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ABSTRACT
We present a new virtual machine for Common Lisp, focused on
efficiency of compiled code as well as efficiency of the compilation
process itself. An extended fix-up mechanism is used to apply some
important optimizations without requiring an intermediate repre-
sentation. The new system performs comparably to or better than
existing systems with similar design goals.

CCS CONCEPTS
• Software and its engineering → Compilers; Interpreters; Just-
in-time compilers.
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1 INTRODUCTION
We have developed a new virtual machine (VM) for Common Lisp,
as well as a compiler targeting it. This design balances the axes of
execution speed, compilation speed, and simplicity: the bytecode
compiler runs quickly, but performs enough optimization during
its one pass translation to let the code execute quickly as well. It is
suitable for code that does not need to run often or which does not
need special optimization, or as the first pass of a more heavy-duty
optimizing compiler.

The compiler constitutes 1600 lines of Lisp, which was simple
enough to be ported to 3000 lines of C++. The VM itself is only 500
lines of Lisp or 1500 of C++.

In tests, we have found the VM to meet our needs for speed
and compilation speed, It outperforms CLISP’s VM and performs
comparably to ECL’s, and we believe that further optimization work
built on the general design here could make it even faster.
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2 MOTIVATION
Our original motivation was to simplify the bootstrapping proce-
dure of Clasp Common Lisp[6], as well as to provide faster defi-
nitions of eval, compile, etc. Clasp builds itself up from a basic
C++ core, which has historically meant having to implement the
Lisp standard library in a simplified, “pidgin” Common Lisp. This is
difficult to do, and has been a perennial source of bugs. A compiler
for all of Common Lisp, simple enough to be written in C++, sim-
plifies the situation considerably, as now at least all of CL’s basic
semantics are available for Lisp code.

This goal also led to the idea of writing a version of the bytecode
compiler in portable Lisp. If the compiler is not reliant on the run-
time, it can be run from other Lisps as a cross-compiler, simplifying
the build process even further.

The other motivation was speed. Before the introduction of the
bytecode compiler described here, Clasp had two ways to run Lisp
code:1 First, a conventionally designed interpreter written in C++.
This could execute most code, but did so quite slowly, due to e.g.
re-expanding macro forms every time they were encountered. Sec-
ondly, the primary compiler. This uses the Cleavir2 Lisp compiler
frontend, which then has its intermediate representation (IR) passed
to LLVM[3], which produces machine code. As optimizing com-
pilers, Cleavir and LLVM cons quite a lot of IR, and take time to
simplify code, making Clasp’s primary compiler noticeably slow.

Repeated profiling of compilation has shown that Clasp’s com-
piler is slow in part because it is slow: It calls itself recursively,
for example for macrolet. This means performing this slow com-
pilation, even on code that only runs once, or only runs during
compilation.

The design goals for a compiler are in conflict for code that runs
once or not often. A more sophisticated compiler can generate code
that runs more quickly, but the sophistication generally causes the
compiler itself to take more time. Conversely, a simpler compiler
can save compile time, but the generated code will take longer to
run. We weighed these goals and developed a design that works
well for our purposes. A simpler bytecode compiler neatly fits in
the space between an interpreter and the optimizing compiler.

3 PREVIOUS WORK
Several Lisp implementations have used virtual machines, either as
their primary means of executing Lisp code (CLISP) or to supple-
ment a primary compiler (ECL, CMUCL).

CMUCL’s bytecode compiler is primarily intended to reduce
code size[4, § 5.9], although it does compile faster than the primary

1An additional compiler written in pidgin Lisp was used only during bootstrapping.
2https://s-expressionists.github.io/Cleavir/
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(native code) compiler, Python. Furthermore, it uses multiple com-
ponents from Python – the initial source-to-IR phase as well as
the later assembler phase, neither of which were designed with
portability or fast compilation in mind. Hence, CMUCL VM’s design
goals are distinct from ours, as reflected in its design, so it is not
directly comparable to this work.

CLISP and ECL, on the other hand, designed their VMs with
similar goals in mind to ours. CLISP’s bytecode is its main means
of evaluation[1, § 37.1]. ECL’s exists to execute code without going
through the more expensive process of C compilation. Both imple-
mentations’ bytecode are commonly used for evaluation through
cl:eval.

In the following, wewill make frequent comparisons to the VM in
CLISP, and occasionally to the VM used in ECL. Many of our design
choices were informed by one of the authors’ experience writing a
compiler targeting the CLISP VM, where it was noticed that certain
parts of the instruction set could be substantially simplified and/or
made more efficient. In particular, we have substantially simplified
the design of closures, instruction encoding and decoding, and
non-local exits.

4 DESIGN
The bytecode is organized into bytecode modules, each of which
contains a code vector and a literal vector. The code vector is an
array of octets encoding bytecode instructions to be interpreted
by the virtual machine. The literal vector is an array of literals
referenced in the code with the instruction CONSTANT. Code for
functions go in the same module if they are compiled together, as
is the case with local functions defined with flet, labels, and
lambda. This way, branches can relative-offset within the same
code vector, as Lisp functions always go to or return-from exit
points which are in functions in the same module.

In addition, we have bytecode functions and closure objects.
Bytecode functions are funcallable objects which point at the ap-
propriate entry point in the code vector. Bytecode closures are byte-
code functions with an extra environment vector which bytecode
can reference with the instruction CLOSURE. The representation of
closures is explained in more detail in section 4.3.

Each instruction consists of an opcode byte, followed by zero or
more operands. The number of operands depends on the opcode.
Usually operands are encodable with a single byte, but if that isn’t
sufficient, the LONG prefix byte is placed before the opcode byte.
The rationale for this encoding scheme is explained in section 4.4.

The virtual machine itself operates as a stack machine. Each
function call reserves a fixed number (determined by the compiler)
of slots on the stack, usually corresponding to lexical variables in
the source code; these can be referenced by the instruction REF. On
top of this, a function can use a variable amount of stack space, usu-
ally for temporaries resulting from the evaluation of intermediate
expressions, but also to store multiple values. The virtual machine
also contains a program counter and a multiple values vector. Each
thread of execution has its own independent virtual machine with
its own stack.

4.1 Interoperability
We ensured that the design of the virtual machine would allow
bytecode functions to call and be called by non-bytecode functions.
This allows the bytecode to be only one of several ways a Lisp
implementation can evaluate code. In Clasp, bytecode function
objects are equipped with a (shared) machine code entry point that
invokes the VM, so that they can be called exactly like machine code
compiled functions; similarly, in the portable Lisp version of the
VM, bytecode functions are funcallable-standard-object, and
dynamic and lexical exit tags can operate seamlessly. The bytecode
does not have any special way of calling bytecode vs. non-bytecode
functions, so a function being compiled to machine code does not
necessitate its bytecoded callers to be recompiled.

4.2 Instruction set design
The design of the instruction set aims to translate the semantics
of Common Lisp into a small, simple, orthogonal set of instruc-
tions in order to simplify the construction of virtual machines and
compilers targeting the instructions set. At present, there are no
instructions for inlining common functions (car, aref, etc.). There
are 58 instructions, which plus the LONG prefix (below) means only
59 of 256 possible opcodes are used.

4.3 Flat closures
We designed the virtual machine to support a “flat closure” repre-
sentation, as opposed to the more common “linked” closure repre-
sentation used in many simple interpreters and bytecode compilers.
This means the environment part of a closure is “flat”: it is simply
a vector of all values needed by the function and does not contain
links to other environments.

However, one particularity in Lisp that complicates the flat clo-
sure strategy is the fact that variables can be mutated with setq.
This requires closed-over variables that are setq’d to be represented
with an indirect value cell. The cell is then closed over, allowing
assignments to the variable to take effect in each flat closure closing
over that variable, as references to the variable indirect through the
value cell. The linked environment strategy does not require value
cells, because an assignment can simply modify “the” environment
vector containing the variable’s binding directly.

Nonetheless, the flat closure approach has many desirable fea-
tures:

(1) The representation is safe for space[5]: bindings that are
lexically apparent but not actually used by any live closure
are not kept alive. This is in contrast to the linked environ-
ment representation, where all bindings in an outer scope
are kept alive even if the only bindings actually used by a
live closure are in an inner scope, causing a memory leak.

(2) Closure variable access is constant-time, since it entails only
one lookup in the flat environment. There is no need to crawl
up through nested environments to find the one containing
a given variable’s value.

(3) The instructions used in the virtual machine to support flat
closures are substantially simpler: We only need to support
a single CLOSURE instruction taking a single operand (the in-
dex into the environment) to reference a closed-over variable
or exit tag, and three operand-less instructions MAKE-CELL,
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CELL-REF, and CELL-SET to support variable assignment by
manipulating value cells. This is in contrast, for example, to
the plethora of closure access and non-local exit instructions
used in CLISP[1], which must specify at least two indices:
one to specify the scope depth and one to index into the envi-
ronment. Hence, flat closure instructions are more compact
and take up less opcode space in comparison to equivalent
instructions used to support linked closures.

ECL’s bytecode system uses yet another approach. The virtual
machine maintains the current lexical environment as a simple
linked list of values at runtime.[2, § 4.6.3] When a closure is created,
it simply includes the state of that list at the time the function
is closed over. An advantage is that instructions only require a
single operand to index into the environment, as with flat closures.
However, it is not safe for space, as all bindings in the lexical scope
are closed over and kept alive, like with the “linked” environment
strategy. Additionally, accessing closure values is even slower than
with the linked environment strategy used by CLISP. A variable
access entails traversing the environment represented as a linked
list, which takes linear time with respect to the number of total
bindings in the environment. This is in contrast to linked closures,
where a linked list of only scopes is traversed followed by a fast
vector reference of the found environment.

We see then that from the perspective of run-time representa-
tion, the flat closure strategy is the clear winner: It allows for the
simplest instructions, avoids memory leakage, and accesses values
the fastest. However, its use is usually avoided in simpler compil-
ers with fewer or no optimization passes. The problem is that, as
explained, the flat closure strategy in Lisp sometimes requires indi-
rect value cells. Avoiding value cells when possible is crucial for
performance: choosing the value cell representation for a variable
entails a cell allocation when the variable is bound, and an extra
indirection for every reference and assignment to the variable. For
a sophisticated compiler, a separate environment analysis pass can
be done on IR to figure out exactly which variables are closed-over
and mutable, so that the decision to use value cell representations
is made before any code is emitted. In contrast, a one-pass compiler
does not have that luxury: by the time the compiler recognizes that
a variable is setq’d and closed over, it may have already emitted
references or assignments to that variable. Thus, the only choice is
to assume every variable needs a value cell, even those which end
up being local and never setq’d!

Despite this issue, we were nonetheless able to choose the flat
closure representation while solving the main drawback for our
one-pass compilation strategy. The compiler optimistically emits in-
structions for the best (andmost common) case scenario of not need-
ing cells at all into the assembly, while noting fix-ups in the stream.
During the final link step, by which time it is known whether the
variable in question needs a value cell or not, the necessary indirec-
tion instructions are then emitted. The fix-up annotations are used
to ensure no “holes” and “gaps” result in the final assembly. These
steps are needed anyway to do necessary things like resolving labels
for assembly, so the overall compilation strategy is not complicated.
We describe the fix-up algorithm and the way we generalized the
data-structures used to achieve this in more detail in section 4.6.

To illustrate the difference between the flat environment and linked envi-
ronment strategies, consider the following closures:

(lambda (a b)
(print b)
(lambda (c) ; env_1

(setq c 9)
(lambda (d e) ; env_2

(print e)
(print c)
(lambda () ; env_3

(+ a d)))))

Figure 1: Linked closure strategy (used in CLISP)

#(d e)

env_3

#(c)

env_2

#(a b)

NIL

env_1

Figure 2: Flat closure strategy

#(a d)

env_3
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env_2

#(a)

env_1

With linked environments, we see that all bindings in the lexical envi-
ronment are kept alive, even those which are never used by the innermost
lambda. Hence, an unbounded amount of garbage could be retained.

4.4 long instruction prefix
Since we target a bytecode machine, it is important to make the
actual encoding of instructions into bytes compact and fast. Because
of the small number of opcodes, it is possible to represent all of
them in a single byte.3 However, operands for some instructions
may exceed the size of a single byte, especially for control flow
instructions.

We chose to use different-sized versions of each control flow
instruction and a LONG prefix scheme for the other instructions: An
instruction whose operand exceeds the size of one byte has the
opcode prepended with a LONG prefix byte. This prefix indicates
that the instruction’s operand is instead two bytes wide, allowing
indexing from 0-65535, which seems to be enough for all “reason-
able” code. 4 Instructions with more than one operand that require a
long version each have special interpretations as to which operand
receives a wider interpretation according to what makes sense. This
scheme allows the common case of few variables/constants/etc to
be encoded compactly and decoded trivially, while only the rarer
extended case entails overhead.

A simpler way of dealing with longer operands is to use a 16-bit
code rather than an 8-bit code as we do here, so that all opcodes
as well as all operands are 16 bits long rather than 8. This is the

3There is quite a bit of opcode space left over as well, which could be used for com-
pressed instructions, as in CLISP. No decision has been made as to which compressions
would be most profitiable yet.
4To exceed this limit for the ref instruction, for example, a function needs to bind
65536 lexical variables live at the same time.
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approach taken by ECL. While it is simpler to encode and decode
than our scheme, it nearly doubles code size in the common case.

An alternate scheme is used by CLISP’s virtual machine. It uses
a variable length encoding scheme for instruction operands: If the
most significant bit of an operand byte is set, the operand continues
into the next byte. This may save some space in cases where only
one operand of several needs to be long, but considerably compli-
cates encoding and decoding, and reduces the range of the simple
one-byte case to 0-127.

This last aspect makes the long prefix scheme almost always
more compact in practice compared to the variable-length encoding
scheme, as functions typically have less than 255 live locals or 255
constants. In fact, for instructions with single operands, our scheme
is more compact than the variable-length encoding scheme up to
383 locals or constants, since one extra byte is already needed for
values 128-255 in the variable-length encoding scheme.

The design of the instruction set as a whole also makes the
LONG encoding scheme more attractive. As alluded to already, the
presence of many instructions with multiple operands can make the
variable-length encoding option more uniform and simple for the
decoder. In CLISP, a variable reference may require an instruction
with several operands. For example, LOADIC, Load Indirect Closure,
has four operands. Under the LONG prefix scheme, choosing to
extend all operands would waste space if only one operand needs
an extension, and on the other hand only selectively choosingwhich
operand to extend would complicate the virtual machine decoding
step, sacrificing speed. However, this is not a real drawback given
the rest of our instruction set design: thanks in part to our choice
of flat closure representation, all instructions but one take at most
two operands.5 If an instruction has only one operand, the variable-
length encoding scheme’s advantage is completely negated, and
with two operands we are wasting one byte at most.

Control flow instructions have operands which represent signed-
relative offsets into the code. As multi-byte relative offsets are very
common and there are very few control flow instructions, they are
not handled using the prefix scheme: Each branch instruction has
1-, 2-, and possibly 3-byte offset variants. This is much faster for
branching and jumps than the variable length encoding scheme,
while only having a small impact on opcode space given the small
number of control flow instructions.

4.5 Non-local exits
One of the trickiest parts of implementing Common Lisp is the
correct and efficient handling of the dynamic and lexical exit con-
structs, namely catch, throw, block, return-from, tagbody, go,
and unwind-protect. Used within a function, lexical exits can usu-
ally be implemented simply by restoring the dynamic environment
(containing e.g. special variable bindings and unwind-protect han-
dlers) that was in effect before the execution of the corresponding
block or tagbody form, and then doing a normal control transfer.
However, lexical exit tags in Common Lisp can be closed over as
well, although they still have only dynamic extent. Implementing a
non-local exit to a closed over tag requires some coordination with
the closure strategy: the non-local exit needs information about

5The exception, PARSE-KEY-ARGS, is only used in handling lambda lists with &key
arguments, and so is not a performance bottleneck.

how to restore the dynamic environment from a different stack
frame, and this information needs to be invalidated in safe code as
well so that out-of-extent exits can be checked.

At first, we based our instructions for non-local lexical exits on
the design of the instructions used in CLISP. In CLISP, there are
separate instructions to handle block and tagbody: BLOCK-OPEN
and TAGBODY-OPEN save the current dynamic environment and the
program counter(s) to return to. BLOCK-CLOSE and TAGBODY-CLOSE
invalidate the information required to restore the dynamic envi-
ronment. RETURN-FROM and GO are each responsible for unwind-
ing and restoring the saved dynamic environment and transfer-
ring control to the saved program counter. Finally, there are also
RETURN-FROM-I and GO-I instructions which do the same thing
but for saved dynamic environment information only accessible in
an outer lexical environment. In particular, TAGBODY-OPEN takes a
variable number of operands, one for each label corresponding to a
GO tag, and one for the number of labels. The corresponding exit
instructions then encode an index of which label to go to, which
the virtual machine must then resolve to the actual label before
actually jumping to it. ECL uses a similar scheme as well.

We moved away from this strategy because our decision to use
flat closures and our decision to put all code compiled together into
the same module enables a much simpler, more efficient, and more
elegant design for the lexical exit instructions. First, flat closures
allow us to simply use a CLOSURE instruction to reference any closed
over dynamic environment information, so there is no need to have
separate instructions to do closure indirection. Second, we can avoid
closing over program counters altogether since the place to transfer
control to is lexically known at each lexical exit. Because functions
compiled together share the same code vector, we only need to
encode a relative offset to the place to return-from or go to in
the exit instruction, exactly as with an ordinary JUMP instruction.
Finally, we see that after the above changes, tagbody and go can
now be handled exactly the same as block and return-from, so
we obliterate the distinction. We are then left with three simple
fixed operand instructions:

(1) ENTRY: Allocates and pushes an object with information
about the current dynamic environment onto the stack.

(2) EXIT 𝑙 : Pops an object off the top of the stack and unwinds
to the dynamic environment in that object, exiting to label 𝑙 .

(3) ENTRY-CLOSE: Pops an object off the top of the stack and
invalidates the dynamic environment information in that
object, preventing future (out-of-extent) unwinds.

This is a clear improvement over the eight instructions used in
CLISP, in both opcode space usage and performance. Note that the
value returning semantics of return-from are handled orthogo-
nally by instructions pertaining to multiple values.

However, when a lexical exit is to a tag defined in the same
function, we can avoid consing an object which saves the dynamic
environment altogether, since the actions needed to restore the
dynamic environment can be determined statically. We can then
also avoid the cost associated with dynamically unwinding the stack
on exit, so that we can use a simple JUMP instruction instead. Most
Lisp functions implicitly define blocks, which are usually unused
or only used within the same function, so making this case fast is
important. Allowing the compiler to recognize when doing such an
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optimization is possible is quite similar to the logic for eliding value
cells for mutable closure bindings, so we again fold this optimization
into the fix-up process described in the next section.

4.6 Fix-ups
Compilers and assemblers which emit to machine code or bytecode
need to deal with the fix-up problem: How do you emit labels, which
represent other locations in code, as offsets in the byte stream,
before the position of those locations are known? The problem is
further complicated by the fact that the labels instructions refer to
can take up variable amounts of space, which can in turn affect the
offsets of other labels! The label’s offset can even be affected by its
own size, in the case of backward branches.

The standard solution for sophisticated compilers and assemblers
is to use fix-ups and resizer data structures. Fix-up annotations are
accumulated when instructions are first emitted. These annotations
include information such as best-case/worst-case size, current size,
original position, and current position. As more instructions are
emitted, the fix-ups are continually updated, until a final linking
step creates the final vector of bytes.

We chose to use the optimistic version of this solution, where
the smallest possible label sizes are assumed at first, as opposed to
some assembly algorithms which work pessimistically, perhaps for
faster convergence. Furthermore, because we compile and assemble
in the same single pass, there is no rigid distinction between the
two concepts, in contrast to many other compilers. This facilitates
generalizing the fix-up data structures to handle other simple cases
of “variable-length group of bytes”. For example, fix-ups can ade-
quately represent the decision to use a value cell or not, which in a
heavier duty compiler is handled as part of optimizations on a dis-
tinct IR. This way we can avoid building and constructing separate
IRs, and spending time in multiple passes. Because we need to emit
and resolve labels using fix-ups anyway, we can save a significant
amount of memory and time (as well as compiler complexity) by
folding such optimizations into the fix-up step.

Most instructions can be emitted with fixed-size operands right
off the bat. Conceptually, we can think of labels as a temporarily
variable-length operand, and this is what fix-ups usually deal with.
However, by generalizing the idea to variable-length sequences of
bytes to be emitted, we can use fix-ups to emit or not emit entire
instructions. When the compiler encounters a lexical variable or
exit tag, it optimistically assumes that a cell is not needed, and
generates bytecode that does not generate a cell. It also creates
a “fixup” object, which is stored along with the bytecode being
generated. Once the compiler finally resolves all fix-ups, it can
now decide which variables or tags do need a cell, and treats this
“variable-length group of bytes to be emitted” like a label and adjusts
all other fixups by the appropriate number of bytes. The final link
step, responsible for concatenating the bytecode for individual
functions into a module, then copies the right bytes into the final
module.

The generalized algorithm is also optimistic, so it always pro-
duces the best possible code. Labels are as small as possible, and no
NOPs need to be left in the assembly stream to support the emission
or non-emission of cell allocation and accesses.

5 RESULTS
5.1 Clasp build performance
Integration of the VM into Clasp allowed for Clasp’s build procedure
to be simplified substantially. Before the VM was used, a compiler
in “pidgin” Common Lisp was interpreted, and this compiler was
used to compile the Cleavir-based compiler. With the VM, the
Cleavir-based compiler could be built directly by the C++ core. This
simplification greatly improved build times: Clasp from just before
the new VM build system was merged in took 150 minutes of CPU
time to build, while the 2.0 release with the new system took 85
minutes.

5.2 VM Performance
In order to check the performance of the system, we used the
cl-bench system6, modified so as to avoid file compilation, and
with extra machinery to test compile times. The results are dis-
played in Table 1. The benchmarks named with “CMP” prefixes
represent the time taken to compile all the other benchmarking
code in that group, five hundred times.

“VM” is the version of the system described here used in Clasp;
that is, the C++ implementations of the bytecode VM and compiler.
The results for CLISP and ECL were measured using their bytecode
systems as well.

We also measure the performance of SBCL with its native com-
piler. SBCL, having an optimizing native code compiler, is not
closely comparable to any of the three virtual machine systems
exhibited here. It is included only to demonstrate the difference
between such a compiler and VM systems generally. SBCL strongly
outperforms the VMs on almost all runtime benchmarks, while
exhibiting much longer compile times in the CMPARRAY and CM-
PCRC40 benchmarks.

Interpretation of these data is complicated by the fact that the
virtual machines and compilers could not be compared in isolation.
Each implementation’s library influences its timing; a more tightly
written gensym can influence macroexpansion and thus compile
time, while other functions like + and aref play an important role
in run times. Still, we believe these results indicate something about
our system’s efficiency.7

Our system outperforms CLISP in almost all tests. Comparison
to ECL is more ambiguous: we do worse on some metrics, but
better on others. Part of this is probably attributable to the differing
implementations of the standard library functions rather than the
operation of the virtual machines themselves, but this is difficult to
determine as it is not possible to run ECL with Clasp’s functions or
vice versa.

It is clear that our system exhibits performance comparable
to ECL and better than CLISP in most instances. Compile times,
while still much better than those of a native code compiler, are
generallyworse than ECL’s or CLISP’s.While we believe the general
organization of the compiler described here is efficient, more work
could be done on optimizing its performance.

6https://gitlab.common-lisp.net/ansi-test/cl-bench
7While an implementation of our VM in portable Lisp exists, it cannot use low-level
runtime tricks that C++ and C code integrated into these implementations can, and so
is much slower. We do not compare it here.
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Benchmark VM Clisp ECL SBCL
CMPARRAY 0.560 0.426 0.222 22.659
1DARRAYS 0.254 0.648 0.232 0.0108
2DARRAYS 9.535 27.527 7.330 0.0765
3DARRAYS 21.484 64.128 15.408 0.281
BITVECTORS 0.0118 0.566 0.467 0.0184
STRINGS 0.136 2.865 1.250 0.512
STRINGS/ADJ 13.987 41.333 20.253 0.613
STRING-CONCAT 30.738 * 42.021 5.940
SEARCH-SEQ 3.997 5.945 1.978 0.383
CMPCRC40 0.0637 0.0839 0.0310 1.111
CRC40 5.279 21.927 12.377 0.152
CMPGABRIEL 8.555 3.670 3.400 61.627
BOYER * * 172.960 0.543
BROWSE 1.091 2.181 1.149 0.0359
DDERIV 1.444 3.909 2.629 0.0626
DERIV 2.908 3.146 2.311 0.0493
DESTRUCTIVE 1.315 4.322 1.188 0.0401
DIV2-TEST1 0.972 3.778 0.924 0.0274
DIV2-TEST2 2.558 3.180 2.197 0.0420
FFT 5.210 12.973 3.619 0.0185
FRPOLY/FIX 1.701 5.336 4.155 0.0547
FRPOLY/BIG 1.928 5.974 5.033 0.148
FRPOLY/FLOAT 1.699 5.716 3.964 0.0825
PUZZLE 8.417 28.327 6.134 0.101
TAK 0.404 2.380 1.861 0.0122
CTAK 1.998 0.800 0.621 0.0100
TRTAK 0.401 2.398 1.886 0.0122
TAKL 2.941 11.180 11.633 0.0840
STAK * 5.917 0.378 0.0523
FPRINT/UGLY 0.481 0.117 0.179 0.627
FPRINT/PRETTY 5.354 0.530 2.876 0.212
TRIANGLE 1.541 5.367 1.850 0.0518

Table 1: Benchmark results (times in seconds). “*” indicates
that the Lisp could not run the benchmark due to control
stack exhaustion.

6 EXAMPLE OF COMPILED CODE
6.1 Basic code
To illustrate how the bytecode looks in practice, here is what our
system compiles the Common Lisp function

(lambda (x)
(let ((y 5))

(print y)
(lambda () (+ y x))))

into:
check-arg-count-= 1
bind-required-args 1

First the function checks that it was provided exactly one ar-
gument. Then it binds that one argument into the register file at
positions starting at 0 and below 1, i.e. just 0.

const 0 ; '5
set 1

To bind y, the constant 5 is pushed to the stack, then popped
from the stack and placed in register 1.

fdefinition 1 ; 'PRINT
ref 1
call 1

This is the (print y) call. The definition of print is looked up
and called on the value we just placed in register 1, i.e. y.

ref 1
ref 0
make-closure 2 ; '#<BYTECODE-FUNCTION {100C2D803B}>

A closure over x and y is allocated for (lambda () (+ y x)),
and pushed to the stack. Note that 2 is just the index in the constants
vector for the closure’s code; the number of values being closed
over is not encoded in the instruction, since that information is
encoded in the function object.

pop
return

The closure just allocated is popped from the stack into the
multiple values vector. The multiple values are then returned.

6.2 Non-local exit example
We can demonstrate our non-local exit and dynamic environment
instructions with the bytecode for a loop. This code binds a dynamic
variable, calls a global function, then calls another global function
with a closure that can initiate a non-local exit. If this closure is
called, the loop exits. Otherwise, the dynamic variable binding is
undone, and then the loop repeats.

(lambda (x y)
(block nil

(tagbody
loop

(f)
(let ((*z* x))

(g (lambda () (return y)))
(go loop)))))

The outer function compiles to the following:
check-arg-count-EQ 2
bind-required-args 2
ref 1
make-cell
set 1
entry 2
save-sp 3

In the prologue, the outer function processes its arguments and
makes a cell for y, which is referenced from the closure. Then, it
both creates and saves an “entry” object (containing information to
restore the dynamic environment at that point in time) at location
2 and saves the stack pointer at location 3. The entry is used for
restoring the dynamic environment in a real non-local exit, while
the stack pointer is used when no function boundary needs to be
crossed, since the action of restoring the dynamic environment can
be done statically.
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L0:
fdefinition 'F
call 0
ref 0
special-bind '*Z*
fdefinition 'G
ref 1
ref 2
make-closure '#<BYTECODE-FUNCTION {1004100D1B}>
call 1
unbind
restore-sp 3
jump-8 L0

This is the body of the loop. The variable is bound by special-bind,
and the closure is created and passed to g. Note that the closure
references both stack slots 1 and 2. 1 is the cell for y, but 2 is the
entry created by the earlier entry instruction.

After the call, the loop continues. Rather than execute a true
non-local exit with dynamic unwinding, the compiler has statically
determined what part of the dynamic environment needs to be
undone - the special variable binding - and inserts an instruction
to do that. restore-sp then sets the stack pointer back to where it
was, and jump-8 L0 transfers control back to the top of the loop.

unbind
nil
pop

These instructions would be executed when the tagbody form’s
end is reached normally. This cannot occur in the example code,
but our compiler is not smart enough to determine this.
L1:

entry-close
return

Finally, upon an abnormal return, the non-local entry object for
the block is invalidated, and the outer function finally returns.

The label L1 is not used in this function’s code; it is referenced
in the inner closure’s code, but the label is still assembled into a
relative offset due to the fact that functions compiled together share
the same bytecode vector. This means the destination does not need
to be recorded in the entry object, or determined dynamically by
the unwinder. The code of the lambda is disassembled here:

check-arg-count-LE 0
closure 0
cell-ref
pop
closure 1
exit-8 L1
return

The function loads y from its cell, in location 0 of the closure
vector, and prepares to return it. Then, it loads the entry object
for the non-local exit from closure slot 1, and exit-8 L1 transfers
control to label L1 of the outer function using the information
in that object. exit-8 is responsible for dynamically determining
what actions need to be taken to unwind correctly; in that case that
will include unbinding *z*, and also undoing any dynamic binding
established by the function g, which cannot be statically determined

by the compiler. If the entry object is found to have been already
invalidated, the unwinder throws an appropriate error.

7 FUTURE DIRECTIONS
7.1 Trucler integration
The Lisp implementation of the compiler uses the Trucler envi-
ronment protocol, a CLOS based update and expansion of the
environment-related operators described in CLTL2.[7] This allows
it to access functions and macros from the host implementation’s
global environment, or to use an alternate first-class global envi-
ronment. First class environments facilitate using the VM for cross-
compilation or for sandboxing - for example, untrusted “script” code
could be byte-compiled in an environment in which dangerous op-
erators like (setf fdefinition) and read are not available, or
have restricted definitions.

However, the compiler uses its own environment structures inter-
nally rather than host environments, so host definitions of complex
macros like ‘loop‘ that use cl:macroexpand do not work. If the
compiler was rewritten to use Trucler internally rather than its
own environments, and if Trucler support on the Lisp implementa-
tion is sufficient, it would be possible for the VM to be smoothly
usable within an implementation as a drop-in replacement for the
implementation’s cl:compile and/or cl:eval.

7.2 File compilation
The bytecode compiler itself works as cl:compile or cl:eval, not
implementing the complex semantics of file compilation. However,
it can be run in such a way that it doesn’t actually produce a module
or functions, or resolve ‘load-time-value‘, etc., and instead simply
returns enough information to construct a module. This can be
used by a suitable file compilation mechanism.

We are working on such a file compiler, and accompanying
FASL format. The ultimate goal of this project, besides providing
a drop-in cl:compile-file implementation, is to allow one Lisp
implementation to produce portable FASLs that can then be loaded
successfully in a completely different Lisp implementation. Our
main motivation is to use this for bootstrapping a primitive Lisp
with FASLs produced by a full Lisp, but we believe it could be more
generally useful.

7.3 Conversion to IR
The bytecode produced by the compiler is a fairly direct reflection
of the source code, but with macros expanded, and no internal
reliance on environment information. These properties make it
suitable for conversion to IR for an optimizing compiler. We are
planning to write a system to convert the bytecode into Cleavir’s
IR. This would allow the bytecode compiler to act as a frontend to
a smarter compiler.

One change that would need to be made is having the compiler
record more information about the code. For example, it would be
important to record source information for debugging, and various
declarations such as of types for optimization (as the bytecode
compiler is too simple to use them itself).

With this system set up, it would be possible to use the VM to
facilitate just-in-time compilation of Lisp code. Code could be at
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first compiled quickly into bytecode, and then only if necessary,
compiled further into optimized machine code.

In conjunction with a portable FASL format, this would allow
the bytecode to serve as a portable post-read code interchange
format, somewhat like Java VM bytecode. Optimizations depend on
the specific nature of the target machine, such as those relating to
arithmetic, can be done by a specific implementation. There would
be a separation of concerns between the frontend and the backend
of the language system, and it would be possible to distribute code
without either dumping an entire monolithic Lisp image or relying
on the end user to deal with all the complexity of compiling Lisp
source.

8 CONCLUSION
Our bytecode system can compile Common Lisp code quickly, and
run it with reasonable efficiency. Performance is comparable or

superior to that of other Lisp virtual machines. The fix-up mecha-
nism allows the compiler to apply several important optimizations
without requiring a complex and slower IR.
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