known from the equations of the ODE437

model that we used to generate the time series (Eq. 11). Similarly, we find that the NODE approx-438

imation of the per-capita growth rate of each species also closely matches the ground truth (Fig. 3,439

a., d., g.). We find negative nonlinear effects of the two predators on the growth rate of the algae440

(Fig. 3, b., blue and purple lines). This nonlinear pattern is mirrored by the effect of the algae on441

the growth rate of the predators (Fig. 3, e. and h., red line). The interaction between the two preda-442

tors is also well-recovered (Fig. 3, e., blue line, and h., purple line), in spite of a slight tendency443

for overestimating the degree of nonlinearity of effects. The BNGM approach hence accurately444

recovers the dynamical characteristics of the artificial system.445

4.2 Benchmark446

Figure 4 shows the performance of fitting NODEs by BNGM, compared to standard NODEs, para-447

metric ODEs, and convergent cross mapping models (CCM). We find that fitting NODEs by BNGM448

provides the highest estimation accuracy for growth rates and ecological effects, both on the train-449

ing and test set, as well as competitive runtimes. Standard NODEs provide similar estimation450

accuracies, but take over 15 minutes to train. CCM is the fastest technique, as results are obtained451
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in under a second, but is relatively less accurate. Parametric ODEs are found to be both slow and452

less accurate.453

We present a detailed breakdown of the runtime of fitting NODEs by BNGM for each system in454

Table 1. We find that it takes on average 5.35 minutes to fit NODEs by BNGM on the smaller455

systems with 3 or less species, and about 23 minutes to fit the larger system from the Maizuru456

bay, which features 12 variables. This includes performing 100× I and 30× I full optimisations457

of the posterior distribution of the interpolation and NODE parameters, respectively. This amounts458

to about 5.37 second to sample each variable of the NODE system once in the smaller systems,459

and about 28 seconds for the Maizuru bay community. This is over a 100 fold improvement over460

standard NODE models, which take on average 20 minutes (Fig. 4).461

4.3 Case study 2: real tri-trophic prey-predator oscillations462

We present an in-depth analysis of the drivers of the dynamics of the algae, flagellate, and rotifer463

population in replicate B (Fig. 5). We find slightly positive nonlinear intra-specific density depen-464

dence in algal growth (Fig. 5, b., red line), and negative nonlinear inter-specific effects of the two465

predators (purple and blue line). We find that the growth rate of the flagellate is driven by a positive466

effect of algal density, a negative effect of predation by the rotifer and intra-specific density de-467

pendence (Fig. 5, e. and f.). The rotifer population is almost solely driven by a positive nonlinear468

effect of algal density (Fig. 5, h., red line). Overall, comparing results across the three replicates469

reveals that the effect of the rotifer population on the flagellate and algae, and the effect of the algae470
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on the rotifer, are the strongest and most consistent interactions (Fig. 6, Table 2). The interactions471

of the flagellate with the algae, and its effect on the rotifer population varies substantially across472

replicates (Fig. 6, Table 2).473

4.4 Case study 3: real di-trophic prey-predator oscillations474

We present the analysis of the drivers of the hare-lynx population dynamics in Figure 7. Cross-475

validation provides weak support for nonlinear effects in the per-capita growth rate of the hare and476

lynx. We find that the hare population growth rate is mostly determined by a nonlinear negative477

effect of the lynx population (Fig. 7, b. and c. blue line), and by weak nonlinear positive density478

dependence (red line). The lynx growth rate is determined by a positive nonlinear effect of the479

hare (Fig. 7, e. and f., red line), and to a lesser extent by negative nonlinear intra-specific density480

dependence (blue line).481

4.5 Case study 4: drivers of the Maizuru bay community dynamics482

We show the results of the NODE analysis of the drivers of the dynamics Maizuru bay community483

in Figure 8. Our main finding is that the chameleon goby (T. trigonocephalus) has a strong negative484

effect on 8 of the 11 dominant species of the community. We find that E. ercodes also has a strong485

negative impact on other species in the community, although relatively smaller than that of the486

chamelon goby. We find a positive effect of sea bottom temperature on the growth rate of the487

chameleon goby. Other effects are found to be mostly positive and have a relatively smaller impact488

on community dynamics.489
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5 Discussion490

Characterising ecological interactions from time series data is challenging. This is due to the fact491

that interactions can be highly context-dependent processes (Song and Saavedra 2021), making it492

difficult to identify parametric models that encapsulate their complexity (Wood 2001). Interac-493

tions estimated with parametric models are contingent on the parameterisation arbitrarily chosen494

by the observer, and hence risk being biased (Wood 2001; Adamson and Morozov 2013). We495

provide a novel method for estimating ecological interactions nonparametrically, by using neural496

ordinary differential equations (NODEs) fitted with Bayesian neural gradient matching (BNGM).497

First, we remove the cost of fitting NODEs by introducing BNGM, which allows for NODE fitting498

in only a few seconds. The method involves interpolating time series and dynamics with neural net-499

works, and then fitting NODEs to interpolated dynamics with Bayesian regularisation. We further500

demonstrate that this approach is accurate, as NODEs approximate with minimal error the ecolog-501

ical interactions in artificial time series, where real interactions are known, performing better than502

three existing methods. Finally, we estimate the strength, direction, importance, and nonlinearity503

of ecological interactions in 3 natural and experimental systems, showing variation in ecological504

interactions within and across the time series.505

Performance of NODEs fitted by BNGM compared to existing methods506

Our approach relies on approximating population dynamics with NODEs and then computing their507

sensitivity to a change in the density of the different populations in the system (Bonnaffé, Shel-508

don, and Coulson 2021). We demonstrate that NODEs accurately recover the dynamics, strength,509
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direction, and nonlinearity of ecological interactions in artificial tri-trophic prey-predator time se-510

ries, where truth is known. In particular, we find that the interactions between the prey and the511

two predators are nonlinear, and thereby oscillate throughout the time series, which is consistent512

with the model, that features a resistance to predation at high prey density. We also recover the513

interactions between the two predators, in spite of a slight tendency to overestimate the degree of514

nonlinearity. To our knowledge, this is the first assessment of the accuracy of NODEs in recovering515

interactions between variables from time series data, as most of the work focuses on assessing the516

accuracy of the fitting and forecasting of time series (e.g. Mai, Shattuck, and O’Hern 2016; Chen517

et al. 2019; Treven et al. 2021; Frank 2022).518

We find that fitting NODEs by BNGM provides higher estimation accuracies of ecological inter-519

actions, and reduces substantially fitting times compared to standard NODEs (Bonnaffé, Sheldon,520

and Coulson 2021), and parametric ODEs (Rosenbaum et al. 2019). This difference is attributable521

to three factors. First, BNGM alleviates the need for solving numerically the NODE system, which522

makes it faster to evaluate the posterior distribution. Second, it allows for the calculation of ana-523

lytical gradients of the posterior distribution, which greatly improve the speed and efficiency of the524

gradient descent optimisation algorithm. Finally, it makes it possible to fit each variables indepen-525

dently on each other, which results in a simpler optimisation problem.526

CCM remains faster than our approach in recovering estimates of ecological interactions (Sugihara527

et al. 2012), however its accuracy is lower. A possible explanation for this comes from the fact528

that CCM computes the sensitivity of the total population growth rate, rather than the per-capita529
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growth rate, which can change estimated effects. Additionally, CCM relies on piecewise linear530

reconstructions of the state space (Deyle et al. 2015), whereas NODEs computes a global nonlinear531

approximation of the per-capita growth rate on the entire range covered by the data. We view the532

former as potentially more sensitive to local noise in the state space (Cenci, Sugihara, and Saavedra533

2019), compared to the latter, which uses all evidence available to inform local inference.534

Our BNGM approach extends standard gradient matching, by using artificial neural networks535

(ANNs) as interpolating functions, and Bayesian regularisation to control the nonlinearity of the536

processes (Cawley and Talbot 2007). The use of ANNs as interpolating functions sets it apart537

from the initial approach of Ellner et al., who use splines to interpolate the time series before ap-538

proximating the ODEs (Ellner, Seifu, and Smith 2002). ANNs are more general and flexible than539

splines, as well as being easier to manipulate given that they are defined continuously on the state540

space, which is especially useful when handling multiple interactions between variables. Our ap-541

proach is related to that of Wu et al., who use ANNs to approximate both the states and ODEs of542

prey-predator systems (Wu, Fukuhara, and Takeda 2005), as well as that of Treven and colleagues,543

who developed the Gaussian process equivalent (Treven et al. 2021). In both approaches, they544

train the interpolation functions at the same time as the NODEs, in order to constrain the interpola-545

tion of trajectories such that they can be achieved by the NODE system, which thereby introduces546

dynamical coupling between state variables. One of the downsides of this approach is that mises-547

timating one of the state variables of the model biases the estimation of the states and dynamics548

of other variables. To avoid this, we fit each interpolation and NODE independently to each time549
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series. In addition, this makes it possible to parallelise the code, resulting in potentially even faster550

computation.551

Our approach opens new possibilities for nonparametric inference of ecological interactions from552

time series data. The lower fitting times makes it possible to tackle larger systems, quick and553

extensive model comparison, cross-validation, and apply more thorough statistical treatments of the554

uncertainty of these models, for instance by implementing Markov-chain Monte-Carlo (MCMC)555

sampling.556

Ecological interactions in real prey-predator systems557

We further tested NODEs in a real setting, by inferring ecological interactions across three repli-558

cated time series of an experimental tri-trophic system of algae, flagellate, and rotifer populations559

(Hiltunen et al. 2013). Our approach reveals that only stronger interactions, namely the negative560

effects of the rotifer top predator on the other species, and the positive effect of algae on the rotifer,561

are conserved across the three replicated time series. We also find evidence for nonlinearity in562

the dynamics of the rotifer, as the positive effect of the algae on rotifer growth oscillates through-563

out the time series. This is consistent with the biology of the system, as the algae tends to form564

anti-predation clumps at higher density, which would dampen the positive effect of algal density on565

rotifer growth at high algal density (Yoshida et al. 2003; Hiltunen et al. 2013). We find it interesting566

that the weaker interactions with the flagellate predator are not consistent across time series, given567

the controlled laboratory conditions. This system is known to evolve rapidly, it is hence possible568

that fast evolution of the different populations from the onset of the time series may have driven569
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the system onto different attractors (Yoshida et al. 2003; Yoshida et al. 2007; Hiltunen et al. 2013).570

Additionally, stochasticity in population dynamics may have a similar effect (Dallas et al. 2021).571

Disentangling these two sources of variation would require refining the modelling framework, for572

instance by explicitly including evolution in the model (e.g. with the Price equation, Ellner, Geber,573

and Hairston 2011), and by using neural stochastic differential equations (i.e. NSDEs, Rackauckas574

et al. 2019) fitted with a particle filter. While these would constitute interesting developments, our575

method is still a useful first step, identifying differences between the time series, and demonstrating576

a reasonable amount of deterministic consistency in the dynamics, judging by the cross-validation577

and fits.578

We also analysed the hare-lynx time series (Odum and Barrett 1972), as it is a common benchmark579

in the field of time series analysis, and provides a comparison point with our previous implemen-580

tation of NODEs (Bonnaffé, Sheldon, and Coulson 2021). As in our previous study, we found a581

predatory inter-specific interaction between lynx and hare, and negative intra-specific density de-582

pendence in the lynx. Evidence for positive density dependence in the hare was more limited than583

previously found. We also found stronger evidence for nonlinearity, as intra- and inter-specific ef-584

fects oscillated throughout the time series, as a result of density dependence. This difference with585

our previous study is due to the fact that our previous implementation of NODEs was based on sim-586

ulating the full NODE system, and hence imposed dynamical coupling between the variables. This587

dynamical coupling comes at a cost, if one variable is not explained well by the model, it will bias588

the interactions and dynamics of other variables. Here, the time series of lynx and hare are analysed589
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independently, each state variable is interpolated as closely as desired, its effects on the dynamics590

of other variables are hence even more robust to model misspecification than before.591

We applied our approach to analyse the drivers of the dynamics of 11 species in the Maizuru bay592

(Ushio et al. 2018). We inferred 11× 11 ecological interactions, and 11 dependencies on water593

temperature. We found that the chameleon goby had a strong negative impact on the other species594

of the system, showing a strong competitive potential. This species is viewed as an aggressive595

competitor (Ushio et al. 2018), and is considered an invasive species in places where it has been596

introduced (Goren, Gayer, and Lazarus 2009). We also find a positive effect of temperature on597

the growth rate of the chameleon goby, which suggests that warming could have indirect negative598

effects on many species on Maizuru bay by favouring the reproduction of the goby.599

Surprisingly, our results differ substantially from those obtained by Ushio et al. in their original600

analysis of the system with convergent cross mapping (Ushio et al. 2018). This may be due to a601

several factors. First, we considered a different set of species, as some of the time series that Ushio602

and colleagues used were too sparse to be suitable for our analysis. Additionally, this difference603

may be explained by the disparity in the estimation accuracies revealed by our benchmark anal-604

ysis, relating to fundamental mathematical differences between the two approaches, as discussed605

previously. If nothing else, our analysis of the Maizuru community dynamics demonstrates the606

usefulness of our BNGM method for fitting NODEs to a larger, more realistic system.607

Overall, our approach provides a novel and powerful way of estimating interactions nonparametri-608

cally from time series data. The benefit of using NODEs is that they make no assumptions about609
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the nature of the ecological interactions that drive the dynamics of the species (Chen et al. 2019;610

Bonnaffé, Sheldon, and Coulson 2021). Hence, we have a better chance at estimating the actual611

value of the interactions, knowing that it is not subjected to potential incorrect model specifications612

(Jost and Ellner 2000; Ellner, Seifu, and Smith 2002; Wu, Fukuhara, and Takeda 2005; Kendall613

et al. 2005; Adamson and Morozov 2013).614

Limits and prospects615

One of the main difficulty in quantifying ecological interactions is to identify potential context de-616

pendences on other state variables (Song and Saavedra 2021), for example, whether predation rates617

are affected by temperature. Our approach allows for the quantification of context dependence,618

which shows as nonlinear fluctuations of interactions throughout the time series. In the present619

work, we only report nonlinearity as evidence for context dependence in the interactions, but we620

do not attempt to understand what it is attributable to. For instance, we identify nonlinear density621

dependence in the effect of the algae on the rotifer, but we do not know whether this is due to a622

change in the effect with algae density or rotifer density, or both. In order to disentangle these623

higher order effects we could compute the Hessian of the system, namely the second order deriva-624

tive of the dynamics with respect to the different state variables. Though this procedure is simple625

mathematically, it would result in 27 second order effects to analyse for the simple 3 species system626

considered here. This type of analysis would get rapidly out of hand for larger systems. Further627

work should hence consider how to handle these higher order effects, as a way to unveil context628

dependence in ecological interactions.629
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One further issue is that some interactions may depend on variables that are not observed. For630

instance, some population dynamics are strongly determined by their demographic state (Lande et631

al. 2002; Coulson et al. 2004), which would call for time series of the relevant demographic stages.632

In the system considered here, the dynamics of algae in the rotifer system are most likely coupled633

with that of nitrogen, for which no time series was available (Hiltunen et al. 2013). Our method634

only accounts for observed variables, so that time series for all important variables are required,635

though unaccounted variables are captured to some extent by nonlinear fluctuations in interactions.636

One interesting prospect would hence be to incorporate unobserved/latent state variables into the637

NODE system (Dupont, Doucet, and Teh 2019; Zhang et al. 2019; Frank 2022). Careful thought638

has to be given here as whether to use an ODE or NODE for the latent states given that they are not639

constrained by observations.640

A further question is whether we could use similar approaches to analyse systems larger than the641

ones considered in this study. In particular, microbial communities feature thousands of species,642

and hence potentially millions of interactions, which poses a real problem for inference with dy-643

namical models (Ridenhour et al. 2017). Even the simplest linear ODE model would contain644

millions of parameters, hence entering deep learning territory. We believe that our success there is645

more readily limited by the availability of time series sufficiently long to identify this many inter-646

actions, rather than by our models. A possible next step could be to address the capacity of more647

complex NODE and ODE models to estimate interactions in large artificial communities (e.g. Co-648

enen et al. 2020), which could inform us on the relationship between model complexity and data649
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requirements in terms of time series length and sampling frequency.650

We consider NODEs, which are only defined along the time dimension. The framework could651

easily be extended to any other dimension by considering partial differential equations instead652

(Rackauckas et al. 2019). For instance, in a spatial ecology context we could model the dynamics653

of populations along two additional spatial dimensions. In an evolutionary context, we could model654

the dynamics of populations in phenotype space, by adding phenotypic traits as an additional di-655

mension. The BNGM method could be instrumental in fitting these models, which are notoriously656

expensive to stimulate.657

Conclusion658

We provide a method, BNGM, which allows for NODE fitting in a matter of seconds. This is a659

crucial step for efficient model selection and uncertainty quantification in NODEs. We also demon-660

strate that NODEs allow for faster more accurate estimation of the direction, strength, and nonlin-661

earity of ecological interactions than existing approaches, in a system where truth is known. Finally,662

we estimate ecological interactions in real prey predator systems, showing that only stronger inter-663

actions seem to be consistent across replicated time series, and that a single species can account for664

a large part of the changes in community dynamics. Our study allows for efficient NODE fitting,665

and confirms the power of NODEs in identifying dynamical coupling between populations.666

Acknowledgments667

We thank warmly the Ecological and Evolutionary Dynamics Lab and Sheldon Lab Group at the668

36



department of Zoology for their feedback and support. We thank Ben Sheldon for insightful sug-669

gestions on early versions of the work. The work was supported by the Oxford-Oxitec scholarship670

and the NERC DTP.671

Data accessibility672

All data and code will be made fully available at https://github.com/WillemBonnaffe/NODEBNGM,673

as well as on https://datadryad.org/stash/dataset/doi:xxx.674

Statement of authorship675

Willem Bonnaffé designed the method, performed the analysis, wrote the manuscript; Tim Coulson676

led investigations, provided input for the manuscript, commented on the manuscript.677

References678

Aarts, L. P. and P. V. D. Veer (2001). “Neural network method for solving partial differential equa-679

tions”. In: Neural Processing Letters 14 (3), pp. 261–271.680

Adams, M. P. et al. (Apr. 2020). “Informing management decisions for ecological networks, using681

dynamic models calibrated to noisy time-series data”. In: Ecology Letters 23 (4), pp. 607–619.682

Adamson, M. W. and A. Y. Morozov (2013). “When can we trust our model predictions? Un-683

earthing structural sensitivity in biological systems”. In: Proceedings of the Royal Society A:684

Mathematical, Physical and Engineering Sciences 469 (2149), pp. 1–19.685

37



Arndt, H. (1993). “Rotifers as predators on components of the microbial web (bacteria, heterotrophic686

flagellates, ciliates) - a review”. In: Hydrobiologia 255-256 (1), pp. 231–246.687

Berryman, A. and P. Turchin (1997). “Detection of density dependence: comment”. In: Ecology 78688

(1), pp. 318–320.689

Berryman, A. A. (2002). “Population: a central concept for ecology?” In: Oikos 97 (3), pp. 439–690

442.691

Berryman, A. A. (2003). “On principles, laws and theory in population ecology”. In: Oikos 103692

(3), pp. 695–701.693
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Figure 1: Overview of fitting neural ordinary differential equations (NODE) by Bayesian
neural gradient matching (BNGM). In a first step we compute a continuous time approximation
(interpolation) of each state variables, here the prey R̃(t) and predator density Ñ(t) (red boxes). To
do that we fit an ANN, that takes time as input, to each time series, via Bayesian regularisation.
Interpolated dynamics of populations can then be computed by taking the derivative of the ANN
with respect to time, ∂ R̃/∂ t and ∂ Ñ/∂ t. In a second step, we fit each NODE, dR/dt and dN/dt
(blue boxes), to the interpolated dynamics. To do that we fit an ANN, which takes as input the
interpolated variables R̃(t) and Ñ(t), to the interpolated dynamics ∂ R̃/∂ t and ∂ Ñ/∂ t, via Bayesian
regularisation.
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Figure 2: Interpolated density and dynamics of prey, intermediate, and top predators in the
artificial system. This figure corresponds to the first step in the overview figure (Fig. 1). It shows
the accuracy of the interpolated densities of prey (a.), intermediate (c.), and top predators (e.). We
obtain interpolated densities by fitting observed densities (black dots) with ANNs that take time as
input. The observed densities were obtained by sampling a tri-trophic prey-predator ODE model
at regular time steps. We then derive interpolated dynamics (b., d., f.) by computing the temporal
derivative of the interpolated densities with respect to time. In all graphs, the dashed line represents
the ground truth, namely trajectories generated by the ODE model. The solid lines correspond to
the interpolations. The shaded area shows the 90% confidence interval, obtained by approximately
sampling the marginal posterior distributions.
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Figure 3: Drivers of dynamics of prey, intermediate, and top predator in the artificial system.
This figure corresponds to the second step in the overview figure (Fig. 1). It displays the NODE
nonparametric approximations of the per-capita growth rate of prey (a., b., c.), intermediate (d., e.,
f.), and top predators (g., h., i.). We obtain the NODE approximations (a., d., g., solid line) by fitting
the interpolated per-capita growth rates (black dots) with ANNs that take population densities as
input. We then estimate the direction of ecological interactions (effects, b., e., h.) by computing
the derivative of the NODE approximations with respect to each density. Finally, we compute
the strength of ecological interactions (contributions, c., f., i.) by multiplying the interpolated
dynamics of each population (Fig. 1, b., d., f.) with its effects. Dashed lines correspond to ground
truth, obtained from the original trajectories of the tri-trophic ODE model. The shaded area shows
the 90% confidence interval, obtained by approximately sampling the posterior distributions.
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ODEs, and CCM. The NODEBNGM method (nonparametric) involves fitting a NODE system by
Bayesian neural gradient matching (BNGM). The NODE method (nonparametric) involves fitting
a NODE system with an ODE solver. The ODE2 method (parametric) involves fitting an ODE
system with quadratic functions of species densities with an ODE solver. The CCM method (non-
parametric) involves computing locally linear approximations of the state space. For each method,
we trained 30 models on the two first thirds of the artificial time series where ground truth is known
(Fig. 2). We computed runtimes as the mean time (in seconds) required to train a single model.
Using the best identified model, we predicted the growth rate and effects on the train and test set.
We computed accuracies as the mean squared error of predictions vs ground truth (known from
the equations that generated the data) (see Fig. S1-5 for more details). At the top, we show the
dynamical interaction network of the system predicted by the best models, where G, B, R corre-
spond to the prey, intermediate and top predator, respectively. Green and red colours correspond to
positive and negative interactions, the width of arrows is proportional to relative total contribution
to the growth rate of the population computed following the Geber method (Hairston et al. 2005;
Bonnaffé, Sheldon, and Coulson 2021).
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Figure 5: Drivers of dynamics of algae, flagellate, and rotifer in replicate B. This figure dis-
plays the NODE nonparametric approximations of the per-capita growth rate of algae (a., b., c.),
flagellate (d., e., f.), and rotifer (g., h., i.). We obtain the NODE approximations (a., d., g., solid
line) by fitting the interpolated per-capita growth rates (black dots) with ANNs that take population
densities as input. We then estimate the direction of ecological interactions (effects, b., e., h.) by
computing the derivative of the NODE approximations with respect to each density. Finally, we
compute the strength of ecological interactions (contributions, c., f., i.) by multiplying the inter-
polated dynamics of each population with its effects. The shaded area shows the 90% confidence
interval, obtained by approximately sampling the posterior distributions. The replicated time series
were obtained by digitising the time series in Hiltunen et al. (2013).
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Negative interaction Positive interaction

Figure 6: Interaction networks inferred from 3 replicated time series of algae, flagellate, and
rotifers. This figure shows the direction and strength of ecological interactions inferred from 3
replicated sets of time series of algae, flagellate, and rotifer, using NODEs fitted by BNGM. The
replicates A and C were analysed in the same way as replicate B (see Fig. 5 for details). Red
and purple arrows correspond to negative or positive mean effects. We estimated mean effects by
averaging effects (i.e. derivative of NODE approximated per-capita growth rates with respect to
each population density) across the time series. The width of the arrows is proportional to the
relative strength of the ecological interaction. We compute the relative strength as the % of total
contributions attributable to either algae, flagellate, or rotifer, obtained from summing the square
of contributions of each species throughout the time series. For instance in replicate A, the relative
strength of the effect of rotifer on algae is found by summing the square of the blue line in Fig. 5 c.,
and comparing it to the sum of square of all contributions (Fig. 5 c., red, purple and blue lines). We
provide the value of the mean effects and relative strengths in Table 2. The replicated time series
were obtained by digitising the time series in Hiltunen et al. (2013).
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Figure 7: Drivers of dynamics of hare and lynx in the Odum and Barrett pelt count time
series. This figure displays the NODE nonparametric approximations of the per-capita growth
rate of hare (a., b., c.), and lynx (d., e., f.). We obtain the NODE approximations (a., d., solid
line) by fitting the interpolated per-capita growth rates (black dots) with ANNs that take population
densities as input. We then estimate the direction of ecological interactions (effects, b., e.) by
computing the derivative of the NODE approximations with respect to each density. Finally, we
compute the strength of ecological interactions (contributions, c., f.) by multiplying the interpolated
dynamics of each population with its effects. The shaded area shows the 90% confidence interval,
obtained by approximately sampling the posterior distributions.
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Figure 8: Dynamical interaction network of the Maizuru bay community. This figure sum-
marises the results of the NODEBNGM analysis of the Maizuru bay community time series (Fig.
S18). Bot.t corresponds to the temperature at sea bottom. Species are referred to by their short-
ened acronym. The main species are Aurelia sp., Sebastes inermis, Trachurus japonicus, Girella
punctata, Pseudolabrus sieboldi, Halichoeres poecilopterus, Halichoeres tenuispinnis, Pterogob-
ius zonoleucus, Tridentiger trigonocephalus, Sphyraena pinguis, and Rudarius ercodes. Red and
green arrows correspond to negative or positive mean effects, obtained by averaging the sensitivity
of the growth rate of a species to the density of other species across the time series. The width of
the arrows is proportional to the relative total contribution (in %) of species density to the growth
rate of other species, obtained by computing the relative sum the square of contributions across the
time series. For the sake of clarity, we only display interactions which contribute to more than 10%
of a change in the population growth rates.



Table 1: Summary of model runtimes. We measured the time required to perform 100 interpola-
tions and 30 NODE fits to each variable in the systems. Replicate A, B, and C correspond to each
replicated time series of the aglae, flagellate, and rotifer tri-trophic system (Hiltunen et al. 2013).
The Hare-Lynx system correspond to the 90 years long time series of hare and lynx pelt counts
(Odum and Barrett 1972). The Ushio system corresponds to the 100 time step long time series
dataset of the 11 dominant species in the Maizuru bay community (Ushio et al. 2018). The number
of time steps (N steps) is given for each time series. The total time per fit is obtain by dividing the
total time in seconds by the number of fits (i.e. 130). These results were obtained on a macbook
pro M1 MAX 2022, in base R (v4.0.2), with non-optimised code.

Interpolation NODE fit
————————- ————————-

System N var. N t. steps N fits time (s) N fits time (s) total total p. fit

Replicate A 3 66 100 234.45 30 80.41 314.86 5.02
Replicate B 3 66 100 238.01 30 81.13 319.14 5.08
Replicate C 3 40 100 136.51 30 49.94 186.45 3.03

Hare-lynx 2 90 100 341.74 30 21.55 363.29 4.14
Ushio 12 100 100 806.12 30 604.42 1410.54 28.21



Table 2: Comparison of the direction and strentgh of ecological interactions estimated by
BNGM across 3 replicated tri-trophic microcosms. Mean effects are obtained by averaging the
effect of one species on the growth rate of another throughout the time series. The % of total con-
tributions is obtained by summing the square of contributions of one species density to the growth
of the other at each time step throughout the time series, then by computing the proportion of total
change that it accounts for. The variables G, B, and R correspond to the population density of al-
gae, flagellate, and rotifer respectively. r2 corresponds to the r squared of the NODE nonparametric
approximation of the pre-capita growth rate of the three species.

G B R

Replicate A r2 0.11 0.37 0.47

Mean effects on G -0.08 -1.14 -1.13
on B 0.28 -0.21 -0.66
on R 0.60 1.09 0.32

% of total contributions to G 0.01 0.34 0.65
to B 0.02 0.04 0.93
to R 0.26 0.66 0.08

Replicate B r2 0.52 0.4 0.65

Mean effects on G 0.12 -0.53 -1.23
on B 0.12 -0.06 -0.25
on R 1.83 0.10 0.07

% of total contributions to G 0.02 0.03 0.95
to B 0.38 0.02 0.61
to R 0.99 0.00 0.01

Replicate C r2 0.59 0.32 0.73

Mean effects on G 0.09 -0.49 -1.96
on B 0.04 -0.19 -0.65
on R 1.07 0.79 -0.01

% of total contributions to G 0.00 0.08 0.91
to B 0.01 0.10 0.88
to R 0.49 0.51 0.00



6 Supplementary826

A Bayesian regularisation827

The fitting of the models is performed in a Bayesian framework, considering normal error structure828

for the residuals, and normal prior density distributions on the parameters,829

p(ω|D) ∝ p(D |ω)p(ω), (13)

where θ is the parameter vector of the model, and D the evidence, namely the data that the model830

is fitted to. Assuming a normal likelihood for the residuals given the evidence we get831

p(D |ω) =
N

∏
i=1

1√
2πσ2

exp
{
−ei(D ,ω)2

2σ2

}
, (14)

where ei(D ,ω) are the residuals of the model given the parameters, and the evidence. In the case832

of the interpolation, the residuals correspond to the observation error ε(o) (Eq. 3). In the case of833

the NODE approximation, they correspond to the process error ε(p) (Eq. 7). N is the number of834

data points, either observations in the case of the interpolation, N(o), or interpolated points in the835

case of the NODE fitting, N(p).836

The prior probability density functions for the parameters are given by837

p(ω) =
M

∏
j=1

1√
2πδ 2

j

exp

{
−

ω2
j

2δ 2
j

}
, (15)



where M is the number of parameters in the models. The parameter δ j controls the dispersion of838

the priors, and thereby the complexity/level of constraint of the model.839

Bayesian regularisation consists in constraining the values of the parameters in the model to be840

close to a desired value. Usually, parameters are constrained by choosing normal priors centered841

about 0. In this case, the standard deviation of the normal priors, δ , governs the range of values842

that the parameters can take, and hence constrains more or less strongly the behaviour of the model843

(Cawley and Talbot 2007). Low values of dispersion may increase constraint on parameters too844

drastically, which would lead to underfitting, and result in a reduction of the variance of parameter845

estimates and bias mean estimates towards 0. In contrast, too high values of dispersion may lead846

to overfitting, by allowing for more complex shapes. To account for this, we optimise models on847

the second-level of inference. This means that we are finding the optimal value of δ , in addition to848

optimising the model parameters.849

In practice, choosing the level of constraint is difficult, Cawley and Talbot hence developed a850

criterion to perform model selection on the second level of inference. They proposed to optimise851

the marginal posterior distribution by averaging out the dispersion of the priors. With an improper852

Jeffrey’s hyperprior, p(ξ ) ∝
1
ξ

, on the dispersion parameters, the dispersion can be integrated out,853

leaving us with a formula for the posterior that only depends on the parameters of the model,854

logP(ω|D) ∝ −N
2

log

(
N

∑
i=1

ei(D ,ω)2

)
− M

2
log

(
M

∑
j=1

ω
2
j

)
, (16)

where P(ω|D) denotes the marginal posterior density, D denotes the evidence, N and M denote855



the number of data points and parameters, respectively, ei denote the residuals, and ω denote the856

parameters of the model. The construction is elegant because it is not sensitive to the choice of857

prior hyperparameters, and simple as it amounts to optimising the log of the sum of squares, rather858

than the sum of squares (in the case of normal ordinary least square).859

One of the drawbacks of this construction is that the marginal posterior density is not finite when860

the parameters are 0, which can lead to underfitting. In this paper we use a modified criterion,861

which corrects for that problem,862

logP(ω|D) ∝ −N
2

log

(
1+

N

∑
i=1

ei(D ,ω)2

)
− M

2
log

(
1+

M

∑
j=1

ω
2
j

)
, (17)

where the marginal posterior density depends only on the residuals of the model when the pa-863

rameters are equal to 0, and otherwise depends on both the parameters and the residuals. This864

construction can be obtained by adding an exponential correction to the improper Jeffrey’s hyper-865

prior that Cawley and Talbot used in their original study, namely p(ξ ) ∝
1
ξ

exp{−ξ/2}, where ξ866

is the regularisation parameter.867

We provide below details of the calculation of this modified criterion, starting by averaging out868

the regularisation parameter. We let ξ := 1/δ 2, assuming that all parameters are controlled by the869

same regularisation parameter, which gives the following equation for the prior distribution,870

p(ω|ξ ) =
M

∏
j=1

1√
2π/ξ

exp
{
−ξ

2
ω

2
j

}
. (18)



To follow the proof given by Cawley and Talbot we further use the following notation, d := M,871

ZΩ := (2π/ξ )d/2, and Ω := ∑ j ω2
j , which yields872

p(ω|ξ ) = ZΩ(ξ )
−1 exp

{
−ξ

2
Ω(ω)

}
. (19)

We can then integrate out the regularisation parameter by computing the marginal prior distribu-873

tion,874

P(ω) =
∫

p(ω|ξ )p(ξ )dξ . (20)

This expression can be solved analytically with the right choice of prior. Cawley and Talbot use875

p(ξ ) ∝ 1/ξ , but instead we choose p(ξ ) ∝ 1/ξ exp{−ξ/2}. By assuming positive support for ξ876

and expanding out the marginal prior distribution we get,877

P(ω) =
∫

∞

0

(
2π

ξ

)−d/2

exp
{
−ξ

2
Ω(ω)

}
1
ξ

exp
{
−ξ

2

}
dξ

= (2π)−d/2
∫

∞

0
ξ

d/2−1 exp
{
−ξ

2
(Ω(ω)+1)

}
dξ

(21)

We use the gamma integral,
∫

∞

0 xv−1 exp{−µx} = Γ(v)/µv (Cawley and Talbot 2007), to ob-878

tain,879

P(ω) = (2π)−d/2 Γ(d/2)

(1/2)d/2 (Ω(ω)+1)d/2 (22)

Finally, by applying the logarithm and discarding constants, we obtain the final expression for the880



marginal prior distribution,881

logP(ω) ∝ −d
2

log(Ω(ω)+1)

∝ −M
2

log

(
1+

M

∑
j

ω
2
j

) (23)

The same procedure can be applied to derive the marginal likelihood, by noting d := N, ξ := 1/σ2,882

ZΩ := (2π/ξ )d/2, Ω(ω) := ∑i e2
i .883
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Figure S1: Train set accuracy of predicted per-capita growth rates and effects estimated by
NODEBNGM, standard NODEs, ODE2, and CCM. The NODEBNGM method (nonparamet-
ric) involves fitting a NODE system by Bayesian neural gradient matching (BNGM). The NODE
method (nonparametric) involves fitting a NODE system with an ODE solver. The ODE2 method
(parametric) involves fitting an ODE system with quadratic functions of species densities with an
ODE solver. The CCM method (nonparametric) involves computing locally linear approximations
of the state space. For each method, we trained 30 models on the two first thirds of the artificial
time series where ground truth is known (Fig. 2). For each plot, the x-axis corresponds to the
ground truth, known from the equations that generated the artificial time series, and the y-axis
corresponds to the prediction of the best model. Effects are computed as the sensitivity (i.e. deriva-
tive) of the per-capita growth rate with respect to each species density G, B, and R, namely the
prey, intermediate and top predator.
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Figure S2: Test set accuracy of predicted per-capita growth rates and effects estimated by
NODEBNGM, standard NODEs, ODE2, and CCM. The NODEBNGM method (nonparamet-
ric) involves fitting a NODE system by Bayesian neural gradient matching (BNGM). The NODE
method (nonparametric) involves fitting a NODE system with an ODE solver. The ODE2 method
(parametric) involves fitting an ODE system with quadratic functions of species densities with an
ODE solver. The CCM method (nonparametric) involves computing locally linear approximations
of the state space. For each method, we trained 30 models on the two first thirds of the artificial
time series where ground truth is known (Fig. 2). For each plot, the x-axis corresponds to the
ground truth, known from the equations that generated the artificial time series, and the y-axis
corresponds to the prediction of the best model. Effects are computed as the sensitivity (i.e. deriva-
tive) of the per-capita growth rate with respect to each species density G, B, and R, namely the
prey, intermediate and top predator.
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Figure S3: Effects and contributions inferred by standard NODEs. The standard NODE model
nonparametrically approximates the per-capita growth rate of the 3 species with an ANN featuring
a single layer, 3 input nodes, 10 hidden nodes, 3 outputs. 30 models are fitted to the two first third
of the time series using BFGS and a Runge-Kutta ODE solver. The graphs present the predictions
obtained for the model that maximises posterior density of the network parameters given the time
series. We estimate the direction of ecological interactions (effects) by computing the derivative
of the per-capita growth rate approximations with respect to each density. Finally, we compute the
strength of ecological interactions (contributions) by multiplying the interpolated dynamics of each
population with its effects.
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Figure S4: Effects and contributions inferred by parametric ODE. The ODE2 model paramet-
rically approximates the per-capita growth rate of the 3 species with second order polynomial func-
tions. 30 models are fitted to the two first third of the time series using BFGS and a Runge-Kutta
ODE solver. The graphs present the predictions obtained for the model that maximises posterior
density of the network parameters given the time series. We estimate the direction of ecological
interactions (effects) by computing the derivative of the per-capita growth rate approximations with
respect to each density. Finally, we compute the strength of ecological interactions (contributions)
by multiplying the interpolated dynamics of each population with its effects.
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Figure S5: Effects and contributions inferred by CCM. The CCM method nonparametrically
approximates the state space from which it derives the sensitivity of population dynamics to a
change in the density of the each species. We use the rEDM implementation and derived our code
from the three species example provided in the package tutorial (v1.13.1, Sugihara et al. 2012). We
calculated the dynamics and per capita growth rate using finite differences, as the standard library
does not readily provide estimates. The effects correspond to the s-map coefficients. Finally,
we compute the strength of ecological interactions (contributions) by multiplying the interpolated
dynamics of each population with its effects.
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Figure S6: Interpolation of state and dynamics of algae, flagellate, and rotifer density in
replicate A. Graph a., c., and e. display the neural interpolation of the population density of algae
(G), flagellate (B), and rotifer (R), respectively (obtained with Eq. 7). Graph b., d., and f. show
the corresponding interpolated dynamics, obtained by differentiating the interpolation of the states
with respect to time (Eq. 5). The shaded areas represent the 90% confidence interval on estimates,
obtained by anchored ensembling of the log marginal posterior distribution (Eq. 7) (Pearce et al.
2018). Time series are obtained from digitising the time series in Hiltunen et al. 2013.
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Figure S7: Cross-validation plot of the NODE analysis of replicate A. The x-axis of the graphs
correspond to the standard deviation of the prior distribution of the NODE parameters, which
constrains the nonlinearity of the nonparametric approximation of the NODEs. Small values of
standard deviation correspond to a linear model, while higher values (towards 0.5) correspond to a
highly nonlinear model. Time series are split in three thirds to create a train, validation, and test set.
The model is fitted to the train set for increasing value of standard deviation (from 0.05 to 0.5 by
0.05 increments), and evaluated on the validation set. Graph a., c., and e. show the log likelihood
of the NODE system fitted by BNGM to the train set of algae, flagellate, and rotifer, respectively.
Graph b., d., and f. show the log likelihood of the fitted NODE, evaluated on the corresponding
validation set. The shaded areas represent the 90% confidence interval on estimates, obtained by
anchored ensembling of the log posterior distribution (Eq. 8) (Pearce et al. 2018).
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Figure S8: Drivers of dynamics of algae, flagellate, and rotifer in replicate A. This figure
displays the NODE nonparametric approximations of the per-capita growth rate of algae (a., b.,
c.), flagellate (d., e., f.), and rotifer (g., h., i.). We obtain the NODE approximations (a., d., g.,
solid line) by fitting the interpolated per-capita growth rates (black dots) with ANNs that take
population densities as input. We then estimate the direction of ecological interactions (effects,
b., e., h.) by computing the derivative of the NODE approximations with respect to each density.
Finally, we compute the strength of ecological interactions (contributions, c., f., i.) by multiplying
the interpolated dynamics of each population with its effects. The shaded area shows the 90%
confidence interval, obtained by approximately sampling the posterior distributions. The replicated
time series were obtained by digitising the time series in Hiltunen et al. (2013).
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Figure S9: Interpolation of state and dynamics of algae, flagellate, and rotifer density in
replicate B. Graph a., c., and e. display the neural interpolation of the population density of algae
(G), flagellate (B), and rotifer (R), respectively (obtained with Eq. 7). Graph b., d., and f. show
the corresponding interpolated dynamics, obtained by differentiating the interpolation of the states
with respect to time (Eq. 5). The shaded areas represent the 90% confidence interval on estimates,
obtained by anchored ensembling of the log marginal posterior distribution (Eq. 7) (Pearce et al.
2018). Time series are obtained from digitising the time series in Hiltunen et al. 2013.
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Figure S10: Cross-validation plot of the NODE analysis of replicate B. The x-axis of the graphs
correspond to the standard deviation of the prior distribution of the NODE parameters, which
constrains the nonlinearity of the nonparametric approximation of the NODEs. Small values of
standard deviation correspond to a linear model, while higher values (towards 0.5) correspond to a
highly nonlinear model. Time series are split in three thirds to create a train, validation, and test set.
The model is fitted to the train set for increasing value of standard deviation (from 0.05 to 0.5 by
0.05 increments), and evaluated on the validation set. Graph a., c., and e. show the log likelihood
of the NODE system fitted by BNGM to the train set of algae, flagellate, and rotifer, respectively.
Graph b., d., and f. show the log likelihood of the fitted NODE, evaluated on the corresponding
validation set. The shaded areas represent the 90% confidence interval on estimates, obtained by
anchored ensembling of the log posterior distribution (Eq. 8) (Pearce et al. 2018).
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Figure S11: Drivers of dynamics of algae, flagellate, and rotifer in replicate B. This figure
displays the NODE nonparametric approximations of the per-capita growth rate of algae (a., b.,
c.), flagellate (d., e., f.), and rotifer (g., h., i.). We obtain the NODE approximations (a., d., g.,
solid line) by fitting the interpolated per-capita growth rates (black dots) with ANNs that take
population densities as input. We then estimate the direction of ecological interactions (effects,
b., e., h.) by computing the derivative of the NODE approximations with respect to each density.
Finally, we compute the strength of ecological interactions (contributions, c., f., i.) by multiplying
the interpolated dynamics of each population with its effects. The shaded area shows the 90%
confidence interval, obtained by approximately sampling the posterior distributions. The replicated
time series were obtained by digitising the time series in Hiltunen et al. (2013).
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Figure S12: Interpolation of state and dynamics of algae, flagellate, and rotifer density in
replicate B. Graph a., c., and e. display the neural interpolation of the population density of algae
(G), flagellate (B), and rotifer (R), respectively (obtained with Eq. 7). Graph b., d., and f. show
the corresponding interpolated dynamics, obtained by differentiating the interpolation of the states
with respect to time (Eq. 5). The shaded areas represent the 90% confidence interval on estimates,
obtained by anchored ensembling of the log marginal posterior distribution (Eq. 7) (Pearce et al.
2018). Time series are obtained from digitising the time series in Hiltunen et al. 2013.
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Figure S13: Cross-validation plot of the NODE analysis of replicate C. The x-axis of the graphs
correspond to the standard deviation of the prior distribution of the NODE parameters, which
constrains the nonlinearity of the nonparametric approximation of the NODEs. Small values of
standard deviation correspond to a linear model, while higher values (towards 0.5) correspond to a
highly nonlinear model. Time series are split in three thirds to create a train, validation, and test set.
The model is fitted to the train set for increasing value of standard deviation (from 0.05 to 0.5 by
0.05 increments), and evaluated on the validation set. Graph a., c., and e. show the log likelihood
of the NODE system fitted by BNGM to the train set of algae, flagellate, and rotifer, respectively.
Graph b., d., and f. show the log likelihood of the fitted NODE, evaluated on the corresponding
validation set. The shaded areas represent the 90% confidence interval on estimates, obtained by
anchored ensembling of the log posterior distribution (Eq. 8) (Pearce et al. 2018).
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Figure S14: Drivers of dynamics of algae, flagellate, and rotifer in replicate C. This figure
displays the NODE nonparametric approximations of the per-capita growth rate of algae (a., b.,
c.), flagellate (d., e., f.), and rotifer (g., h., i.). We obtain the NODE approximations (a., d., g.,
solid line) by fitting the interpolated per-capita growth rates (black dots) with ANNs that take
population densities as input. We then estimate the direction of ecological interactions (effects,
b., e., h.) by computing the derivative of the NODE approximations with respect to each density.
Finally, we compute the strength of ecological interactions (contributions, c., f., i.) by multiplying
the interpolated dynamics of each population with its effects. The shaded area shows the 90%
confidence interval, obtained by approximately sampling the posterior distributions. The replicated
time series were obtained by digitising the time series in Hiltunen et al. (2013).
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Figure S15: Interpolation of state and dynamics of hare and lynx. Graph a. and c. display
the neural interpolation of the population density of hare and lynx respectively (obtained with Eq.
7). Graph b. and d. show the corresponding interpolated dynamics, obtained by differentiating
the interpolation of the states with respect to time (Eq. 5). The shaded areas represent the 90%
confidence interval on estimates, obtained by anchored ensembling of the log marginal posterior
distribution (Eq. 7) (Pearce et al. 2018). Time series are obtained from Bonnaffé, Sheldon, and
Coulson 2021, originally from Odum and Barrett 1972.
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Figure S16: Cross-validation plot of the NODE analysis of the hare-lynx system. The x-axis of
the graphs correspond to the standard deviation of the prior distribution of the NODE parameters,
which constrains the nonlinearity of the nonparametric approximation of the NODEs. Small values
of standard deviation correspond to a linear model, while higher values (towards 0.2) correspond to
a highly nonlinear model. Time series are split in three thirds to create a train, validation, and test
set. The model is fitted to the train set for increasing value of standard deviation (from 0.0 to 0.2
by 0.025 increments), and evaluated on the validation set. Graph a. and c. show the log likelihood
of the NODE system fitted by BNGM to the train set of hare and lynx, respectively. Graph b. and
d. show the log likelihood of the fitted NODE, evaluated on the corresponding validation set. The
shaded areas represent the 90% confidence interval on estimates, obtained by anchored ensembling
of the log posterior distribution (Eq. 8) (Pearce et al. 2018).
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Figure S17: Drivers of dynamics of hare and lynx in the Odum and Barrett pelt count time
series. This figure displays the NODE nonparametric approximations of the per-capita growth
rate of hare (a., b., c.), and lynx (d., e., f.). We obtain the NODE approximations (a., d., solid
line) by fitting the interpolated per-capita growth rates (black dots) with ANNs that take population
densities as input. We then estimate the direction of ecological interactions (effects, b., e.) by
computing the derivative of the NODE approximations with respect to each density. Finally, we
compute the strength of ecological interactions (contributions, c., f.) by multiplying the interpolated
dynamics of each population with its effects. The shaded area shows the 90% confidence interval,
obtained by approximately sampling the posterior distributions.
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Figure S18: Time series of the aquatic community in Ushio et al. 2018. The time series was
collected for 12-years on a fortnightly basis, for 15 dominant species in the Maizuru bay in Japan.
We focus on the 11 species and the 100 time steps with the least sparse abundance records. Bot.t
corresponds to water temperature near the bottom. The main species are Aurelia sp., Sebastes in-
ermis, Trachurus japonicus, Girella punctata, Pseudolabrus sieboldi, Halichoeres poecilopterus,
Halichoeres tenuispinnis, Pterogobius zonoleucus, Tridentiger trigonocephalus, Sphyraena pin-
guis, and Rudarius ercodes. Variables are normalised with respect to minimum and maximum
values.
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Figure S19: Interpolation of state and dynamics of temperature and species abundance in the
Maizuru bay community. Graphs a. display the neural interpolations of the population density
(obtained with Eq. 7), apart from graph 1a. which corresponds to sea bottom temperature. Graphs
b. show the corresponding interpolated dynamics, obtained by differentiating the interpolation of
the states with respect to time (Eq. 5). The shaded areas represent the 90% confidence interval on
estimates, obtained by anchored ensembling of the log marginal posterior distribution (Eq. 8).
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Figure S20: Interpolation of state and dynamics of species abundance in the Maizuru bay
community. Graphs a. display the neural interpolations of the population density (obtained with
Eq. 7). Graphs b. show the corresponding interpolated dynamics, obtained by differentiating
the interpolation of the states with respect to time (Eq. 5). The shaded areas represent the 90%
confidence interval on estimates, obtained by anchored ensembling of the log marginal posterior
distribution (Eq. 8).
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Figure S21: Interpolation of state and dynamics of species abundance in the Maizuru bay
community. Graphs a. display the neural interpolations of the population density (obtained with
Eq. 7). Graphs b. show the corresponding interpolated dynamics, obtained by differentiating
the interpolation of the states with respect to time (Eq. 5). The shaded areas represent the 90%
confidence interval on estimates, obtained by anchored ensembling of the log marginal posterior
distribution (Eq. 8).
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Figure S22: Interpolation of state and dynamics of species abundance in the Maizuru bay
community. Graphs a. display the neural interpolations of the population density (obtained with
Eq. 7). Graphs b. show the corresponding interpolated dynamics, obtained by differentiating
the interpolation of the states with respect to time (Eq. 5). The shaded areas represent the 90%
confidence interval on estimates, obtained by anchored ensembling of the log marginal posterior
distribution (Eq. 8).
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Figure S23: Cross-validation plot of the NODE analysis of the Maizuru bay community. The
x-axis of the graphs correspond to the standard deviation of the prior distribution of the NODE
parameters, which constrains the nonlinearity of the nonparametric approximation of the NODEs.
Small values of standard deviation correspond to a linear model, while higher values correspond to
a highly nonlinear model. Time series are split in three thirds to create a train, validation, and test
set. The model is fitted to the train set (i.e. first third) for increasing value of standard deviation
(from 0.005 to 0.05 by 0.005 increments), and evaluated on the validation set. The operation is
repeated by swapping the training and validation set. The graphs show the log likelihood of the
NODE system fitted by BNGM to the train set (in orange), and evaluated on the corresponding val-
idation set (in red). The shaded areas represent the 90% confidence interval on estimates, obtained
by anchored ensembling of the log posterior distribution (Eq. 8) (Pearce et al. 2018).
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Figure S24: Cross-validation plot of the NODE analysis of the Maizuru bay community. The
x-axis of the graphs correspond to the standard deviation of the prior distribution of the NODE
parameters, which constrains the nonlinearity of the nonparametric approximation of the NODEs.
Small values of standard deviation correspond to a linear model, while higher values correspond to
a highly nonlinear model. Time series are split in three thirds to create a train, validation, and test
set. The model is fitted to the train set (i.e. first third) for increasing value of standard deviation
(from 0.005 to 0.05 by 0.005 increments), and evaluated on the validation set. The operation is
repeated by swapping the training and validation set. The graphs show the log likelihood of the
NODE system fitted by BNGM to the train set (in orange), and evaluated on the corresponding val-
idation set (in red). The shaded areas represent the 90% confidence interval on estimates, obtained
by anchored ensembling of the log posterior distribution (Eq. 8) (Pearce et al. 2018).
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Figure S25: Cross-validation plot of the NODE analysis of the Maizuru bay community. The
x-axis of the graphs correspond to the standard deviation of the prior distribution of the NODE
parameters, which constrains the nonlinearity of the nonparametric approximation of the NODEs.
Small values of standard deviation correspond to a linear model, while higher values correspond to
a highly nonlinear model. Time series are split in three thirds to create a train, validation, and test
set. The model is fitted to the train set (i.e. first third) for increasing value of standard deviation
(from 0.005 to 0.05 by 0.005 increments), and evaluated on the validation set. The operation is
repeated by swapping the training and validation set. The graphs show the log likelihood of the
NODE system fitted by BNGM to the train set (in orange), and evaluated on the corresponding val-
idation set (in red). The shaded areas represent the 90% confidence interval on estimates, obtained
by anchored ensembling of the log posterior distribution (Eq. 8) (Pearce et al. 2018).
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Figure S26: Cross-validation plot of the NODE analysis of the Maizuru bay community. The
x-axis of the graphs correspond to the standard deviation of the prior distribution of the NODE
parameters, which constrains the nonlinearity of the nonparametric approximation of the NODEs.
Small values of standard deviation correspond to a linear model, while higher values correspond to
a highly nonlinear model. Time series are split in three thirds to create a train, validation, and test
set. The model is fitted to the train set (i.e. first third) for increasing value of standard deviation
(from 0.005 to 0.05 by 0.005 increments), and evaluated on the validation set. The operation is
repeated by swapping the training and validation set. The graphs show the log likelihood of the
NODE system fitted by BNGM to the train set (in orange), and evaluated on the corresponding val-
idation set (in red). The shaded areas represent the 90% confidence interval on estimates, obtained
by anchored ensembling of the log posterior distribution (Eq. 8) (Pearce et al. 2018).



60 80 100 120 140

−
1.

0
0.

0
0.

5
1.

0

P
.c

. g
ro

w
th

 r
at

e
1a.

bot.t

60 80 100 120 140

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

E
ffe

ct
s

1b.

bot.t
Aurel.sp
S.inerm.
T.japon.

G.punct.
P.siebo.
H.poeci.
H.tenui.

P.zonol.
T.trigo.
S.pingu.
R.ercod.

60 80 100 120 140

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Time

C
on

tr
ib

ut
io

ns

1c.

bot.t
Aurel.sp
S.inerm.
T.japon.

G.punct.
P.siebo.
H.poeci.
H.tenui.

P.zonol.
T.trigo.
S.pingu.
R.ercod.

60 80 100 120 140

−
2

−
1

0
1

2

2a.

Aurel.sp

60 80 100 120 140

−
0.

5
0.

0
0.

5
2b.

bot.t
Aurel.sp
S.inerm.
T.japon.

G.punct.
P.siebo.
H.poeci.
H.tenui.

P.zonol.
T.trigo.
S.pingu.
R.ercod.

60 80 100 120 140

−
0.

6
−

0.
2

0.
2

0.
6

Time

2c.

bot.t
Aurel.sp
S.inerm.
T.japon.

G.punct.
P.siebo.
H.poeci.
H.tenui.

P.zonol.
T.trigo.
S.pingu.
R.ercod.

60 80 100 120 140

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

3a.

S.inerm.

60 80 100 120 140

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

3b.

bot.t
Aurel.sp
S.inerm.
T.japon.

G.punct.
P.siebo.
H.poeci.
H.tenui.

P.zonol.
T.trigo.
S.pingu.
R.ercod.

60 80 100 120 140

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Time

3c.

bot.t
Aurel.sp
S.inerm.
T.japon.

G.punct.
P.siebo.
H.poeci.
H.tenui.

P.zonol.
T.trigo.
S.pingu.
R.ercod.

Figure S27: Drivers of dynamics of species abundance in the Maizuru bay community. This
figure displays the NODE nonparametric approximations of the per-capita growth rates (2-3a.).
We obtain the NODE approximations (2-3a., solid line) by fitting the interpolated per-capita growth
rates (black dots) with ANNs that take population densities as input. We then estimate the direction
of ecological interactions (effects, 2-3b.) by computing the derivative of the NODE approximations
with respect to each density. Finally, we compute the strength of ecological interactions (contri-
butions, 2-3c.) by multiplying the interpolated dynamics of each population with its effects. The
shaded area shows the 90% confidence interval, obtained by approximately sampling the posterior
distributions.
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Figure S28: Drivers of dynamics of species abundance in the Maizuru bay community. This
figure displays the NODE nonparametric approximations of the per-capita growth rates (4-6a.).
We obtain the NODE approximations (4-6a., solid line) by fitting the interpolated per-capita growth
rates (black dots) with ANNs that take population densities as input. We then estimate the direction
of ecological interactions (effects, 2-6b.) by computing the derivative of the NODE approximations
with respect to each density. Finally, we compute the strength of ecological interactions (contri-
butions, 2-6c.) by multiplying the interpolated dynamics of each population with its effects. The
shaded area shows the 90% confidence interval, obtained by approximately sampling the posterior
distributions.
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Figure S29: Drivers of dynamics of species abundance in the Maizuru bay community. This
figure displays the NODE nonparametric approximations of the per-capita growth rates (7-9a.).
We obtain the NODE approximations (7-9a., solid line) by fitting the interpolated per-capita growth
rates (black dots) with ANNs that take population densities as input. We then estimate the direction
of ecological interactions (effects, 7-9b.) by computing the derivative of the NODE approximations
with respect to each density. Finally, we compute the strength of ecological interactions (contri-
butions, 7-9c.) by multiplying the interpolated dynamics of each population with its effects. The
shaded area shows the 90% confidence interval, obtained by approximately sampling the posterior
distributions.
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Figure S30: Drivers of dynamics of species abundance in the Maizuru bay community. This
figure displays the NODE nonparametric approximations of the per-capita growth rates (10-12a.).
We obtain the NODE approximations (10-12a., solid line) by fitting the interpolated per-capita
growth rates (black dots) with ANNs that take population densities as input. We then estimate the
direction of ecological interactions (effects, 10-12b.) by computing the derivative of the NODE
approximations with respect to each density. Finally, we compute the strength of ecological in-
teractions (contributions, 10-12c.) by multiplying the interpolated dynamics of each population
with its effects. The shaded area shows the 90% confidence interval, obtained by approximately
sampling the posterior distributions.


