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Abstract

Massive amounts of audio-visual contents are shared in public
platforms everyday. These contents are created with many pur-
poses, from entertaining or teaching, to extremist propaganda.
Civil security actors need to monitor these platforms to detect
and neutralize security threats. Generating actionable knowl-
edge from multimedia contents requires the extraction of multi-
ple information, from linguistic data to sounds and background
noises. Information extraction demands audio-visual annota-
tions, a costly, time-consuming task when performed manually,
which hinders the analysis of such an overwhelming amount
of data. This work, performed in the context of the EU Hori-
zon 2020 Project AIDA, addresses the challenge of building a
robust sound detector focused on events relevant to the counter-
terrorism domain. Our classification framework combines PLP
features with a convolutional architecture to train a scalable
model on a large number of events that is later fine-tuned on the
subset of interest. The fusion of different corpora was also in-
vestigated, showing the difficulties posed by this task. With our
framework, results attained an average F1-score of 0.53% on the
target set of events. Of relevance, during the fine-tune phase a
general-purpose class was introduced, which allowed the model
to generalize on unseen’ events, highlighting the importance of
a robust fine-tune.

Index Terms: sound events detection, DNN architecture, CNN
architecture, robust fine-tune, counter-terrorism, AIDA project

1. Introduction

Over the last years, the detection of sound events gained an
increasing interest from both the research community and the
software industry, as confirmed also by the inception of a
yearly-based event, the Detection and Classification of Acous-
tic Scenes and Events (DCASE) Challenge. This growing rele-
vance is motivated by the large number of scenarios in which
this type of technology may be useful, from inclusive tech-
nology [1, 2], to health condition identification [3], surveil-
lance [4, 5], and public security [6-8]. Among these areas, the
last is experiencing an urgent need of robust sound events detec-
tors in order to actively participate in the fight against crime and
terrorism. Nowadays, multimedia data are created and shared at
a very fast pace, generating a large volume of data whose man-
ual analysis hampers a timely intervention. Nevertheless, the
immediate block and removal of terrorist content from online
platforms is of vital importance to avoid the spread and diffu-
sion of this type of information. To this end, the use of audio
processing technology become fundamental to allow the auto-
matic analysis of large amount of data.

This work focuses on the detection of sound events, a
twofold task requiring to determine first the presence and tem-
poral location of sounds in audio signals and then to estab-
lish their nature. Sound events have many different acoustic
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characteristics, some may be very short, transient-like, while
others may have longer duration. Additionally, events usually
are polyphonic, meaning that multiple sounds occur concur-
rently, leading to partial or full temporal overlap. Due to the
combination of multiple sources, the detection of overlapping
events is much more challenging than the detection of isolated
ones. Early works in this area combined Mel-frequency cep-
stral coefficients (MFCC) features with Hidden Markov Mod-
els (HMM) [9] or Gaussian Mixture Models (GMM) [10].
More recently, the release of large sound events datasets pro-
vided within the DCASE challenges, allowed the adoption
of deep architectures, such as Convolutional Neural networks
(CNN) [11, 12] or Convolutional Recurrent Neural Networks
(CRNN) [13,14].

Overall, the majority of the research works reviewed use
datasets that were made available in the context of the yearly-
based DCASE series, for which benchmark results are also pro-
vided. These datasets are usually focused on specific domains
of interest (e.g., urban or domestic sounds). In this study, on the
other hand, we are interested in a specific set of events that are
relevant to Law Enforcement Agencies to rapidly identify ex-
tremist propaganda content. Since there are no similar resources
available, we had to create our own dataset from large sound
events corpora. The lack of an adequate dataset raised several
challenges, not only for the inability to compare the outcome
of this research with existing benchmarks, but also in terms of
heterogeneity and amount of training data available for each
class. Thus, our approach investigated the fusion of different
corpora, in order to collect enough data to support deep learn-
ing, data-hungry techniques. Using an incremental approach,
we explored a scalable strategy based on the creation of a gen-
eral model trained on a large number of classes, later fine-tuned
on the subset of interest. To allow the model to generalize on
unseen’ sound events, in the fine-tune phase a general-purpose
class has been introduced, allowing, this way, to reach an aver-
age Fl-score of 0.53%, our best classification result.

2. Related work

Mesaros et al. [9] targeted the task of detecting and recognizing
61 isolated acoustic events from real life environments record-
ings. The authors modeled the problem with a three-state left-
to-right HMMs and MFCCs as feature representation. On the
classification task alone, the maximum accuracy achieved was
of 54%, while on the joint task of detecting and recognizing
events, the accuracy dropped to 24%, with an overall error of
84% provided by the detection phase. More recently, Gauvain
et al. [10], performed a research on the detection of acoustic
events to support the fight against terrorism, similarly to the pur-
poses of this work. Due to the lack of dedicated corpora and to
the large disparities found in the available data, the authors fo-
cused on four acoustic events: explosions, gunshots, machine



guns, and Nasheed (singing). The problem was modeled using
GMMs, results were presented by accounting for the number
of correct detection and false alarm, which hampers a direct
comparison. The Nasheed class achieved the best performance,
while for the other three categories there were more false alarms
than correct detections. According to the authors, this behavior
was possibly due to the presence of other polyphony instances
in the data, with continuous events (i.e., speech or wind) over-
lapping with the impulsive ones (i.e., machine gun).

Traditional approaches, like the ones described above, are
not suited to detect multiple events at the same time, represent-
ing a major limitation since sound events usually co-occur in
time. In contrast, neural network-based models, especially deep
architectures, lend themselves naturally to multi-label classi-
fication since multiple output neurons are active at the same
time. Thus, with increasing dataset sizes, deep neural networks
become the dominant strategy in this area. Gorin et al. [12]
combined log Mel filter bank features and CNN for detecting
and classifying 18 polyphonic sound events. The system, de-
veloped in the context of the DCASE 2016 challenge, was fo-
cused on sound events detection in real life audio. Since lim-
ited data was provided by the organizers, the authors explored
data augmentation techniques such as audio mixing and speed
perturbation, which showed a marginal improvement in the per-
formance. Overall, the system developed was able to achieve
an Fl-score of 44.1%. Phan et al. [14] investigated a multi-
label, multi-task framework based on a CRNN to combine both
isolated and overlapped audio events. The evaluation was car-
ried out on two datasets, the first contained isolated events, the
second was synthetically created in the context of the DCASE
challenge to investigate overlapped events. On these datasets,
the proposed approach achieved an average F1-score of 97.6%
and 64%, respectively.

3. Methodology

In this work, we target the detection of polyphonic sound events
using deep neural network models. The lack of publicly avail-
able corpora on the domain of interest, however, required the
creation of a dedicated dataset. This process raised several ques-
tions regarding the amount of data, the type of classes to select,
and the training approach to follow in order to build a robust
sound events detector. To answers these issues, our methodol-
ogy investigated an incremental approach based on the use of
three different corpora. Additionally, the lack of benchmarks
relevant to our purposes motivated the use of two different ar-
chitectures, a DNN and a CNN. The first was previously devel-
oped in the scope of a national civil security project, AGATHA,
and thus used as a baseline. The corpora and the network archi-
tectures are described in detail in the remainder of this Section.

3.1. Corpora

To build the dataset required for the project AIDA' we inves-
tigated the sound events classes contained in three large cor-
pora publicly available: AudioSet [15], Freesound Dataset 50k
(FSD50K) [16], and VGG-Sound [17].

AudioSet comprises a collection of 2,084,320 multi-label,
human-labeled, 10-second sound clips drawn from YouTube
videos and an ontology” specified as a hierarchical graph of
event categories, for a total of 527 sound events classes. The
corpus is divided in three sets, a balanced train, an unbalanced
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train, and an evaluation set containing, respectively, 22.176,
2.042.985, and 20.383 samples. Labels are provided at the clip-
level (i.e., weak labels), the labeling process could be consid-
ered correct, but potentially incomplete. In this study, we used
the balanced train and the evaluation partitions.

FSDS0K is a multi-label corpus of human-labeled sound
events containing 51,197 variable length (i.e., from 0.3 to 30s)
clips, for a total of 108.3 hours. The corpus encompasses 200
sound classes drawn from the AudioSet Ontology. Data is col-
lected from Freesound, an online collaborative audio clip shar-
ing site [18]. Ground truth labels are provided at the clip-level.
Audio clips are grouped into a development and an evaluation
set, containing, respectively 40,966 and 10,231 samples. In the
development set labels are correct, but could be occasionally
incomplete. The evaluation set is instead labeled exhaustively,
meaning that labels are correct and complete for the considered
vocabulary.

VGG-Sound is an audio-visual correspondent (i.e., the
sound source is visually evident in the clip) corpus consisting
of short clips of audio sounds, extracted from videos uploaded
to YouTube. The dataset contains over 200,000 clips for 309
different sound classes. Each clip is 10 seconds long. Differ-
ently from AudioSet and FSD50K, the set of sound labels is flat
(i.e., there is no hierarchy). Audio clips are grouped into a train-
ing and a test set. In this research, only a subset of 17 classes
was selected from this corpus, leading to 20,468 audio clips.

From these corpora we are interested in 17 classes that in-
clude sounds related with explosion, (i.e., artillery fire, explo-
sion, gunshot, and machine gun), vehicle (i.e., airplane, train,
engine, and siren), and some specific human sounds (i.e., crowd
shouting, screaming), among others. We will refer to the dataset
created with these 17 events as AIDA_17C. To achieve good
classification results on this set of events however, we also cre-
ated different datasets of variable size, according to the training
strategy with which they were used.

3.2. Data pre-processing

The first stage of this work addressed the analysis and standard-
ization of the three corpora. In fact, as mentioned above, the
set of classes existing in the FSD50K corpus is drawn from the
AudioSet ontology, while the same do not apply for the VGG-
Sound corpus. For this reason, it was needed to create a map-
ping between the classes of this corpus that were considered rel-
evant and the ones contained in the AudioSet ontology. Then,
the data from the three corpora were re-distributed since they
originally provide two partitions, one for development or train-
ing purposes, and one for evaluation. Nevertheless, to comply
with our baseline approach, the two partitions of each corpus
were merged and then divided into a training, validation, and
evaluation partitions. The amount of data retained in each par-
tition was of 80%, 10%, and 10%, respectively. Finally, audio
files were down-sampled to 16kHz to compute 26 Perceptual
Linear Prediction (PLP) features.

3.3. Baseline and extended DNN architecture

As briefly mentioned, the baseline DNN architecture was previ-
ously developed in the scope of a national civil security project,
AGATHA. It consists of a sequence of five densely connected
layers (with 1024, 1024, 512, 512, and 128 hidden units), fol-
lowed by a global max pooling layer. Batch Normalization [19]
and Dropout [20] was also applied before the non-linearity
(ReLU) of each fully connected layer. The final layer uses
a softmax activation function, making it unsuitable for multi-



Table 1: Evaluation on AIDA_17C of the models trained with
the extended DNN.

Individual Models Joint Model
Precision  Recall F1 Precision  Recall F1
VGG-Sound 0.59 0.82 0.68 0.54 0.85 0.66
FSD50K 0.52 0.71 0.60 0.49 0.70 0.58
AudioSet 0.38 0.53 0.44 0.45 0.72 0.55

label classification. The model trained with this architecture
was also used as a baseline. It was focused on the identification
of generic sound events, containing 8 classes, out of 50, that
were pertinent to the purposes of the AIDA project. We will
refer to this model as Agatha.

In this research, the baseline DNN architecture was ex-
tended to support multi-label classification. To this end, the
loss function and the last layer of the original model were up-
dated to use binary-crossentropy [21] and the sigmoid activation
function, respectively. The whole file is provided as input to the
network, which is analyzed with a window size of 0.5 second.

3.4. CNN architecture

In the experimental phase a VGG-like architecture was also ex-
ploited, a model widely used in computer vision and recently
successfully employed also in sound events detection tasks. The
network comprises seven convolutional layers, three of 48 fil-
ters, two of 96 filters, and the last two of 128 filters. Output fea-
ture maps are summarized by concatenating global max pooling
and global average pooling per channel. The first five convolu-
tional layers have a receptive field of (3,3), while for the last two
layers this value is decreased to (2, 2). All convolutional layers
are followed by Batch Normalization and ReL U activation. Be-
tween each group of convolutional layers with the same number
of filters, max-pooling of size (2,2) is applied. Output feature
maps are summarized by concatenating global max pooling and
global average pooling per channel. Input to the network is pro-
vided as chunks of 1 second length. Each chunk inherits the
label of the clip, independently if it contains the event or not.

4. Experiments and results

In the following sections, first the evaluation performed with
the extended DNN architecture is described. These experi-
ments were mainly focused on the union of different corpora
and on the assessment of the impact that the use of variable-size
datasets may have on classification performances. Then, further
experiments were conducted with the DNN architecture, focus-
ing on a specific corpus. Results were assessed using precision,
recall, and F1-score, computed according to their standard def-
inition. More specifically, metrics were computed globally, by
counting the total true positives, false negatives and false posi-
tives.

4.1. Deep neural network
4.1.1. Models focused on a reduced set of events

To have a general understanding of the performance achievable
with the data of the three corpora individually, three preliminary
models were trained using the extended DNN architecture on
each AIDA_17C dataset. These results are presented in Table 1.
The model Agatha was then assessed on the same sets of data
(see Table 2). A comparison of these outcomes showed that the
three individual models achieved, on average, a slightly lower

Table 2: Evaluation on AIDA_17C of the model Agatha trained
with the baseline DNN.

Agatha
Precision Recall F1
VGG-Sound 0.91 0.53 0.67
FSD50K 0.89 0.50 0.64
AudioSet 0.95 0.70 0.80

F1-score with respect to the baseline model Agatha. In par-
ticular, while Agatha generally achieved higher precision and
lower recall, the three new models presented an opposite be-
havior (i.e., low precision, high recall).

Then, to take advantage of the greater amount of data avail-
able, the three individual datasets AIDA_17C, generated from
the three corpora, were combined to train a new model. The
evaluation of this joint model was performed on each corpus
individually. From the results, also reported in Table 1, it was
generally observed a reduction of the performance with respect
to previous experiments, except for the dataset generated with
the AudioSet corpus, which is more challenging and has bene-
fited from the union of the other datasets.

With a small set of sound events classes, like AIDA_17C,
the model may be unable to generalize on sound events not seen
before, and thus may introduce a considerable number of false
positives, as was indeed shown by the results. To mitigate this
problem, a general-purpose class, containing the complement of
sound events not selected in AIDA_17C, was introduced. This
dataset is referred as AIDA_18C. The drawback of this approach,
however, is that the model may be prone to classify every event
as the general-purpose class, which was confirmed from pre-
liminary experiments. To reduce the importance of the general-
purpose class, both automatically estimated class weights and
a sampling strategy were implemented. In both cases the clas-
sification results were more balanced in terms of precision and
recall, but the overall performance of the models was lower than
the ones reported in Table 1.

From the results of this preliminary evaluation is it possible
to observe that, both for each corpus in isolation and on a joint
collection of the three corpora, the dataset AIDA_17C appeared
to be inadequate to build a robust sound events detector. This
conclusion is corroborated by the consideration that the model
Agatha is indeed more generic, containing 50 heterogeneous
sound events.

4.1.2. General model, robust fine-tune approach

The conclusions of the previous experiments suggested the cre-
ation of a more general model, targeting a wide set of different
sound events. To this end, we built the dataset AIDA_414C,
which contained all the events of the AudioSet ontology with
the exclusions of the nodes "Music’, "Human voice’, and their
children. With this dataset, several models were trained in or-
der to experiment different parameters, including the number
of hidden layers and neurons, and the batch size. The use
of two regularization techniques was also investigated, namely
Mixup [22] and Dropout. These models were then fine-tuned
on the smaller dataset AIDA_17C. The fine-tune phase experi-
mented the incremental freezing of the weights of the last four
layers. Overall, the evaluation of these models has shown a
worsening of the performance in comparison to the models
trained on the three datasets AIDA_17C. We hypothesized that
this outcome could be due either to a problem of data imbal-
ance, or to inter-corpus different acoustic and recording set-



Table 3: Evaluation on AIDA_17C of the models Agatha and the
CNN-based.

AIDA 138C
fine-tuned on AIDA 17C
Precision  Recall F1 Precision  Recall F1
FSD5S0K 0.89 0.50  0.64 0.80 0.68 0.74

Agatha

tings. Challenges may derive not only from the number of sam-
ples contained in each class, but also from the duration of differ-
ent events, which may vary from very short events like a clos-
ing door, to more sustained one, like wind. Such irregularities
in the training data may lead to a disproportional representation
of samples [23]. To partially mitigate a possible data imbal-
ance problem, the algorithm that inspects the ontology to select
children’s nodes was modified to discard those ones that were
present only in a minority of the three corpora. Unfortunately,
the evaluation of the models built on this dataset did not confirm
our expectations. Classification results did not improve with re-
spect to our initial experiments, achieving an F1-score of 0.63%
(VGG-Sound), 0.50% (FSD50K), and 0.54% (AudioSet).

While it is not completely clear the impact that the num-
ber of classes and their variety may have, the outcomes of these
experiments appeared to confirm that the union of the three cor-
pora does not provide the expected improvement in terms of
performance.

4.2. Convolutional neural network

The results achieved so far, although do not discourage to pur-
sue the research on the training of a general model, point out
the need to focus on a single corpus. We choose FSD50K, since
particular care was provided in the design of this resource. In
fact, we recall that this corpus was created using human-labeled
data and an exhaustive labelling procedure for the evaluation
set, which guarantees that annotations are correct and complete,
while labeling error in AudioSet is estimated at above 50% for
~18% of the classes [16]. At this stage, preliminary experi-
ments with the extended DNN and the CNN architectures were
performed on the whole FSD50K corpus. The results showed an
F1-score of 0.36% and 0.40% respectively, justifying the adop-
tion of the latter. Of relevance, the re-distribution of data de-
scribed in Section 3.2, led to an absolute improvement of 11%,
achieving an F1-score of 0.51%.

In order to determine the best subset of sound events classes
for the general model, and thus prune events frequently mis-
classified, classes-specific performances were analyzed. To this
end, we built a 200D matrix using the classification results.
However, the creation of such a matrix in a multi-label setup
rises the issue of properly identifying and assigning the errors
produced by the model, especially in the case of false positive.
More in details, consider an audio with the following ground
truth labels: *Gunshot’, ’Explosion’, "Rail Transport, and *Ve-
hicle’, while the labels predicted by the model are: *Gunshot’,
’Rail Transport’, and ’Chatter’. In this case, it is not possi-
ble to determine to which class assign the false positive *Chat-
ter’. Thus, the solution implemented equally redistributed the
set of false positives (FP) among the set of false negatives using
the weight 1/#F P. Additionally, the number of false posi-
tive and false negative produced in each class were also consid-
ered. From the results of this analysis, a new dataset referred as
AIDA_138C was created, which filtered out 62 classes, most of
which were children of the category "Musical instrument’ (see

Table 4: Evaluation on AIDA_18C of the models Agatha and the
CNN-based.

AIDA 138C
fine-tuned on AIDA 18C
Precision  Recall F1 Precision  Recall F1
FSDS0K 0.40 0.50 044 0.81 0.39 0.53

Agatha

Section 3.1 for a link to the AudioSet ontology). The evaluation
of a model trained on this dataset showed an absolute improve-
ment of 3%, achieving an F1-score of 0.54%. Although further
investigations should be performed, this result appears to indi-
cate that an appropriate selection of sound classes may actually
be of benefit to improve model’s robustness.

This model was then fine-tuned on the dataset AIDA_17C.
For a fairer comparison with the model Agatha, the evaluation
was performed on the subset of events in common between the
two models. Although the results were promising (see Table 3),
a closer inspection showed that, due to the reduced number of
events existing in AIDA_17C, the model was not able to gen-
eralize on unseen events. This is a common issue in transfer
learning setups, when the pre-trained model is much larger than
the size of the target dataset, the fine-tune is prone to “memo-
rize” training corpus. To address this problem, a fine-tune with
the dataset AIDA_18C was performed. Results, presented in Ta-
ble 4, on one side confirmed the improvement of the model built
on the dataset AIDA_138C with respect to the model Agatha,
on the other side showed that the use of the general-purpose
class now helped attaining better generalization performance.
In particular, comparing Tables 3 and 4, one can observe that the
model Agatha achieved a lower precision, while the model fine-
tuned a lower recall. These outcomes can be explained consid-
ering that the general-purpose class included in AIDA_18C con-
tains a wide set of classes that do not exist in the model Agatha,
confounding it, but this class helped the fine-tuned model to
discard false positive instances, lowering the recall.

5. Conclusions and future work

In this work, we addressed the development of a robust de-
tector of sound events for the counter-terrorism domain to be
used by Law Enforcement Agencies in their daily activity. Due
to the lack of existing resources, we targeted the creation of a
dedicated dataset using existing corpora, showing the inherent
challenges of this task. Furthermore, we investigated the use
of DNN and CNN architectures, with the latter exhibiting the
best results on the same set of data. Notably, our experiments
illustrated the importance of a robust fine-tune approach, which
may conceal serious issues in the modeling phase. In this way,
our classification framework was able to achieve an F1-score of
0.53% on the set of identified sound events. Future directions
demand to continue the research on the creation of a balanced
dataset tailored to the terrorism domain.
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