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Summary

Spatial interpolation techniques have been used in air pollution studies to generate area-level
estimates. Despite the benefits of a mathematically sound concept, rapid implementation, and
user-friendly software, interpolation suffers in areas with a low number of monitoring stations
and when the built environment is ignored. The purpose of this study is to introduce TRAP, a
nearly finished R package that is a new road-scale spatial interpolation method that uses road
weighting. The NO2 results in Seoul showed a small variation during the summer, but large
daily variations during the winter. The road-overlaid outcomes gave improved results relative to
the roadside measurements.
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1 Introduction

Daily ambient air pollution has posed a major threat to population health. Despite efforts to legislate
national pollution standards, daily NO2 levels in cities such as Seoul or London have repeatedly
exceeded WHO standards. Understanding the spatial and temporal aspects of air pollution, as well
as their relationship to exposure, is critical for reducing further adverse health effects associated
with air pollution.

Various Spatial Interpolation (SI) techniques have been used in air pollution studies to generate
area-level estimates of pollutants, allowing researchers to further compute the potential exposure
across different geographic scales. Despite criticisms, SI has remained a popular method due to its
advantages of a mathematically sound concept, quick implementation speed, and useful software.
However, when the number of air pollution monitoring stations is limited in comparison to the size of
the city, estimation errors, known as small-scale variability, are likely to increase in monitor-sparse
regions (Wu et al., 2019; Chen and Lin, 2022; Shiode and Shiode, 2011). Another drawback of SI
methods is that they assume all locations exist in a two-dimensional space and that the distance
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between monitoring stations is measured solely on the Euclidean distance, which excludes complex
topographies and built environments (Chen and Lin, 2022; Li et al., 2015).

This study aims to examine small-scale variations that occur during SI prediction and to introduce
a new road-scale spatial interpolation method that employs road weighting. This method, which
is also computationally light and fast, is expected to help improve the prediction accuracy of road
air quality. This presentation introduces the nearly finished development of the R package TRAP
(Traffic-related Air Pollution).

2 Methods

2.1 Data Collection

This study selected Seoul as a case study and used NO2 as the main source. Data were collected
from 57 background stations (installed on the rooftops of district offices) and 19 roadside stations
that were within 10km from the city boundary (see Figure 1). The data for the summer of 2013
were downloaded between the 1st of August and the 30th of September 2013, and between the 2nd
of December 2013 and the 28th of February 2014. Units are measured in ppb (parts per billion).
This study used 12-hour aggregations to reduce the short-term exposure estimation errors at hourly
intervals.

Road layout was provided by the Korean Transport Database (KTDB). Seoul had 59,319 road
segments in total, and the attributes of each segment included node ID, link ID, number of lanes,
maximum speed, traffic light density, and road ranks. In Table 1, Road segments were grouped by
their road ranks as a level to distinguish different pollution loading. Rural and county roads 105,
106, and 107 were excluded due to a small fraction existing in Seoul. The roads were regrouped as
general roads (103, 104), and motorways (101, 102, 108) to distinguish the pollution loads by two
road types.

Rank Name Group

101 Highway Highway
102 Urban highway Highway
103 National road General
104 Metropolitan road General
105 Rural road (gov-supported) -
106 Rural road -
107 County road -
108 Highway ramp General

Table 1: Road hierarchies and groups
Figure 1: 57 Background pollution stations
that are considered for spatial interpolation



2.2 Modelling Universal Kriging by considering Small-scale Variability

This study used Universal Kriging (UK), a non-stationary variant of Ordinary Kriging in which the
mean varies deterministically in different locations (trend or drift), but only the variance remains
constant (Kumar, 2007; Kim et al., 2014; Li et al., 2015). We aumotated the fitting of the conceptual
semivariograms to empirical splines to krige the entire study extent, then manually adjusted nuggets
and partial sills if artefacts (a.k.a. bull’s eye effect) were observed. This study used variogram
experiments to discover small-scale NO2 variations under 5kms, and discovered that on some days
the prediction was created with little or no spatial autocorrelation (which created a very smoothed
outcome).

Figure 2: The example of small-scale variability of NO2 on Aug.16th. Semivariogram examples of
good-fit, overfit, and underfit. The middle semivariogram leads to bull’s eye effects on the map
while the right gives an overly smoothed outcome.

3 Adding a Road-Weight Function to Background Pollution Levels on Spatial Inter-
polation Predictions

As to improve the accuracy of NO2 prediction, this study took roadside pollution data from roads
and motorways respectively and measured the ratios (see Figure 3). The ratios were then applied
universally to the road networks across Seoul.

4 Results

The average concentration of NO2 in August was around 15ppb (see Figure 4). The distribution
was consistent throughout the city. In comparison, NO2 had a relatively higher average of 42ppb
in February, with greater spatial variability and temporal oscillation. In the road-overlayed results,
NO2 levels on roads were approximately 80% and 30% higher than in the background areas during
the summer and winter seasons, respectively (see Figure 5).

5 Conclusion

To better estimate a spatially gridded field for road air pollution, this study used Universal Kriging
at 12-hour intervals and then added an extra road effect. The NO2 results showed a small variation



Figure 3: NO2 ratio measured by every 12-hour average in late July-September 2013 and December-
February 2013-2014. Graphs A and C are pollution levels of NO2, and Graphs B and D are ratios
between aggregated roadside and background stations, and between the aggregated urban highway
and background stations.

during the summer, but large daily variations during the winter. Although statistical models cannot
take into account atmospheric dispersion in the street canyon scale (Di Sabatino et al., 2008),
the road-overlaid outcomes gave improved results relative to the roadside measurements which is
promising. For future work, splitting the background-roadside ratio into districts might improve
the model’s accuracy.

6 Data and Code Availability

The data, codes, and figures are available on our GitHub repository: https://github.com/dataandcrowd/
GISRUK2023.

https://github.com/dataandcrowd/GISRUK2023
https://github.com/dataandcrowd/GISRUK2023


Figure 4: Interpolated NO2 maps on August 15-17th by 12 hour intervals.

Figure 5: Time series outcomes of combined NO2 interpolation and road effects in mid-February
2014
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