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(Dated: 22 February 2023)

We study a problem of energy and momentum of photons redshifted in a gravitational field. Based on the
Einstein-Maxwell’s equations for electromagnetic waves in curved spacetimes, we derive formulas for the
speed, energy and momentum of photons in gravitational fields. The formulas are further specified for the
Schwarzschild metric describing a local gravitational field around a massive body. It is shown that energy of
photons is conserved in inertial (free-falling) as well as in non-inertial coordinate systems, and no energy is
exchanged between photons and the gravitational field. The Planck energy-frequency relation valid in Special
Relativity is modified to be applicable also to General Relativity. According to the new Planck relation, the
photon energy depends not only on the frequency of photons but also on their speed. In a free-falling system,
the photon energy is conserved, because no frequency shift and no change of the photon speed is detected.
In non-inertial systems, the photon energy is also conserved, because the frequency shift due to gravity is
compensated by the change of the photon speed.

I. INTRODUCTION

In general relativity (GR), gravitational field affects ge-
ometry of rays of electromagnetic waves or photons and
changes their frequency f . This effect is called the gravi-
tational redshift and it was first described by Einstein in
19077,8. The gravitational redshift belongs to basic clas-
sical tests of GR and its experimental evidence for the
Earth’s gravity was first reported by Pound and Rebka22

and Pound and Snider23. The authors detected the fre-
quency shift of gamma-ray photons from 57Fe at differ-
ent altitudes. Since the effect was tiny, they utilized the
Mössbauer effect to produce a narrow resonance line to
improve the accuracy of the measurement. The later ex-
periments measured, e.g., spectral lines in the Sun’s grav-
itational field, the redshift of light coming from galaxies
in clusters, and the change in rate of atomic clocks or
optical lattice clocks in ground-based measurements or
in space measurements with the clocks transported on
aircrafts, rockets or satellites3,5,6,26,28,29.

Since the gravitational redshift predicts a change of
frequency of photons, it should affect also their energy.
According to the Planck relation, the change of the en-
ergy of photons ∆E is related to the frequency change
∆f as4

∆E = h∆f , (1)

where h is the Planck constant. The energy change of
photons is interpreted as a loss (or gain) of energy due
to the interaction of photons with the gravitational field.
If the photon propagates against the gravitational accel-
eration, it spends work and its energy decreases. If the
photon propagates in the direction of the gravitational
acceleration, its energy increases. The energy change ∆E
of photons is calculated from a difference of the gravita-
tional potential ∆φ between two observers. For the grav-
itational field of the Earth, this difference is expressed as

∆E

E
=

∆f

f
=

∆φ

c2
=
gz

c2
, (2)

where g is the gravitational acceleration, and z is the
difference in height between the two observers.

The above-described explanation of the gravitational
redshift as the effect of the energy change of photons due
to gravity is, however, intuitive and very simplistic, be-
cause it interprets the GR effect in terms of the Newton
gravity developed for massive particles. When examin-
ing this explanation in detail, we find that the problem
is more involved than commonly treated. The idea of the
gravitational redshift as a transformation of the poten-
tial gravitational energy into the kinetic energy and vice
versa cannot work for photons for several reasons: (1)
No gravitational potential energy of photons is defined
in GR, and (2) no energy transfer between free propa-
gating photons and gravity is assumed in GR. The free
photons are massless and thus they cannot be coupled
with gravity in the Einstein-Maxwell’s equations. (3) If
free photons couple with gravity (and with spacetime),
rays could not be defined as the null geodesics of the
spacetime. However, the idea of the null geodesics as
paths of free photons propagating in a gravitational field
is basic principle and one of pillars of GR.

Hence, a correct interpretation of the gravitational red-
shift is possible only within GR: the shift in the photon
frequency should be considered as an effect of the time di-
lation of the Riemann spacetime curved by gravity. Since
the time rate defined by the time-time component gtt of
the metric tensor gαβ is different for the emitter e and
receiver r, the photon frequency must also vary

f(e)

f(r)
=

√
gtt(r)

gtt(e)
. (3)

Nevertheless, the problem of energy of photons in grav-
ity is still not fully clear and poses open questions: (1)
In GR, the zero divergence of the stress-energy tensor
ensures that the energy of any physical system in gravity
must be conserved. If photons propagating in the gravi-
tational field are redshifted, does it mean that they lose
energy or not? If so, where does the energy go or how
to understand the energy conservation in GR? (2) How
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does the energy of photons behave when studied in differ-
ent coordinate systems? Is there any difference when the
energy is evaluated in inertial (free-falling) systems and
in non-inertial systems? (3) The photons change their
frequency due to the deformation of the spacetime, but
they also change their coordinate speed (in non-inertial
systems). How does the change of the speed of photons
affect the photon energy?

Since the energy of photons is related to the momen-
tum of photons by formula E = pc, we can also ask ques-
tions about the behaviour of the photon momentum in
a gravitational field. First of all, we would like to know,
whether the photon momentum is conserved in GR or
not. Also, how the photon momentum depends on the
coordinate system, in which is evaluated. Note that the
behaviour of the photon momentum is unclear not only
for the vacuum with a gravitational field, but also for
dielectric media. The problem is known as the so-called
Abraham-Minkowski controversy, where two alternative
theories predicting different formulas for the photon mo-
mentum exist1,2,17,18,21.

In this paper, we try to address the above-posed ques-
tions. We study the problem of energy and momentum of
photons in gravity by the Einstein-Maxwell’s equations
of the electromagnetic waves propagating in the curved
spacetime. Based on covariant coordinate transforma-
tions between the Minkowski space and the Riemann
space, we derive formulas for the speed, energy and mo-
mentum of photons in gravitational fields. The formulas
are further specified for the Schwarzschild metric describ-
ing a local gravitational field around a massive body. It is
shown that the energy of photons is conserved and no en-
ergy is exchanged between photons and the gravitational
field. Finally, the Planck energy-frequency relation for
photons is modified to be valid in GR.

II. ELECTROMAGNETIC WAVES IN THE MINKOWSKI
SPACE

A. Maxwell’s equations

Considering spacetime with coordinates xα =
(ct, x, y, z), we can introduce the electromagnetic 4-
potential Aα19

Aα =

(
φ

c
,A

)
, α = 0, 1, 2, 3 , (4)

the electromagnetic (Faraday) tensor Fαβ

Fαβ = ∂αAβ − ∂βAα , (5)

and the electromagnetic stress-energy tensor

Tαβ =
1

4π

(
FαµF βµ −

1

4
ηαβFµνF

µν

)
, (6)

where φ is the scalar potential, A is the vector potential,
and c is the speed of light. The covariant and contravari-
ant derivatives ∂α and ∂α are defined as

∂α = ∂/∂xα , and ∂α = ηαβ∂/∂xβ , (7)

where ηαβ is the contravariant metric tensor of
the Minkowski spacetime with the sign convention
(−,+,+,+).

Subsequently, the Maxwell’s equations for electromag-
netic waves in vacuum with no charges can be expressed
in the several following alternative forms16,19

∂αF
αβ = 0 , (8)

2Aα = ∂β ∂
βAα = 0 , (9)

∂αT
αβ = 0 , (10)

where 2Aα is the wave operator (d’Alambertian), and
Aα should satisfy also the Lorentz gauge condition

∂αA
α = 0 . (11)

As seen from Eq. (10), the Maxwell’s equations imply
the energy-momentum conservation law for electromag-
netic waves in vacuum.

B. Lagrangian formulation of Maxwell’s equations

Using the Lagrangian density L of the electromagnetic
field in the form

Tαβ = − 1

4µ0
FαβFαβ , (12)

the Maxwell’s equations (8-10) can alternatively be ob-
tained using the Lagrange equations

∂α

[
∂L

∂Aβ ,α

]
− ∂L
∂Aβ

= 0 , (13)

Introducing the momentum of the electromagnetic field
P as

Pi =
∂L

∂ (Ai/∂x0)
, i = 1, 2, 3 , (14)

and taking into account that ∂L/∂Ai is zero in vacuum,
the Lagrange equations (13) imply for α = 0

∂Pi
∂x0

= 0 , i = 1, 2, 3 , (15)

which is the momentum conservation law for the elec-
tromagnetic field. Taking into account equations for the
electric and magnetic fields E and H

E = −∇φ− ∂A/∂t , (16)
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E = ∇×A , (17)

we finally get for the momentum P

P =
1

c2
E×H , (18)

where c is the speed of light in vacuum with no gravity
(vacuum undisturbed by gravity).

III. ELECTROMAGNETIC WAVES IN THE RIEMANN
SPACE

The above equations are valid for the vacuum free of
gravitational field. If an electromagnetic wave (light)
propagates in gravity, the Maxwell’s equations must be
modified. In order the Maxwell’s equations to be valid
even for spacetimes curved by gravity, the metric ten-
sor of the Minkowski space ηαβ must be substituted by
the metric tensor of the Riemann space gαβ , when cal-
culating quantities Aα, Fαβ and Tαβ and their covariant
derivatives20,27. The generalization of the equations for
the Riemann space is not difficult, but it should be done
with care, in order the equations and the involved phys-
ical quantities to be transformed properly.

The most of changes in properties of the electromag-
netic waves in the Riemann space are connected to es-
sentially different view on the speed of electromagnetic
waves in GR with respect to Special Relativity (SR).
While, the speed of light is constant in SR, it is generally
varying in GR. Since all coordinate systems, which are
in rest with respect to the gravitational field, are non-
inertial, they are affected by gravity. The gravity affects
not only geometry of rays but also the speed of waves
propagating along the rays9. A famous example is the
Schwarzschild solution for the gravitational field around
a massive body, when the speed of light goes to zero for
photons approaching the singularity27. Nevertheless, the
basic laws implied from the Maxwell’s equations, such as
the energy-momentum conservation law for the electro-
magnetic waves (see Eq. 10) are valid even in the vacuum
distorted by gravity.

A. Speed of light in curved spacetime

Let us assume the Riemann space described by metric
tensor gαβ . Since any symmetric tensor can be diagonal-
ized using a coordinate transformation, we can write the
metric tensor with no loss of generality in the following
form

−c2dτ2 = −gttc2dt2 + giidx
idxi , (19)

where gtt and gii describe the time dilation and space
deformation due to the gravity. The propagation of the
electromagnetic waves is described by the equation of the
null geodesics, c2dτ2 = 0. Hence,

gttc
2dt2 = giidx

idxi , (20)

and the contravariant (coordinate-dependent) speed of
light cig along the xi-axis reads

cig =

√
dxidxi

dt
=

√
gtt
gii
c

(no summation over i) .

(21)

In order to express the physical (proper) speed of light,
which is coordinate invariant, we have to express the
speed of light in the orthonormal coordinate basis15.
Hence, the i-th component of the proper speed of light is

cg(i) =
√
gii c

i
g =
√
gtt c

(no summation over i) ,
(22)

where X(i) denotes the i-th physical component of vector
X. Since, the proper light speed has the same magnitude
in all directions, we can simply write

cg =
√
gtt c . (23)

The proper speed of light cg is a quantity measured
in the coordinate system that is at rest with respect to
the sources of the gravitational field. The system is not
inertial or free-falling, hence it is affected by gravity. This
causes that the speed of light is not constant but varying,
being dependent on the distance from the observer to the
source of gravity.

B. Four-potential in curved spacetime

The electromagnetic 4-potential Aα is transformed
from the Minkowski space to the Riemann space as any
other vector according to the following equation

Aαg = Aβ
∂xα

∂yβ
, (24)

where Aαg is the electromagnetic 4-potential in the Rie-

mann space distorted by gravity, and xα and yβ are the
coordinates of the Minkowski and Riemann spaces, re-
spectively. Taking into account that Eq. (19) implies

∂x0

∂y0
=
√
gtt ,

∂xi

∂yi
=
√
gii

(no summation over i) ,

(25)

we get for the 4-potential Aαg in the Riemann space

A0
g = A0/

√
gtt , A

i
g = Ai/

√
gii , (26)

hence

Aαg =

(
φ
√
gtt c

, Ag

)
=

(
φ

cg
, Ag

)
. (27)

Obviously, the magnitude of the 4-potential Aαg in the
Riemann space is Lorentz invariant

AαgAgα = A0
gAg0 +AigAgi

=

√
gtt√
gtt

φ2

c2
+AiAi = AαAα .

(28)
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C. Four-momentum in curved spacetime

The 3-momentum of light in the Riemann space Pg can
be expressed using Eq. (14), where we apply the coordi-
nate transformation from the Minkowski to the Riemann
space

Pgi =
∂L

∂
(
∂Aig/∂x

0
) =

∂L
∂ (∂Ai/∂y0)

∂x0

∂y0
∂yi

∂xi

= Pi
∂x0

∂y0
∂yi

∂xi
(no summation over i) ,

(29)

hence

Pgi = Pi

√
gii√
gtt

, P ig =
Pi√
gttgii

, (30)

and the physical magnitude of the 3-momentum in the
Riemann space is

Pg =
√
PgiP ig = P/

√
gtt = P

c

cg
. (31)

To complete the full 4-momentum, we calculate the Pg0
component similarly as the Pgi components in Eq. (29)

Pg0 = ∂L
∂(∂A0

g/∂x
0)

= ∂L
∂(∂A0/∂y0)

∂x0

∂y0
∂y0

∂x0 = P0 , (32)

P 0
g = P0/ gtt . (33)

Taking into account that the 4-momentum of light in
the Minkowski space is Pα = (E/c,P), the physical com-
ponents Pg(α) of the 4-momentum in the Riemann space
read

Pg(α) =
(
P 0
g

√
gtt , P

i
g

√
gii
)

=

(
P0√
gtt

,
Pi√
gtt

)
=

(
E

cg
,Pg

)
,

(34)

where

Pg =
c

cg
P . (35)

As expected, the magnitude of the 4-momentum of
light in the Riemann space is zero similarly as in the
Minkowski space

Pαg Pgα = −E
2

c2g
+ P 2

g = −E
2

c2
+ P 2 = 0 . (36)

Finally, we arrive at the equation for the energy of light

E = Pc = Pgcg , (37)

implying that the energy is conserved in the Riemann
space.

D. Planck relation for energy of photons

We proved in the above section that the energy of light
is conserved in the Riemann space, even though the fre-
quency and speed of light vary depending on the time-
time term gtt of the Riemann metric tensor gαβ . This
implies that the famous Planck relation for the photon
energy in the Minkowski space should be modified to be
valid in the Riemann space. First, we transform the
photon frequency f and momentum P = 1

chf in the
Minkowski space into the photon frequency fg and mo-
mentum Pg in the Riemann space

fg = f
c

cg
, (38)

Pg = P
c

cg
=

1

c
hf

c

cg
= κfg , (39)

where κ = h/c is the Planck constant h normalized to
the speed of light c in vacuum with no gravity. Second,
we modify the standard Planck formula for the photon
energy E = Pc as follows

E = Pgcg = κfgcg , (40)

where fg and cg are the frequency and the speed of light
measured in the Riemann space. Obviously, the photon
energy is invariant, Eg = E, because if the photon fre-
quency is increased, the speed of photons is decreased,
and vice versa.

IV. LIGHT SPEED, GRAVITATIONAL REDSHIFT AND
PHOTON ENERGY IN THE SCHWARZSCHILD METRIC

The Schwarzschild metric describing the gravitational
field of a body with mass M situated at the origin of
coordinates is defined as follows

ds2 = −
(

1− rs
r

)
c2dt2+

(
1− rs

r

)−1
dr2+r2dΩ2 , (41)

dΩ2 = dϑ2 + sin2 ϑ dϕ2 , (42)

where rs = 2GM/c2 is the Schwarzschild radius, G is
the gravitational constant, r and t are the contravariant
coordinate distance and time, ϑ and ϕ are the spherical
angles, and velocity c is the speed of light far from the
source of gravity.

Using Eq. (41), the gravitational redshift at distance r
expressed as the relative change of the photon frequency
fg with respect to the photon frequency f at r → ∞
reads

fg
f

=

√
gtt(∞)

gtt(r)
=
(

1− rs
r

)− 1
2

. (43)
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Obviously, not only the frequency of light but also the
light speed in the gravitational field is distance depen-
dent. Using Eq. (23), we get for the physical speed of
light cg

cg =
√
gtt c =

√
1− rs

r
c . (44)

It follows from Eq. (44) that the proper speed of light
cg becomes c for r → ∞ and goes to zero for r → rs.
Inserting Eq. (43) and Eq. (44) into Eq. (40), we get for
the photon energy Eg

Eg = κfgcg = κfc = E (r →∞) . (45)

In the weak gravity approximation

rs
r

=
GM

rc2
� 1 , (46)

the formulas read for the gravitational redshift

gtt = 1 +
2φ

c2
, fg =

(
1− φ

c2

)
f ,

∆f

f
= − φ

c2
, (47)

and for the light speed and the photon energy

cg =

(
1 +

φ

c2

)
c , (48)

Eg = κfgcg = κfc = E , (49)

where φ = −GM/r is the Newtonian gravitational poten-
tial, and ∆f = fg − f is the frequency change between
the frequency fg observed at finite r (affected by gravity)
and the frequency f observed at r →∞ (no gravity).

V. DISCUSSION

The standard intuitive interpretation of the gravita-
tional redshift as an effect of transferring energy between
photons and gravitational field is wrong. A rigorous ap-
plication of the Maxwell’s equations to curved spacetimes
reveals that the energy of electromagnetic waves and pho-
tons propagating in vacuum distorted by a gravitational
field is conserved. The energy of electromagnetic waves
and photons changes only through their interaction with
matter (massive particles) via their absorption, reflection
or scattering. For example, the interaction of the electro-
magnetic waves with gravity is possible, when the waves
are captured in some closed box. In this case, the waves
interact with boundaries of the box and produce a non-
zero radiation pressure, which can affect the spacetime
geometry. Free photons in vacuum do not generate pres-
sure and do not affect the spacetime geometry. Hence,
the photon energy is invariant in vacuum with a gravita-
tional field.

Consequently, the common idea that the energy of pho-
tons depends only on their frequency must be corrected,

because the energy is conserved even for redshifted pho-
tons. The standard energy-frequency relation is valid
only in SR, where the light speed is considered as a con-
stant. In GR, the energy of photons depends not only
on the frequency of photons but also on the speed of
photons. The original Planck energy-frequency relation
E = hf must be modified to

E = κfgcg , (50)

where κ = h/c is the Planck constant normalized to the
speed of light in vacuum with no gravity, and fg and cg
denote now the frequency and speed of photons measured
in a non-inertial coordinate system experiencing gravity.
If the frequency of photons is shifted due to the gravita-
tional redshift, the speed of photons is also changed, and
both the effects are compensated.

Nevertheless, the relation between the photon energy
and the photon momentum E = pgcg is still valid and
the momentum of photons is expressed from Eq. (49) as
pg = κfg. So, the photon momentum is not invariant,
but it is changing due to the presence of gravity. Consid-
ering the vacuum with a gravitational field as a kind of a
dielectric medium, the photon momentum is transformed
in the same way as in the Minkowski theory of dielectric
media1,2,17,18,21

pg = np , n =
c

cg
=

1
√
gtt

, (51)

where n is the refractive index of the vacuum with a grav-
itational field, and cg and c are the speed of light in the
vacuum with and without gravity, respectively. Note that
simulating propagation of photons in curved spacetimes
by considering the gravitational field as a kind of a dielec-
tric medium was proposed by several authors10–14,24,25,30.
This allows studying photon geodesics using the methods
of geometrical optics in dielectric media.

VI. CONCLUSIONS

The intuitive idea that the gravitational redshift is an
effect of the energy change of photons due to gravity is
misleading. This idea is based on the Newton gravity
developed for massive particles and it cannot be applied
to photons for the following reasons: (1) No gravitational
potential energy of photons is defined in GR, and (2) no
energy transfer between free propagating photons and
gravity is admissible in the Einstein-Maxwell’s equations.

A rigorous application of the Maxwell’s equations to
curved spacetimes reveals that the energy of photons is
invariant, when the photons propagate in vacuum dis-
torted by gravity. Therefore, the original Planck energy-
frequency relation E = hf must be modified to E = κfc,
where κ is the Planck constant normalized to the speed
of light in vacuum with no gravity, and f and c denote
the frequency and speed of photons measured in vacuum
distorted by gravity. Hence, the photon energy does not



6

depend only on the frequency of photons but also on their
speed. The frequency and speed of photons can be mea-
sured at any coordinate system. In a free-falling system,
the photon energy is conserved, because no frequency
shift and no change of the photon speed is detected. In
non-inertial systems, the photon energy is also conserved,
because the frequency shift due to gravity is compensated
by the change of the photon speed.
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