
Demonstration: A stepper for Armed Bear Common Lisp
(ABCL)

Alejandro Zamora Fonseca
ale2014.zamora@gmail.com

ABSTRACT

In this paper a stepper tool for the Armed Bear Common Lisp
(ABCL) implementation is proposed, describing its features
and implementation related details. ABCL does not currently
have a stepper and the addition of one can help improve the
quality of the code designed to run in the implementation,
and also it can be useful to assist in the debugging process
of Common Lisp (CL) portable code.

CCS CONCEPTS

• Software and its engineering → Software notations
and tools;

KEYWORDS

Common Lisp, stepper, debugging

ACM Reference Format:

Alejandro Zamora Fonseca. 2023. Demonstration: A stepper for
Armed Bear Common Lisp (ABCL). In Proceedings of the 16th
European Lisp Symposium (ELS23). ACM, New York, NY, USA,
5 pages. https://doi.org/10.5281/zenodo.7815887

1 INTRODUCTION

A stepper is a tool that allows to control and follow step
by step the execution of a subprogram. Many programming
languages provide stepping tools as part of its debugging
mechanisms. CL is not an exception and includes the step
macro in its standard to be optionally implemented.

ABCL does not include a stepper and this fact has been men-
tioned as one of the reasons that detract the implementation
from being a proper contemporary CL implementation, see
[1].

This paper introduces a stepper to address this issue in
ABCL. I will describe its features, examples of use and some
implementation details.

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS23, Apr 24–25 2023, Amsterdam, Netherlands
© 2023 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.7815887

The code for this tool is shared as open source in the form of
a pull request on ABCL’s own code in its Github repository
(see [2]).

2 RELATED WORK

Recently, João Távora [3] made a great summary of the state
of art of stepping in CL and presented a visual and portable
stepper module (sly-stepper) for his IDE Sly.

Unfortunately sly-stepper does not support ABCL and the
other efforts mentioned in that paper appear to be incomplete
or difficult to integrate into any CL implementation.

3 DESIGN AND
IMPLEMENTATION

In my opinion, a stepper is needed for ABCL to improve
the quality of the implementation, to bring more debugging
tools for users of ABCL or other CL systems, and to lay the
groundwork for integrations with external IDEs like Sly, Slime
and others. Having a simple stepper in text mode shipped
with the implementation, would also allow developers to not
depend on any external tools for this task, regardless of the
environment in which the implementation will run.

In this section I’ll describe details in the design and imple-
mentation of the stepper and its features.

This step tool is integrated in the evaluation code in ABCL’s
main evaluator which is, at its core, an interpreter. The
evaluator works by traversing the successive subforms in
interpreted code after the macroexpansion, but it cannot go
inside compiled functions, which are executed from its Java
bytecode. For this reason the stepper will not enter either
into compiled code.

Internally, when the user runs the step macro, the interpreter
first sets itself to stepping mode and will allow the user to
proceed to step through each sub-form according to her needs.
The stepping related code is implemented to be called from
selected stages of the evaluator. And finally after the form is
executed, the stepping mode is disabled.

The following diagram illustrates an overview of the stepper
arquitecture. The stepper hooks created in the middle of the
evaluator were used to call the component that implements
the logic of the options in the stepper (Handle Stepping),
based on the result of the component Step in symbol ?.

https://doi.org/10.5281/zenodo.7815887
https://doi.org/10.5281/zenodo.7815887


ELS23, Apr 24–25 2023, Amsterdam, Netherlands Alejandro Zamora Fonseca

Both components manipulate the internal states of the step-
per in the evaluator (Lisp.java), which are mainly two flags
to control the step and next features.

Most of the code for this tool was done in Lisp (abcl-stepper.lisp),
taking advantage of the nice API that ABCL provides for
developers to interact between Java and Lisp. Namely, the
ability to create Primitive methods in Java that can be eas-
ily called from Lisp as functions was essential. On the other
hand, the constructions to call Java objects and methods
from Lisp were also useful.

See Figure 1.

Figure 1: The arquitecture of the stepper

This approach was used due to its simplicity, as opposed to
others that need to instrument the subforms of the code to
step, in order to perform the stepping. Taking advantage
of the built-in evaluator makes it possible to step into any
interpreted code without needing to instrumenting it.

On every stage of the stepping process, the user will be
prompted with a screen like the one in Listing 1.
We are in the stepper mode
Evaluating step 1 -->
(TEST)
Type ':?' for a list of options

Listing 1: The head of the prompt.

If the user presses :?, the system will show a simplified
help with a list of the features present in the stepper, see
Listing 2
Type ':l' to see the values of bindings on the local environment
Type ':c' to resume the evaluation until the end without the stepper
Type ':n' to resume the evaluation until the next form previously selected

to step in↪→
Type ':s' to step into the form
Type ':i' to inspect the current value of a variable or symbol
Type ':b' to add a symbol as a breakpoint to use with next (n)
Type ':r' to remove a symbol used as a breakpoint with next (n)
Type ':d' to remove all breakpoints used with next (n)
Type ':w' to print the value of a binding in all the steps (watch)
Type ':u' to remove a watched binding (unwatch)
Type ':bt' to show the backtrace
Type ':q' to quit the evaluation and return NIL
Type ':?' for a list of options

Listing 2: Minimal help option.

Now the rest of the options will be described in the following
subsections.

3.1 Locals bindings

The :l option will display the local bindings for variables
and functions in the current environment passed to the cur-
rent form to evaluate, a typical response would look like as
described in Listing 3:

Showing the values of variable bindings.
From inner to outer scopes:
N=2
Showing the values of function bindings.
From inner to outer scopes:
FLET1=#<FUNCTION #<(FLET FLET1) {3ACE0BC7}> {3ACE0BC7}>

Listing 3: Local bindings option.

3.2 Continue to the end

The continue :c option will, basically, ignore the stepping
process and perform the evaluation of the form without any
stop.

3.3 Stop at next marked symbol

The next :n feature allows to stop the stepper only when the
interpreter is analyzing one of the symbols specified in the
list of stepper::*stepper-stop-symbols* or any of the ex-
ported symbols presented in any of the list of packages speci-
fied in stepper::*stepper-stop-packages*. These variables
will have initially the value NIL and, if left unchanged, next
will behave almost exactly as continue. It is useful when
we want to step over large or complex code and avoid step-
ping every form in order to jump only to the interested
ones. This feature will be explained more in detail in next
sections.

In the middle of the stepping process it is possible to change
the value of the variable stepper::*stepper-stop-symbols*,
using the options :b, :r and :d. The :b option allows to add
a symbol to stepper::*stepper-stop-symbols*, option :r
will remove a symbol in stepper::*stepper-stop-symbols*
and the option :d will remove all the symbols in the afore-
mentioned variable.

3.4 Step into the form

The step :s functionality is the most basic operation in the
stepper, it will step into the current form until the evaluation
ends. It can even step into ABCL internal functions.

3.5 Inspect variables

This feature (:i) allows one to inspect the content of a
variable or binding, present in the current environment. It
will first ask the user to type the symbol to inspect and
proceed to print its value.

Some screens as quick examples (Listing 4)



Demonstration: A stepper for Armed Bear Common Lisp (ABCL) ELS23, Apr 24–25 2023, Amsterdam, Netherlands

Type ':?' for a list of options
:i
Type the name of the symbol: *some-var*
NIL
Type ':?' for a list of options
:i
Type the name of the symbol: x
3

Listing 4: Inspect variable option.

3.6 Show backtrace

The :bt option provides the ability to print the current
backtrace, which is useful for analyzing the evaluation path
until the current stepping point.

3.7 Watch and (un)watch

The feature watch allows to follow the values of a variable in
all the steps, the user can add a variable to watch by typing
:w and when prompted, the symbol to watch. After that, the
user can remove the variable from being watched by using
the :u option and entering the same symbol.

3.8 Quit evaluation

The quit :q feature will abort the evaluation in the stepper
and return NIL. This is useful to avoid running the remaining
forms in the code when the user wants to leave the stepper,
especially if the rest of the program is performing expensive
operations.

3.9 Examples of usage

This subsection explains in details, by using some examples,
the features of the current stepper. The examples shown here
will be using the pure ABCL’s REPL but will behave the
same if you use the shell buffer in Emacs for a slightly more
comfortable development environment.

First let’s examine the inspect feature combined with the
step feature.

In this example we can see how the inspect feature is used
and it retrieves correctly the values for the lexical variable x
and the special variable *some-var* which is rebinded in the
code. The values are shown using cl:print. Listing 5

As a second example the use of the list locals feature will
be illustrated. Here, we can observe that the list of local
bindings include variable and function bindings and they are
showed from inner to outer scopes, for that reason the value
of variable a is first 2 and later 1. See Listing 6

In the previous example the use of the feature continue was
shown too, allowing to complete the evaluation of the form
turning off the stepper.

The following stepper session will be used to explain the
next and quit features. They allow to stop the execution
only in designed symbols. It behaves like if we were adding

CL-USER(1): (require :asdf)
NIL
CL-USER(2): (require :abcl-contrib)
NIL
CL-USER(3): (require :abcl-stepper)
NIL
CL-USER(4): (defparameter *some-var* 1)
*SOME-VAR*
CL-USER(5): (defun test ()

(let ((*some-var* nil)
(x 3))

(list *some-var* 3)))
TEST
CL-USER(6): (stepper:step (test))
We are in the stepper mode
Evaluating step 1 -->
(TEST)
Type ':?' for a list of options
:i
Type the name of the symbol: *some-var*
1
Type ':?' for a list of options
:s
We are in the stepper mode
Evaluating step 2 -->
(BLOCK TEST

(LET ((*SOME-VAR* NIL) (X 3))
(LIST *SOME-VAR* 3)))

Type ':?' for a list of options
:s
We are in the stepper mode
Evaluating step 3 -->
(LET ((*SOME-VAR* NIL) (X 3))

(LIST *SOME-VAR* 3))
Type ':?' for a list of options
:s
We are in the stepper mode
Evaluating step 4 -->
(LIST *SOME-VAR* 3)
Type ':?' for a list of options
:i
Type the name of the symbol: x
3
Type ':?' for a list of options
:i
Type the name of the symbol: *some-var*
NIL
Type ':?' for a list of options
:c
step 4 ==> value: (NIL 3)
step 3 ==> value: (NIL 3)
step 2 ==> value: (NIL 3)
step 1 ==> value: (NIL 3)
(NIL 3)

Listing 5: Step and inspect features.

breakpoints for the stepping process. Let’s look at the stops
in this example. The stepper is stopping in the call with
the symbol 'step-next::loop-1 because it was added to
stepper::*stepper-stop-symbols*. It is also stopping in
the call with the symbol 'step-next::loop-3 because that
symbol was exported in the package next-step and the
symbol was added to stepper::*stepper-stop-packages*.
'step-next::loop-2 is skipped when using next because
it is not present in any of the lists of symbols mentioned
before.

We can observe as well the use of the feature quit. After the
use of it, the evaluation was stopped before the initialization
of the special variable step-next::*test-next-var* and
therefore it is not bound yet after complete the stepping
process. See Listing 7

If we observe the second stepper call in the test-next func-
tion, we can see the use of the :b and :r features. Using the :b
option adds a breakpoint to the symbol step-next::loop-2,
the breakpoint to step-next::loop-1 is removed using the



ELS23, Apr 24–25 2023, Amsterdam, Netherlands Alejandro Zamora Fonseca

CL-USER(7): (stepper:step (flet ((flet1 (n) (+ n n)))
(let ((a 1))

(let ((a 2))
(+ (flet1 3) a)))))

We are in the stepper mode
Evaluating step 1 -->
(FLET ((FLET1 (N) (+ N N)))

(LET ((A 1))
(LET ((A 2))

(+ (FLET1 3) A))))
Type ':?' for a list of options
:s
We are in the stepper mode
Evaluating step 2 -->
(LET ((A 1))

(LET ((A 2))
(+ (FLET1 3) A)))

Type ':?' for a list of options
:s
We are in the stepper mode
Evaluating step 3 -->
(LET ((A 2))

(+ (FLET1 3) A))
Type ':?' for a list of options
:s
We are in the stepper mode
Evaluating step 4 -->
(+ (FLET1 3) A)
Type ':?' for a list of options
:l
Showing the values of variable bindings.
From inner to outer scopes:
A=2
A=1
Showing the values of function bindings.
From inner to outer scopes:
FLET1=#<FUNCTION #<(FLET FLET1) {238E109B}> {238E109B}>
Type ':?' for a list of options
:c
step 4 ==> value: 8
step 3 ==> value: 8
step 2 ==> value: 8
step 1 ==> value: 8
8
CL-USER(8):

Listing 6: Local bindings feature.

option :r and, after executing the command :n, the stepper
stops this time at step-next::loop-2 instead of
step-next::loop-1. See Listing 8.

The following example exhibits the use of the backtrace
feature. This option allows to visualize the full evaluation
path to the point of the program being analyzed by the
stepper. See Listing 9.

The last example presents the watch(:w) feature which per-
mits to monitor the values of a variable in the stepping
process. In the code sample it can be seen the succesive val-
ues of the variable x and how they are removed after the
unwatch(:u) option is applied. See Listing 10.

4 CONCLUSION

A first functional stepper for ABCL has been introduced. It
can help users to dig into the guts of every complex code to
help find the root cause of errors.

I think that even knowing that this is the first version, it can
be usable and offer an alternative to debug complex systems
built using ABCL or even portable CL code.

CL-USER(8): (defpackage step-next (:use :cl))
#<PACKAGE STEP-NEXT>
CL-USER(9): (in-package :step-next)
#<PACKAGE STEP-NEXT>
STEP-NEXT(10): (defun loop-1 (a b)

(loop :for i :below a
:collect (list a b)))

LOOP-1
STEP-NEXT(11): (defun loop-2 (a)

(loop :for i :below a
:collect i))

LOOP-2
STEP-NEXT(12): (defun loop-3 (n &optional (times 1))

(loop :for i :below times
:collect times))

LOOP-3
STEP-NEXT(13): (defun test-next (n)

(loop-1 (1+ n) n)
(loop-2 (1- n))
(loop-3 n 3)
;; quit (q) here
(defparameter *test-next-var* (loop :for i :below (expt 10 6)

:collect i)))
TEST-NEXT
STEP-NEXT(14): (push 'loop-1 stepper::*stepper-stop-symbols*)
(LOOP-1)
STEP-NEXT(15): (export 'loop-3)
T
STEP-NEXT(16): (push 'step-next stepper::*stepper-stop-packages*)
(STEP-NEXT)
STEP-NEXT(17): (stepper:step (test-next 7))
We are in the stepper mode
Evaluating step 1 -->
(TEST-NEXT 7)
Type ':?' for a list of options
:n
We are in the stepper mode
Evaluating step 2 -->
(LOOP-1 (1+ N) N)
Type ':?' for a list of options
:n
step 2 ==> value: ((8 7) (8 7) (8 7) (8 7) (8 7) (8 7) (8 7) (8 7))
We are in the stepper mode
Evaluating step 3 -->
(LOOP-3 N 3)
Type ':?' for a list of options
:q
NIL
STEP-NEXT(18): (assert (not (boundp '*test-next-var*)))
NIL
STEP-NEXT(19):

Listing 7: Next and quit features.

STEP-NEXT(19): (stepper:step (test-next 7))
We are in the stepper mode
Evaluating step 1 -->
(TEST-NEXT 7)
Type ':?' for a list of options
:b
Type the name of the symbol to use as a breakpoint with next (n): loop-2
Type ':?' for a list of options
:r
Type the name of the breakpoint symbol to remove: loop-1
Type ':?' for a list of options
:n
We are in the stepper mode
Evaluating step 2 -->
(LOOP-2 (1- N))
Type ':?' for a list of options
:n
step 2 ==> value: (0 1 2 3 4 5)
We are in the stepper mode
Evaluating step 3 -->
(LOOP-3 N 3)
Type ':?' for a list of options
:q
NIL
STEP-NEXT(20):

Listing 8: Next and quit features.

5 FURTHER WORK

The current stepper is implemented in a way that blocks any
remaining threads in the system until the stepping process



Demonstration: A stepper for Armed Bear Common Lisp (ABCL) ELS23, Apr 24–25 2023, Amsterdam, Netherlands

STEP-NEXT(20): (defun test-backtrace (x)
(labels ((f1 (x) (f2 (1+ x)))

(f2 (x) (f3 (* x 3)))
(f3 (x) (+ x 10)))

(f1 x)))
TEST-BACKTRACE
STEP-NEXT(21): (stepper:step (test-backtrace 3))
We are in the stepper mode
Evaluating step 1 -->
(TEST-BACKTRACE 3)
Type ':?' for a list of options
:b
Type the name of the symbol to use as a breakpoint with next (n): +
Type ':?' for a list of options
:n
We are in the stepper mode
Evaluating step 2 -->
(+ X 10)
Type ':?' for a list of options
:bt

(#<LISP-STACK-FRAME ((LABELS F3) 12) {758EDEFD}>
#<LISP-STACK-FRAME ((LABELS F2) 4) {6CD6F8DD}>
#<LISP-STACK-FRAME ((LABELS F1) 3) {3B96D1EB}>
#<LISP-STACK-FRAME (TEST-BACKTRACE 3) {6D76BF34}>
#<LISP-STACK-FRAME (SYSTEM::%EVAL (ABCL-STEPPER:STEP

(TEST-BACKTRACE 3))) {64C522B}>
#<LISP-STACK-FRAME (EVAL (ABCL-STEPPER:STEP

(TEST-BACKTRACE 3))) {387EC7BA}>
#<LISP-STACK-FRAME (SYSTEM:INTERACTIVE-EVAL

(ABCL-STEPPER:STEP (TEST-BACKTRACE 3))) {356A40D7}>
#<LISP-STACK-FRAME (TOP-LEVEL::REPL) {6DBDC651}>
#<LISP-STACK-FRAME (TOP-LEVEL::TOP-LEVEL-LOOP) {9840CC7}>)

Type ':?' for a list of options
:c
step 2 ==> value: 22
step 1 ==> value: 22
22
STEP-NEXT(22):

Listing 9: Show backtrace feature

is finished. This was done by simplicity in the design and
to avoid unpleasant race conditions on the internal states.
Changing it to a non-blocking version, would be more flexi-
ble for users, especially when debugging systems in produc-
tion.

Include other well known step features in other implemen-
tations like step-out and step-next (move to the next form
avoiding step-into)

Implement the evaluation of custom expressions in the current
environment.

Find a way to integrate it with Sly/Slime. Currently, when
called inside Sly/Slime REPL it will only show print a mes-
sage and return the form without any stepping. Also find a
way to abstract the integration with any IDE.

6 ACKNOWLEDGEMENTS

I would like to thank my wife Valeria, who helped me in the
general design of the features and lovingly motivated me to
complete the implementation and this paper.

Also to the Common Lisp community for providing me all
the software, documentation and support to every doubt I
had in my learning all these years.

STEP-NEXT(22): (defun test-watch ()
(let ((x 1))

(setq x 3)
(setq x 7)
(setq x 21)
x))

TEST-WATCH
STEP-NEXT(23): (stepper:step (test-watch))
We are in the stepper mode
Evaluating step 1 -->
(TEST-WATCH)
Type ':?' for a list of options
:w
Type the name of the symbol to watch: x
Type ':?' for a list of options
Watched bindings:
Couldn't find a value for symbol X
:s
We are in the stepper mode
Evaluating step 2 -->
(BLOCK TEST-WATCH

(LET ((X 1))
(SETQ X 3)
(SETQ X 7)
(SETQ X 21)
X))

Type ':?' for a list of options
Watched bindings:
Couldn't find a value for symbol X
:s
We are in the stepper mode
Evaluating step 3 -->
(LET ((X 1))

(SETQ X 3)
(SETQ X 7)
(SETQ X 21)
X)

Type ':?' for a list of options
Watched bindings:
Couldn't find a value for symbol X
:s
We are in the stepper mode
Evaluating step 4 -->
(SETQ X 3)
Type ':?' for a list of options
Watched bindings:
X=1
:s
step 4 ==> value: 3
We are in the stepper mode
Evaluating step 5 -->
(SETQ X 7)
Type ':?' for a list of options
Watched bindings:
X=3
:u
Type the name of the symbol to (un)watch : x
Type ':?' for a list of options
:s
step 5 ==> value: 7
We are in the stepper mode
Evaluating step 6 -->
(SETQ X 21)
Type ':?' for a list of options
:s
step 6 ==> value: 21
step 3 ==> value: 21
step 2 ==> value: 21
step 1 ==> value: 21
21
STEP-NEXT(24):

Listing 10: Watch feature

REFERENCES
[1] Abcl manual. URL https://abcl.org/releases/1.9.0/abcl-1.9.0.pdf.
[2] Pr with the stepper code. URL https://github.com/armedbear/

abcl/pull/568.
[3] João Távora. A portable, annotation-based, visual stepper for

common lisp. 2020. URL https://zenodo.org/record/3742759.

https://abcl.org/releases/1.9.0/abcl-1.9.0.pdf
https://github.com/armedbear/abcl/pull/568
https://github.com/armedbear/abcl/pull/568
https://zenodo.org/record/3742759

	Abstract
	1 Introduction
	2 Related Work
	3 Design and implementation
	3.1 Locals bindings
	3.2 Continue to the end
	3.3 Stop at next marked symbol
	3.4 Step into the form
	3.5 Inspect variables
	3.6 Show backtrace
	3.7 Watch and (un)watch
	3.8 Quit evaluation
	3.9 Examples of usage

	4 Conclusion
	5 Further Work
	6 Acknowledgements
	References

