
Efficient attack-surface exploration for
electromagnetic fault injection

Omitted for blind review

No Institute Given

Abstract. Electromagnetic Fault Injection is a physical attack that
aims to disrupt the operation of hardware circuits to bypass existing
confidentiality and integrity protections. The success probability of the
attack depends, among other things, on many different variables such as
the probe used to inject the pulse, its position, the pulse intensity, and
duration. The number of such parameter combinations and the stochastic
nature of the induced faults make a comprehensive search of the param-
eter space impractical. However, it is of utmost importance for hardware
circuit manufacturers to identify these vulnerability points efficiently and
introduce countermeasures to mitigate them.
This work presents a methodology to efficiently identify the subregion
of the attack parameter space that maximizes the occurrence of a in-
formative fault. The idea of this work consists in applying a multidi-
mensional bisection method and exploiting the equilibrium between a
pulse that is too strong and one that is too weak to produce a disrup-
tion on the circuit’s operation. We show that such a methodology can
outperform existing methods on a concrete, state-of-the-art embedded
multicore platform.

Keywords: Electromagnetic Fault Injection, Parameters Search, Optimization,
Methodology, Fault Model, System On Chip

1 Introduction

Today, System-on-Chips (SoCs) are increasingly used for sensitive tasks such as
secure payments, critical infrastructure management, and other mission critical
applications characterized by confidentiality and integrity constraints. However,
SoCs are complex architectures that might present a vast attack surface, which is
difficult to protect. For this reason, they are increasingly equipped with Trusted
Execution Environments (TEEs), which are small, isolated processing environ-
ments whose attack surface is more easily under control.

Ensuring a completely safe TEE is not a simple task, as the boomerang attack
has shown [12]; However, even if the attack surface could be reduced to zero, fault
injection (FI) could still be used to force the system to work outside its nominal
conditions and expose otherwise absent vulnerabilities, perhaps justifying such
an increase in research efforts.

This preprint has not undergone peer review (when applicable) or any post-submission improvements or corrections.
The Version of Record of this contribution is published in Constructive Side-Channel Analysis and Secure Design (LNCS 13979, COSADE 2023),
and is available online at https://doi.org/10.1007/978-3-031-29497-6_2.

2 Omitted for blind review

Fault injection is all about disrupting the nominal operation of a circuit
by invalidating design-time assumptions around the environment. A successful
injection could be used to trigger instruction execution skips or corruption in
working data with obvious consequences1; In fact, one of the most defining as-
pects of FI is the need to have physical access to the target2. Injection can be
performed in several ways that vary in terms of equipment cost, invasivity, and
robustness, e.g. altering the working temperature of the system, the clock signal,
the power supply, and/or the system internal signals. The latter effect could be
induced through either microprobing, a coherent light source (if the circuit has
been decapped), or by injecting electromagnetic pulses (EMFI).

EMFI is particularly interesting because it represents a potentially cheaper
(see the ChipShouter project [17]) than other methods but with more degrees of
freedom. However, its cost-performance trade-off is characterized by less precise
control over the fault injection position (with respect to optical or microprobing
attacks) and the significant range of equipment configurations that can be used to
perform it, such as the electromagnetic probe position, the voltage, the intensity,
etc., which we call the attack surface.

This work stems from our efforts to overcome the two limits of conventional
approaches, i.e.,

– using trial and error tests with the risk of leaving out interesting exploitable
points [20], and

– targeting the identification of a single (X,Y) faulty point by adopting some
sort of occurrence ratio with the side effect of reducing fault differentiation
[8].

This work proposes a target-agnostic methodology to efficiently search the
EMFI attack surface for potentially exploitable configurations. We overcome
the inherent limits of an exhaustive search (which is unfeasible) and a random
search (which is suboptimal) by addressing, through a multidimensional bisec-
tion method, the probe position problem and the pulse configuration problem.

This paper is structured as follows. Section 2 introduces the state-of-the-
art EMFI attacks to facilitate understanding of the motivation and problem
statement of this work. Section 3 introduces the actual methodology, which is
then validated by appropriate experimentation in Section 4. Section 5 concludes
the paper with an outline of possible future work.

2 State of the art

Research efforts on EMFI have focused on understanding its effects (inference of
the fault model), improving fault success rates, and building/validating attacks.
The last two challenges are based on the tooling to perform the EMFI and the

1 Being able to skip a branch instruction could, for example, bypass security checks.
2 This is not a requirement as some fault-injection attacks might work even remotely
(e.g., clkscrew [22] and rowhammer).

Efficient attack-surface exploration for electromagnetic fault injection 3

development of methodologies that integrate it with the fault model, a particular
methodological issue being the exploration of the attack surface. When dealing
with EMFI against programmable microcontrollers (MCU), we can identify a
broad division between practical approaches, targeting FPGA or ASIC SoCs,
and methodological contributions, summarized in Table 1.

2.1 EMFI on FPGA

FPGA technology, due to its lower clock frequency and hardware complexity,
was a great starting point for white-box analysis of EMFI effects. For example,
Moro et al. [16] have built an RTL model that predicted timing constraint vio-
lations on flash memory bus transfers. Their experiments (on a 56MHz FPGA
target) confirmed that an attacker could corrupt instructions fetched from mem-
ory. Similarly, Ordas et al. [19] have introduced a more refined model, which takes
into account the corruption of internal registers’ (flip-flop) data, essentially mak-
ing it independent of the clock frequency. With a similar white-box approach,
Menu et al. [15] derive a model that explains the corruption of data fetches
from flash memory. Other researchers [4] have provided evidence and theoretical
justification for a successful EMFI with pulses that are shorter than the target
clock cycle. For example, Dutertre et al. [6] have introduced an instruction skip
model that shows 100% repeatability on a single precise instruction that could
be extended to deal with more than one instruction in different moments.

2.2 EMFI on ASIC SoCs

Commercial ASIC-based SoCs (generally based on application-class MPUs) in-
troduce a whole new level of complexity in fault modeling. Researchers cannot
apply white-box approaches anymore, as they do not control the underlying
technology, and have to work with clock frequencies higher than their FPGA
counterparts which makes synchronization difficult. Hummel et al. [10] is one of
the first approaches in this field to successfully deal with a precise synchroniza-
tion between raised exceptions and pulse timing. Ang et al. [3] try to overcome
the synchronization problem by employing a second-order EMFI attack, which
consists of attacking a secondary component to affect the primary target (by
targeting an external DRAM running at a 40MHz clock to disrupt the execution
of the faster processor). This and other approaches, such as Kuhnapfel et al.
[11], are characterized by relatively low-cost equipment ranging from $350 to
$7000. Other works resorted to trial-and-error approaches to explain faults at
higher levels. Proy et al. [20] (inspired by Dereuil et al. [5]) are among the first
to define a CPU fault model based on the Instruction Set Architecture, while
Trouchkine et al. [23] try to explain faults using architectural features such as
register, pipeline, MMU, and caches. Finally, Gaine et al. [8] present an interest-
ing hybrid approach consisting of privilege escalation in a Linux environment;
here the target is a 1.2 GHz mobile SoC for which they have a white-box view.
They are the first to introduce the concept of crash susceptibility, which we will
exploit in the remainder of this work. However, they were unable to carry out

4 Omitted for blind review

the planned attack in a real-world scenario due to serious timing-synchronization
issues with the fast target.

Type Year Work Target

MCU

2013 Moro et al. [16] ARM Cortex-M3

2017 Ordas et al. [19]
Xilinx Spartan 3-1000
ARM Cortex-M4

2019
Menu et al. [15]

Atmel SAM3X8E
ARM Cortex-M3

Dumont et al. [4] Custom designed
2021 Dutertre et al. [6] ATmega328P

SoC

2014 Hummel [10] ARM Cortex-A8

2017 Ang et al. [3]
Cisco 8861 IP Phone
Broadcom BCM11123 SoC

2019
Proy et al. [20] ARM Cortex-A9

Trouchkine et al. [23]
ARM BCM2837
x86 Intel Core i3-6100T

2020 Gaine et al. [8] ARM Cortex-A53
2022 Kuhnapfel et al. [11] x86 AMD Ryzen 5 2600

Methods

2013
Omarouayache et al. [18] Probes
Carpi et al. [2] Smartcards

2019
Madau et al. [13]

ARM Cortex-M3
ARM Cortex-M4

Maldini et al. [14] ARM Cortex-M4
2022 Gaine et al. [9] Probes

Table 1: Summary of the state-of-the-art for EMFI.

2.3 Existing methodologies

Methodological approaches are more interested in maximizing the amount of
information that can be obtained from an experimentation campaign than in
a successful exploit. In fact, there is an overall underrated aspect of fault in-
jection, that is, how and where to reliably reproduce a fault in the first place.
The probe reliability and selection problem, originally addressed by Omarouay-
ache et al. [18] is less difficult today than it was 10 years ago. Toolkit producers
such as NewAE, eShard, Riscure and other vendors commercialize state-of-the-
art probes with their offerings (whose accuracy obviously depends on the cost).
However, identification and exploration of the configuration setup for fault in-
jection is still in its infancy, although initial steps have been proposed in 2013
by Carpi et al. [2] in the field of Voltage Fault Injection. They address the prob-
lem of identifying the subspace of the duration and intensity values of pulses
that could produce an actual fault with a two-step process, that is, trying to
optimize the parameters separately. Maldini et al. [14] bring this work to EMFI
through an evolutionary algorithm that tries to find the optimal geometric and

Maria Chiara Molteni

Efficient attack-surface exploration for electromagnetic fault injection 5

pulse intensity values that maximize fault occurrence ratio while keeping some
of the configuration fixed (pulse duration). Madau et al. [13] offer an alterna-
tive methodology to locate the best areas to obtain unexpected behaviors on
the surface of the chip; Each surface point, starting from a predefined grid, is
rated using a susceptibility criterion that requires measuring electromagnetic
emissions. In its testing environment, the criterion has efficiently led to the iden-
tification of 50% of the surface that produces a covering of 80% of the faulty
surface. However, the susceptibility criterion requires expensive equipment to
measure electromagnetic emissions. Furthermore, the criterion test is performed
with a fixed pulse intensity and duration, while different durations and intensities
could provide different results.

Fig. 1: Flowchart of evaluating the outcome of a single EMFI. A FAULT may be
exploitable or not depending on the path that lead to it. Exploitable FAULTs
follow the dotted arrow path, and Non-exploitable FAULTs follow the dashed
arrow path.

The current state of affairs is not satisfactory for several reasons. First of all,
each of the above approaches has a set of setup variables which are fixed to some
value perhaps identified through trial and error. This is done, of course, to limit
the complexity of the analysis of the attack surface, but could leave some inter-
esting exploitable points out of scope. Our work aims to provide a methodology
that starts with instruments and setup capabilities and leaves nothing behind
without an explanation.

Second, most of the existing approaches adopt some sort of occurrence ratio
as a maximization objective to find a single (X,Y) chip surface coordinate.
Instead, we aim to derive multiple points of the attack surface to enhance fault
differentiation in the hope that nonfrequent faults are more informative.

Third, as suggested by other authors [2], there are better strategies than ran-
dom search [21] to improve both efficiency and efficacy. In fact, probe movement

6 Omitted for blind review

associated with random search introduces too much error and should be reduced
as much as possible. However, so far, there has been no clear indication on how
probe coordinates should be explored.

Fig. 2: Flowchart of the proposed search methodology.

3 Methodology

Following [14], we assume a controller/target evaluation setup such as the one
represented in Figure 1. The controller is responsible for guiding the injection
probe on the target by modifying the coordinates (X,Y) of the probe, the inten-
sity V and the duration d of the square pulse. Each injection of faults is modeled
as a function EMFI(X,Y, V, d) with three possible outcomes.

– OK: the target output is as expected.

– KO: the target locks up, freezes, resets, or does not produce a result.

– FAULT: anything else; this is the most rare behavior and is divided further
into:

• Informative: the FAULT that does not prevent the code under test from
reaching its end, but does not show expected values.

• Noninformative: any other FAULT such as processor exceptions of any
kind.

Efficient attack-surface exploration for electromagnetic fault injection 7

Since EMFI is a probabilistic attack, we will need to work with statis-
tics associated with n fault injections, which will provide, for each outcome
o ∈ {OK, KO, FAULT}, its probability Po(X,Y, V, d, n). The problem is to efficiently
identify the subregion of the attack space X × Y × V × d that maximizes prob-
ability PFAULT for each coordinate that meets a susceptibility criterion, without
resorting to a random search where n is usually set depending on time con-
straints.

The proposed methodology is based on the idea that PFAULT is non-negligible
where POK and PKO balance out. In fact, we rely on the idea that a pulse “too
weak” (POK ≫ PKO) is not sufficient to cause the target fault. At the same time,
a pulse that is “too strong” (PKO ≫ POK) may disturb execution too much. Our
strategy is carried out in two steps: 1) reducing the physical surface of the target
(X,Y) to only points susceptible to faults (susceptible surface search), and 2)
identifying the intensity V and duration d of the pulse through a multidimen-
sional bisection algorithm [1] (coordinate search). The methodology, shown in
Figure 2, is agnostic to the target architecture and relies only on the observ-
ability of an outcome, which could be a led lighting up or a log message from a
debug console. The two methodological steps are outlined in the following two
subsections.

3.1 Surface search

The search for the susceptible area (Figure 2, A) consists of first defining a grid
G of coordinates and the maximum intensity and duration of the pulse. This is
done by measuring the spatial dimensions of the target Xmin, Ymin, Xmax, Ymax,
choosing a grid step according to the precision of the probe positioning mech-
anism and defining the maximum value of intensity Vmax and duration dmax

exactly below the values that risk damaging the target.
Then, finally, evaluate

EMFI(Xi, Yj , Vmax, dmax, n̄)

on the grid G and a number of experiments n̄ and derive the subset of “suscep-
tible” surface points (S), i.e., those points that show at least some KO or FAULT
result:

S(G) = {(X̄, Ȳ)|(X̄, Ȳ) ∈ G ∧
PKO(X̄, Ȳ , Vmax, dmax, n̄) + PFAULT(X̄, Ȳ , Vmax, dmax, n̄) > 0}

If no susceptible points are found, run the procedure again on a grid with a
smaller step, higher intensity, and/or duration of the pulse.

3.2 Coordinate search

This phase of the methodology (Figure 2, B) is based on the idea that PFAULT

is non-negligible where POK and PKO balance out. In practice, we formalize the

8 Omitted for blind review

coordinate search problem by finding the root of the following equation for sus-
ceptible points S(G) and a fixed number of experiments n̄:

E(V, d) = {PKO(X̄, Ȳ , V, d, n̄)− POK(X̄, Ȳ , V, d, n̄) ≃ 0, (X̄, Ȳ) ∈ S(G)} (1)

Note that the above equation potentially defines a line in the (V, d) space
which is the solution of interest. To optimally search for this line, we assume that
the function E is smooth, that is, small changes in (V, d) bring small changes to
E and that it increases monotonically with V and d. These conditions allow for
the use of a proper adaptation of the multidimensional bisection algorithm [1],
which will allow the identification of rectangular regions that contain the target
line (V, d). Each such rectangular region is called “bracketing rectangle” and is
such that at least two of its vertices i, j trigger a sign difference for E of at least
magnitude 2ϵ, ϵ ≥ 0, where ϵ is a control parameter of the bisection method3:

E(Vi, di) < −ϵ ∧ E(Vj , dj) > ϵ (2)

The algorithm starts by considering the coordinates of a rectangular region
of the space (see Figure 3)

R = {(Vmin, dmin), (Vmax, dmin), (Vmax, dmax), (Vmin, dmax)}

If the rectangle is bracketing, then it is divided into 4 equal subrectangles; the
search is then repeated for those subrectangles that are bracketing until a maxi-
mum number of iterations is reached or there are no more bracketing rectangles.

Fig. 3: Example iterations (0 to 3) of the Bi-dimensional bisection with ϵ = 0.
Vertices with E > 0 are highlighted in orange, those with E < 0 are highlighted
in blue, while bracketing rectangles are highlighted in red. In iteration 1 the top
right rectangle is not bracketing since it has no vertex V with E(V, d) < 0
. Note that measurement units for X and Y axis are different (Volts vs milliseconds)

The maximum number of iterations Imax is given by the discrete nature of
the parameters V and d:

3 It is an indirect stop criterion for the bisection method. The higher ϵ, the lower the
bar will be set to recognize the rectangles as bracketing rectangles, and thus continue
the search.

Efficient attack-surface exploration for electromagnetic fault injection 9

Imax = min

(⌊
log2

(
Vmax − Vmin

Vstep

)⌋
,

⌊
log2

(
dmax − dmin

dstep

)⌋)
(3)

where Vstep and dstep are determined by the precision of the equipment /
setup.

In the worst-case scenario (that is, a function with roots right above the
bottom left perimeter of the initial bracketing rectangle) and at iteration I, the
bisection algorithm must evaluate 2I+2 − 3 vertices n̄ times; thus, we obtain the
following bound for the number of experiments N :

N ≤ 4n̄+

(
Imax∑
I=1

2I+2 − 3

)
n̄ (4)

Fig. 4: Chipshouter (A), Oscilloscope (B), Target (C), 3D printer (D), Voltage
translator (E) and FPGA (F).

10 Omitted for blind review

4 Experimental validation

This section presents an experimental validation of the methodology presented
in the previous section. We will introduce the setup of the injection platform and
the target, as well as a qualitative and quantitative evaluation of the efficacy in
identifying informative faults.

The hardware and software components of our setup are built around the
ChipShouter platform for a comprehensive budget of less than 5K€ (excluding
oscilloscope) and a standard laptop used to control the following parameters (see
Figure 4):

– duration of d pulse injection to as low as 10ns, through an Artix-7 35T Arty
at 100MHz

– (X,Y) position of the fault injection probe, through a 3d printer with a
0.1mm resolution

– intensity V of the pulse (directly on the ChipShouter).

The setting allows us to produce pulses with d ranging from 10 to 600 ns with
a 10ns resolution and V ranging from 150 to 500 V, with a 1V resolution. To
control the platform, we used the following software tools:

– Raiden[7], an open source FPGA project to handle the delay between the
target and the pulse triggers. It also controls the duration of the trigger,
allowing the pulse to last a fixed number of clock cycles. Finally, it resets
the target to perform new experiments.

– OctoPrint, a 3D-printer control application.
– A Python app that orchestrates Raiden, Octoprint, and the ChipShouter

APIs to configure and collect the target output through a serial interface.

The target is an ARMv7 dual core, dual issue SoC that mounts a Cortex A7
with eight pipeline stages with data and instruction caches disabled. It runs at
600MHz and does not perform any speculative execution. The chip has not been
decapped, and we do not have information on the internal layout. The target has
a serial port that is used by the central workstation to read the output of the
experiments performed on it. The chosen target offers a standard procedure for
building and deploying everything necessary for a robust and secure boot chain.
We position our victim code in the First Stage Boot Loader (FSBL) of Trusted
Firmware-A. Putting the victim code at this point in the boot-chain simplifies
the collection and interpretation of the results; in particular, the code runs on a
single core and allows us to minimize the time window for testing.

The victim code has a standard template; the initial part of the template
triggers the pulse through a GPIO pin:

;Pulse trigger

bl set_gpio

mov r0, #89 ; 0x59

bl clk_enable

Efficient attack-surface exploration for electromagnetic fault injection 11

ldr r3, [pc, #124] ; address for gpio high

movs r2, #128 ; 0x80

str r2, [r3, #0] ; set gpio high

It then sets each register from r0 to r12 to a unique value (r0=0x41414141,
r1=0x42424242 ... r12=0x53535353) to recognize any unexpected/random change
in its content:

;REGISTERS SETTING

mov.w r0, #1094795585 ; 0x41414141

mov.w r1, #1111638594 ; 0x42424242

mov.w ip, #1397969747 ; 0x53535353

The actual victim code (which belongs to a class of codes introduced below)
is then executed, followed by a print on the serial port of the architectural state.

The code has a size limitation because it has to fit into the internal SRAM,
according to the FSBL platform guidelines. The size of the FSBL image allows
enough instructions to hit after accounting for the actual delay between the
GPIO high instruction and the actual arrival of the electromagnetic pulse.

We designed the victim code snippets to stress the three main microarchi-
tectural blocks of the processor: the arithmetic units, the memory subsystem
(load/store unit), and the branching unit.

– A sequence of NOPs.
– A sequence of ADDs which increment register r0 by one.
– A sequence of LDRs instructions.
– A single bne instruction that jumps to itself. This snippet does not produce

any output, and its OK and KO behaviors are indistinguishable (called Loop
in the following).

4.1 Trigger and timing synchronization.

As highlighted above, we achieve synchronization between the pulse and the
victim code through a GPIO pin that is controlled directly by the victim. Figure
5 shows the view, captured via oscilloscope, of the timing of the signals involved.

First, the victim sets the GPIO to high (Figure 5,A); in turn, this triggers
the ChipShouter (Figure 5,B), and finally the actual electromagnetic pulse is
produced (Figure 5,C). (Figure 5,D) is the actual amount of time that occurs
between the victim’s trigger instruction and the actual impact on the execution
of the instructions (Figure 5, F). The ChipShouter delay is less than 100 ns
(Figure 5, E).

4.2 Surface search

The surface mapping is performed using a 1mm grid step. Given that the edge of
the square chip surface is 13mm, the resulting grid G corresponds to 169 points.

12 Omitted for blind review

Fig. 5: Timing synchronization scheme from the oscilloscope perspective. The
horizontal steps of the grid represent a period of 200 ns.

According to the previous description, we used a Vmax at 500V, a duration of
dmax = 600 ns (which is the maximum available on the ChipShouter as of 2022)
and a number of experiments per point n̄ = 8.

First, we performed a surface search using the NOP victim code. The overall
resulting dimension of the susceptible sub-grid S(G) is 42, that is, 25.8% of the
entire grid (see Figure 6a). In this phase, we observed very few FAULTs, and the
majority of experiments were KO. The victim code ADD behaves similarly (see
Figure 6b). Interestingly, the FAULTs are located on the perimeter of the KO sub-
grid and are essentially exceptions. We also found a case where a faulty behavior
did not trigger an exception, i.e., the value of a register in the computation was
modified. The victim code LDR behaves similarly (see Figure 6c) to the other two
with exceptions classified as link register abort (LRABT), and Data Abort. The
Loop victim code is more difficult to characterize, as one can only observe either
exceptions or sudden control changes that force the CPU out of the loop. Even
in this case, we observed the FAULTs on the perimeter of the previous susceptible
surface.

4.3 Coordinate search

We sampled a few points within the subgrid S(G) by using ϵ = 0, thus forcing the
maximum iterations of the bisection method to I = 5. The algorithm converged
towards PFAULT ranging from 30% to 80%. Once the bisection converged, some
coordinates of S(G) showed very different (V, d) profiles, which appeared even
before reaching the maximum I, as Figure 7 shows. In particular, some points
produced a high probability of fault in the upper right quadrant (Figure 7a),

Efficient attack-surface exploration for electromagnetic fault injection 13

(a) NOPs susceptible
surface.

(b) ADDs susceptible
surface.

(c) LDRs susceptible
surface.

Fig. 6: Surface search for different code snippets executions. Each point
coordinate is evaluated 8 times at max intensity and duration of the pulse.

while some others were characterized by a very low maximum probability in the
lower left quadrant (Figure 7b), which incidentally goes against some results
reported earlier [8]. We do not have conclusive explanations for this conflicting
behavior, which, we think, could be better explained with a decapped chip.

(a) (3,7) coordinate search, 4
iterations.

Min |E| = 0, Max PFAULT = 100%.

(b) (4,12) coordinate search, 4 iterations.
Min |E| = 0.1, Max PFAULT = 10%.

Fig. 7: Coordinate search. Each point evaluation corresponds to 10
experiments. The color of the round points represents the E value (range

[−1,+1]) for the configuration. The color of the stars represents max PFAULT

achieved for the configuration.

Figure 8a shows all coordinates tested with the maximum PFAULT obtained; By
comparison, Figure 8b shows the results obtained when both S(G) and bisection
are replaced by random sampling. Given the striking difference in precision, we
further investigated the efficacy of the random search at some coordinates in
S(G) comparing it with the bisection method (Figures 9 and 10), using as many
random experiments as the amount needed for the four bisection iterations. The

14 Omitted for blind review

proposed bisection method obtained a number of faults that is almost triple the
random one.

(a) Each coordinate color reports its max
PFAULT achieved using the methodology
(I = 4, n = 10 corresponding to 17790

experiments performed).

(b)
3200 random experiments.

Fig. 8: Validation tests on susceptibility criterion.

(a) Bisection search. (b) Random search.

Fig. 9: Validation tests on coordinate (4,8). 960 experiments per Random and
Bisection search.

On a selected subset of coordinates, we evaluated the importance of the
threshold ϵ in equation 2. We expected that the lower the threshold, the closer
we get to the roots of the E function in equation 1, and potentially the higher

Efficient attack-surface exploration for electromagnetic fault injection 15

Fig. 10: Comparison between bisection and random search upon a fixed coor-
dinate. Number of total Faults per experiments performed. Upon experiments
intervals [0,40],[40,90],[90,220],[220,470] and [470,960] execute iterations from 0
to 4.

the probability of a fault. Figure 11 shows a perceived almost linear relationship
between the two.

Fig. 11: Fault probability relationship with achieved |E|

4.4 Testing a fault model

The previous methodology allowed us to identify some potential coordinates of
interest to be further investigated. Although the following is outside the scope
of the methodology, we report some results of this additional investigation. In
particular, we focus on the ADD victim code. Recall that the ADD victim code is
composed of an unrolled loop of ADD instructions that increment the R0 register
by a deterministic amount. Inspecting some of the sensible coordinates, we found

16 Omitted for blind review

that the final value of the R0 register was off by a small margin relative to the
expected value, indicating a potential instruction skip. These coordinates are
characterized by a low PFAULT (thus potentially discarded by other approaches);
one of them in particular shows 166 total FAULTs, of which 154 are noninfor-
mative, 5 reflect the skip of two instructions, and 7 the skip of a single one.
We tried, in the same coordinates, a different snippet (SUB) and we obtained a
similar behavior.

It is well known that instruction skips, when applied to branch instructions,
might be the most dangerous exploitable effect. After all, in principle, you could
skip complete security checks by skipping a branch. We thus tried a snippet con-
sisting of a branch jumping on itself; after 59 experiments using random values
over the (V, d) domain, we have obtained the result that the loop was effectively
broken (for 455 V and 200ns of duration). We were able to reproduce this fault
with a probability of 2.2%. Even if these results might seem promising, we must
underline that it is extremely difficult to target a single branch instruction in a
realistic setting (i.e. one that does not jump to itself all the time).

What is thus the effectiveness of the equipment in targeting a single instruc-
tion on a 600 MHZ processor? To answer this question, we relied on a particular
victim snippet of a single ADD and several NOPs surrounding it. We then observed
the address reported by the LRABT exceptions that we have induced by varying
the timing offset of the pulse (see Figure 12). Some experiments allowed us to
determine (by linear regression on the reported addresses) what was the most
likely offset to skip the victim ADD. However, even concentrating on that offset,
we have found that on average we were producing exceptions both before and
after ADD and never ADD itself. Our conclusion is that the current equipment does
not provide adequate accuracy when targeting a single instruction.

5 Conclusion and future work

In this work, we presented a general methodology to identify possible EMFI
attack coordinates in a large parameter space. The methodology does not dis-
card any point that could produce a fault (i.e., it has high coverage) and has
been proven to reduce the search space in a specific use case by five times. In
particular, we were able to produce faults with an average probability of 26.7%
in all susceptible coordinates, some coordinates reaching 97.6%. The proposed
bisection method has found a number of faults that is 3 times higher than a ran-
dom search on selected coordinates and corroborates our idea that fault points
lie at the equilibrium between OK and KO points. As future steps, the proposed
methodology needs to be further investigated to characterize the range of its
applicability, especially on simpler and slower targets and on systems equipped
with an EMFI mitigation, and to account for probe height variability.

References

1. Bachrathy, D., Stépán, G.: Bisection method in higher dimensions and the ef-
ficiency number. Periodica polytechnica. Mechanical engineering 56, 81–86 (01

Efficient attack-surface exploration for electromagnetic fault injection 17

Fig. 12: Varying the timing offset allows to target a range of instruction addresses.
The predicted address for the pulse offset 4284ns was the victim ADD but we were
not able to make it skip, almost all experiments impacting either before or after
it.

2012). https://doi.org/10.3311/pp.me.2012-2.01
2. Carpi, R.B., Picek, S., Batina, L., Menarini, F., Jakobovic, D., Golub, M.: Glitch

it if you can: parameter search strategies for successful fault injection. In: In-
ternational Conference on Smart Card Research and Advanced Applications. pp.
236–252. Springer (2013)

3. Cui, A., Housley, R.: BADFET: Defeating modern secure boot using Second-
Order pulsed electromagnetic fault injection. In: 11th USENIXWorkshop on Offen-
sive Technologies (WOOT 17). USENIX Association, Vancouver, BC (Aug 2017),
https://www.usenix.org/conference/woot17/workshop-program/presentation/cui

4. Dumont, M., Lisart, M., Maurine, P.: Modeling and simulating elec-
tromagnetic fault injection. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 40(4), 680–693 (2021).
https://doi.org/10.1109/TCAD.2020.3003287

5. Dureuil, L., Potet, M.L., Choudens, P.d., Dumas, C., Clédière, J.: From code re-
view to fault injection attacks: Filling the gap using fault model inference. In:
International conference on smart card research and advanced applications. pp.
107–124. Springer (2015)

6. Dutertre, J.M., Menu, A., Potin, O., Rigaud, J.B., Danger, J.L.: Exper-
imental analysis of the electromagnetic instruction skip fault model and
consequences for software countermeasures. Microelectronics Reliability 121,
114133 (2021). https://doi.org/https://doi.org/10.1016/j.microrel.2021.114133,
https://www.sciencedirect.com/science/article/pii/S0026271421000998

7. G., W., A., L.: Raiden github repository. https://github.com/IBM/raiden (2020)
8. Gaine, C., Aboulkassimi, D., Pontié, S., Nikolovski, J.P., Dutertre, J.M.: Elec-

tromagnetic fault injection as a new forensic approach for socs. In: 2020 IEEE
International Workshop on Information Forensics and Security (WIFS). pp. 1–6
(2020). https://doi.org/10.1109/WIFS49906.2020.9360902

18 Omitted for blind review

9. Gaine, C., Nikolovski, J.P., Aboulkassimi, D., Dutertre, J.M.: New probe design for
hardware characterization by electromagnetic fault injection. In: 2022 International
Symposium on Electromagnetic Compatibility – EMC Europe. pp. 299–304 (2022).
https://doi.org/10.1109/EMCEurope51680.2022.9901104

10. Hummel, T.: Exploring effects of electromagnetic fault injection on a 32-bit high
speed embedded device microprocessor. Master’s thesis, University of Twente
(2014)

11. Kühnapfel, N., Buhren, R., Jacob, H.N., Krachenfels, T., Werling, C., Seifert, J.P.:
Em-fault it yourself: Building a replicable emfi setup for desktop and server hard-
ware. arXiv preprint arXiv:2209.09835 (2022)

12. Machiry, A., Gustafson, E., Spensky, C., Salls, C., Stephens, N., Wang, R., Bianchi,
A., Choe, Y.R., Kruegel, C., Vigna, G.: Boomerang: Exploiting the semantic gap
in trusted execution environments. In: NDSS (2017)

13. Madau, M.: A methodology to localise EMFI areas on Microcontrollers. Theses,
Université Montpellier (Nov 2019), https://tel.archives-ouvertes.fr/tel-02478873

14. Maldini, A., Samwel, N., Picek, S., Batina, L.: Optimizing electromagnetic fault
injection with genetic algorithms. In: Automated Methods in Cryptographic Fault
Analysis, pp. 281–300. Springer (2019)

15. Menu, A., Bhasin, S., Dutertre, J.M., Rigaud, J.B., Danger, J.L.: Precise spatio-
temporal electromagnetic fault injections on data transfers. In: 2019 Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC). pp. 1–8. IEEE (2019)

16. Moro, N., Dehbaoui, A., Heydemann, K., Robisson, B., Encrenaz, E.: Electromag-
netic fault injection: Towards a fault model on a 32-bit microcontroller. In: 2013
Workshop on Fault Diagnosis and Tolerance in Cryptography. pp. 77–88 (2013).
https://doi.org/10.1109/FDTC.2013.9

17. NewAE: Chipshouter github repository. https://github.com/newaetech/ChipSHOUTER
(2019)

18. Omarouayache, R., Raoult, J., Jarrix, S., Chusseau, L., Maurine, P.: Magnetic
Microprobe design for EM fault attack. In: EMC EUROPE: Electromagnetic
Compatibility. EMC EUROPE, Bruges, Belgium (Sep 2013), https://hal.archives-
ouvertes.fr/hal-01893856

19. Ordas, S., Guillaume-Sage, L., Maurine, P.: Electromagnetic fault injection
: the curse of flip-flops. Journal of Cryptographic Engineering 7 (09 2017).
https://doi.org/10.1007/s13389-016-0128-3

20. Proy, J., Heydemann, K., Berzati, A., Majéric, F., Cohen, A.: A first isa-level char-
acterization of em pulse effects on superscalar microarchitectures: a secure software
perspective. In: Proceedings of the 14th International Conference on Availability,
Reliability and Security. pp. 1–10 (2019)

21. Raelize: Qualcomm ipq40xx: Breaking into qsee using fault injection.
https://raelize.com/blog/qualcomm-ipq40xx-breaking-into-qsee-using-fault-
injection (2021)

22. Tang, A., Sethumadhavan, S., Stolfo, S.: {CLKSCREW}: Exposing the perils of
{Security-Oblivious} energy management. In: 26th USENIX Security Symposium
(USENIX Security 17). pp. 1057–1074 (2017)

23. Trouchkine, T., Bouffard, G., Clédière, J.: Fault injection characterization on mod-
ern cpus. In: IFIP International Conference on Information Security Theory and
Practice. pp. 123–138. Springer (2019)

