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Test input generators are an important part of property-based testing (PBT) frameworks. Because PBT is

intended to test deep semantic and structural properties of a program, the outputs produced by these generators

can be complex data structures, constrained to satisfy properties the developer believes is most relevant to

testing the function of interest. An important feature expected of these generators is that they be capable of

producing all acceptable elements that satisfy the function’s input type and generator-provided constraints.

However, it is not readily apparent how we might validate whether a particular generator’s output satisfies

this coverage requirement. Typically, developers must rely on manual inspection and post-mortem analysis of

test runs to determine if the generator is providing sufficient coverage; these approaches are error-prone and

difficult to scale as generators become more complex. To address this important concern, we present a new

refinement type-based verification procedure for validating the coverage provided by input test generators,

based on a novel interpretation of types that embeds “must-style” underapproximate reasoning principles as a

fundamental part of the type system. The types associated with expressions now capture the set of values

guaranteed to be produced by the expression, rather than the typical formulation that uses types to represent

the set of values an expression may produce. Beyond formalizing the notion of coverage types in the context

of a rich core language with higher-order procedures and inductive datatypes, we also present a detailed

evaluation study to justify the utility of our ideas.
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1 INTRODUCTION
Property-based testing (PBT) is a popular technique for automatically testing deep semantic

and structural properties of programs. Originally pioneered by the QuickCheck [Claessen 2020]

library for Haskell, PBT frameworks now exist for many programming languages, including

JavaScript [FastCheck 2022], Rust [RustCheck 2021], Python [Hypothesis 2022], Scala [ScalaCheck

2021], and Coq [Lampropoulos and Pierce 2022]. The PBT methodology rests on two key compo-

nents: executable properties that capture the expected input-output behaviors of the program under

test, and test input generators that generate random values of the input types needed to validate
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these behaviors. In contrast to unit tests, which rely on single examples of inputs and outputs,

generators are meant to provide a family of inputs against which programs can be tested, with the

goal of ensuring the set of generated tests provide good coverage of all possible inputs. In order to

prune out irrelevant inputs, PBT frameworks allow users to define custom generators that reflect

the specific shape of data that the developer believes is most likely to trigger interesting (aka faulty)

behavior. As one simple example, to test a tree compression or balancing function, the developer

may want to use a generator that produces 𝑛-ary trees with randomly chosen height and arity but

whose leaves are ordered according to a user-provided ordering relation.

Given the critical role they play in the assurance case provided by PBT frameworks, it is reasonable

to ask what constitutes a “good” specification for a test generator. For our example, one answer could

be that it should only produce ordered trees. Of course, this is not a very satisfactory characterization

of the behavior we desire: the “constant” generator that always produces trees of height one trivially

meets this specification, but it is unlikely to produce useful tests for a compression function! Ideally,

we would like a generator to intelligently enumerate the space of all possible ordered trees, thereby
helping to maximize the likelihood of finding bugs in the function under test. Because defining such

an enumeration procedure for arbitrary datatypes can be hard, even when complete enumeration

is computationally feasible, PBT frameworks instead give developers the ability to assemble

generators for complex data structures compositionally, building on generators for simpler types

where randomly sampling elements of the type is straightforward and sufficient. For example, we

could implement an ordered tree generator in terms of a primitive random number generator that is

used to non-deterministically select the height, arity, and elements of a candidate tree, checking (or

enforcing) the orderness of the tree before returning it as a feasible test input. Although the random

number generator might provide a guarantee that its underlying probability density function (PDF)

is always non-zero on all elements in its sample space, determining that a tree generator that is

built using it can actually enumerate all the ordered trees desired is a substantially harder problem.

Even if we know the generator is capable of eventually yielding all trees, constraints imposed by the

function’s precondition might require the generator to perform further filtering or transformations

over generated trees. However, proving that any filtering operations the generator uses do not

mistakenly prune out valid ordered trees or that any transformations the generator performs

over candidate trees preserve the elements of the random tree being transformed, pose additional

challenges. In other words, verifying that the generator is complete with respect to our desired

orderness property entails reasoning that is independent of the behavior of the primitive generators

used to build the tree. Consequently, we require some alternative mechanism to help qualify the

part of the target function’s input space the generator is actually guaranteed to cover. Devising such

a mechanism is challenging precisely because the properties that need to be tested may impose

complex structural and semantic constraints on the generated output (e.g., requiring that an output

tree be a binary search tree, or that it satisfies a red-black property, etc.); the complexity of these

constraints is directly correlated to the sparseness of the function’s input space preconditions.

1 type 'a tree =
2 | Leaf
3 | Node of ('a * 'a tree * 'a tree)

4 let rec bst_gen (lo: int) (hi: int) : int tree =
5 if lo + 1 >= hi then Leaf else
6 (* Leaf ⊕ *)
7 (let (x: int) = int_range (lo + 1, hi - 1) in
8 Node (x, bst_gen lo x, bst_gen x hi))

Fig. 1. A BST generator. Failing to uncomment line 6 results in the generator never producing trees that
contain only a subset of the elements in the interval between lo and hi, which is inconsistent with the
developer’s intent.

To illustrate this distinction more concretely, consider the input test generator shown in Figure 1

that is intended to generate all binary search trees (BSTs) whose elements are between the interval
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lo and hi. If we ignore the comment on line 6, we can conclude this generator always produces

a non-empty BST whenever lo < hi. While the generator is correct - it always generates a well-

formed BST - it is also incomplete; the call bst_gen 0 10, for example, will never produce a tree

containing just Leaf or a tree with a shape like Node(1,Leaf,Leaf), even though these instances

are valid trees consistent with the constraints imposed by the generator’s argument bounds. In

fact, this implementation never generates a BST that only contains a proper subset of the elements

that reside within the interval defined by lo and hi. By uncommenting line 6, however, we allow

the generator to non-deterministically choose (via operator ⊕) to either return a Leaf or left and
right BST subtrees based on value returned by the int_range generator, enabling it to potentially

produce BSTs containing all valid subsets of the provided interval, thus satisfying our desired desired

completeness behavior. The subtleties involved in reasoning about such coverage properties is

clearly non-trivial. We reiterate that recognizing the distinction between these two implementations

is not merely a matter of providing a precise output type capturing the desired sortedness property

of a BST: the incomplete implementation clearly satisfies such a type! Furthermore, simply knowing

that the underlying int_range generator used in the implementation samples all elements within

the range of the arguments it is provided is also insufficient to conclude that the BST generator

can yield all possible BSTs within the supplied interval. Similar observations have led prior work

to consider ways to improve a generator’s coverage through mechanisms such as fuzzing [Dolan

2022; Lampropoulos et al. 2019], or to automatically generate complete-by-construction generators

for certain classes of datatypes [Lampropoulos et al. 2018].

In contrast to these approaches, this paper embeds the notion of coverage as an integral part of

a test input generator’s type specification. By doing so, a generator’s type now specifies the set

of behaviors the generator is guaranteed to exhibit; a well-typed generator is thus guaranteed to

produce every possible value satisfying a desired structural property, e.g., that the repaired (complete)

version of bst_gen is capable of producing every valid BST. By framing the notion of coverage

in type-theoretic terms, our approach neither requires instrumentation of the target program to

assess the coverage effectiveness of a candidate generator (as in Lampropoulos et al. [2019]) nor

does it depend on a specific compilation strategy for producing generators (as in Lampropoulos

et al. [2018]). Instead, our approach can automatically verify the coverage properties of an arbitrary
test input generator, regardless of whether it was hand-written or automatically synthesized.

Key to our approach is a novel formulation of amust-style analysis [Germane andMcCarthy 2021;

Godefroid et al. 2010; Jagannathan et al. 1998] of a test input generator’s behavior in type-theoretic

terms. In our proposed type system, we say an expression 𝑒 has coverage type 𝜏 if every value

contained in 𝜏 must be producible by 𝑒 . Note how this definition differs from our usual notion of

what a type represents: ordinarily, if 𝑒 has type 𝜏 then we are allowed to conclude only that any

value contained in 𝜏 may be produced by 𝑒 . Informally, types interpreted in this usual way define

an overapproximation of the values an expression 𝑒 can yield, without obligating 𝑒 to produce any

specific such value. In contrast, coverage types define an underapproximation - they characterize

the values an expression 𝑒 has to produce, potentially eliding other values that 𝑒 may also evaluate

to. When the set of elements denoted by a generator’s (underapproximate) coverage type matches

that of its (overapproximate) normal type, however, we can soundly assert that the generator is

complete. As we illustrate in the remainder of the paper, this characterization allows us to reason

about a program’s coverage behavior on the same formal footing as its safety properties.

In this sense, our solution can be seen a type-theoretic interpretation of recently proposed

Incorrectness Logics (IL) [Le et al. 2022; O’Hearn 2019a; Raad et al. 2020], in much the same way

that refinement-type systems like Liquid Types [Jhala and Vazou 2021; Vazou et al. 2014] relate to

traditional program logics [Hoare 1969]. Despite the philosophical similarities with IL, however,

we use underapproximate reasoning for a very different goal. While IL has been primarily used to
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precisely capture the conditions that will lead a program to fault, this work explores how type-based

underapproximate reasoning can be used to verify the completeness properties of a test generator

in the context of PBT.

This interpretation leads to a fundamental recasting of how types relate to one another: ordinarily,

we are always allowed to assert that 𝜏 <: ⊤. This means that any typing context that admits an

expression with type 𝜏 can also admit that expression at a type with a logically weaker structure. In

contrast, the subtyping relation for coverage types inverts this relation, so that ⊤ <: 𝜏 . Intuitively,

⊤ represents the coverage type that obligates an expression ascribed this type to be capable of

producing all elements in 𝜏 . But, any context that requires an expression to produce all such

elements can always guarantee that the expression will also produce a subset of these elements. In

other words, we are always allowed to weaken an overapproximation (i.e., grow the set of values an

expression may evaluate to), and strengthen an underapproximation (i.e., shrink the set of values

an expression must evaluate to). Thus, in our setting, a random number generator over the integers

has coverage type ⊤int under the mild assumption that its underlying PDF provides a non-zero

likelihood of returning every integer. In contrast, a faulty computation like 1 div 0 has coverage

type ⊥ since there are no guarantees provided by the computation on the value(s) it must return.

Here, ⊥ represents a type that defines a degenerate underapproximation, imposing no constraints

on the values an expression ascribed this type must produce.

This paper makes the following contributions:

(1) It introduces the notion of coverage types, types that characterize the values an input test

generator is guaranteed to (i.e., must) yield.
(2) It formalizes the semantics of coverage types in an ML-like functional language with support

for higher-order functions and inductive datatypes.
1

(3) It develops a bi-directional type-checking algorithm for coverage types in this language.

(4) It incorporates these ideas in a tool (Poirot) that operates over OCaml programs equipped

with input generators and typed using coverage types, and presents an extensive empirical

evaluation justifying their utility, by verifying the coverage properties of both hand-written

and automatically synthesized generators for a rich class of datatypes and their structural

properties.

The remainder of the paper is structured as follows. In the next section, we present an informal

overview of the key features of our type system. Section 3 presents the syntax and semantics for

a core call-by-value higher-order functional language with inductive datatypes that we use to

formalize our approach. Section 4 presents a type system for coverage types; a bidirectional typing

algorithm is then given in Section 5. We describe details about the implementation of Poirot and
provide benchmark results in Section 6. Related work and conclusions are given in Sections 7 and 8.

2 OVERVIEW
Before presenting the full details of our type system, we begin with an informal overview of its

key features.

Base types. In the following, we write [𝜈 :𝑏 | 𝜙] to denote the coverage type that qualifies the

base type 𝑏 using the predicate 𝜙 . As described in the previous section, an application of the

primitive built-in generator for random numbers: int_gen : unit� int has the coverage type

int_gen () : [𝜈 :𝑖𝑛𝑡 | ⊤int]. We use brackets [...] to emphasize that a coverage type has a different

meaning from the types typically found in other refinement type systems [Jhala and Vazou 2021;

Vazou et al. 2014] where a qualified type 𝑏, written as {𝜈 :𝑏 | 𝜙}, uses a predicate 𝜙 to constrain the

1
A Coq formalization of this calculus, its type system, and its metatheory is provided on Zenodo[Zhe 2023].
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Table 1. Examples of typings. We use ⊢ and ⊬ to identify whether a term can or cannot be assigned the
corresponding type, resp. The constant err represents a special error value, that when encountered, causes
the program to halt.

int_gen () ⊢ [𝜈 :𝑖𝑛𝑡 | ⊤int] ⊢ [𝜈 :𝑖𝑛𝑡 | 𝜈 = 1 ∨ 2] ⊢ [𝜈 :𝑖𝑛𝑡 | 𝜈 = 1] ⊢ [𝜈 :𝑖𝑛𝑡 | ⊥]
⊢ {𝜈 :𝑖𝑛𝑡 | ⊤int} ⊬ {𝜈 :𝑖𝑛𝑡 | 𝜈 = 1 ∨ 2} ⊬ {𝜈 :𝑖𝑛𝑡 | 𝜈 = 1} ⊬ {𝜈 :𝑖𝑛𝑡 | ⊥}

1 ⊢ [𝜈 :𝑖𝑛𝑡 | 𝜈 = 1] ⊢ [𝜈 :𝑖𝑛𝑡 | ⊥] ⊢ {𝜈 :𝑖𝑛𝑡 | ⊤int} ⊢ {𝜈 :𝑖𝑛𝑡 | 𝜈 = 1 ∨ 2}
⊢ {𝜈 :𝑖𝑛𝑡 | 𝜈 = 1} ⊬ [𝜈 :𝑖𝑛𝑡 | ⊤int] ⊬ [𝜈 :𝑖𝑛𝑡 | 𝜈 = 1 ∨ 2] ⊬ {𝜈 :𝑖𝑛𝑡 | ⊥}

err ⊢ [𝜈 :𝑖𝑛𝑡 | ⊥] ⊬ [𝜈 :𝑖𝑛𝑡 | ⊤int] ⊬ [𝜈 :𝑖𝑛𝑡 | 𝜈 = 1 ∨ 2] ⊬ [𝜈 :𝑖𝑛𝑡 | 𝜈 = 1]
⊬ {𝜈 :𝑖𝑛𝑡 | ⊤int} ⊬ {𝜈 :𝑖𝑛𝑡 | 𝜈 = 1 ∨ 2} ⊬ {𝜈 :𝑖𝑛𝑡 | 𝜈 = 1} ⊬ {𝜈 :𝑖𝑛𝑡 | ⊥}

set of values a program might evaluate to. To illustrate this distinction, consider the combinations

of expressions and types shown in Table 1. These examples demonstrate the previous observation

that it is always possible to strengthen the refinement predicate used in an underapproximate type

and weaken such a predicate in an overapproximate type. A similar phenomena appears in IL’s

rule of consequence, which inverts the direction of the implications on pre- and postconditions in

the overapproximate version of the rule. As a result, the bottom type [𝜈 :𝑖𝑛𝑡 | ⊥] is the universal
supertype in our type hierarchy, as it places no restrictions on the values a term must produce.
Thus, we sometimes abbreviate [𝜈 :𝑖𝑛𝑡 | ⊥] as int, since the information provided by both types

is the same. Importantly, the coverage type for the error term (err) can only be qualified with ⊥,
since an erroneous computation is unconstrained with the respect to the values it is obligated to

produce.

Coverage types can also qualify inductive datatypes, like lists and trees. In particular, the complete

generator for BSTs presented in the introduction can be successfully type-checked using the

following result type:

[𝜈 :𝑖𝑛𝑡 𝑡𝑟𝑒𝑒 | bst (𝜈) ∧ ∀𝑢,mem(𝜈,𝑢) =⇒ lo < 𝑢 < hi]

where bst (𝜈) and mem(𝜈,𝑢) are method predicates, i.e., uninterpreted functions used to encode

semantic properties of the datatype. In the type given above, the qualifier requires that bst_gen’s
result is a BST (encoded by the predicate bst (𝜈)) and that every element 𝑢 stored in the tree

(encoded by the predicate mem(𝜈,𝑢)) is between lo and hi; the coverage type thus constrains the
implementation to produce all trees that satisfy this qualifier predicate. In contrast, the incomplete

version of the generator (i.e., the implementation that does not allow prematurely terminating tree

generation with a Leaf node) could only be type-checked using the following (stronger) type:

[𝜈 :𝑖𝑛𝑡 𝑡𝑟𝑒𝑒 | bst (𝜈) ∧ ∀𝑢,mem(𝜈,𝑢) ⇐⇒ lo < 𝑢 < hi]

This signature asserts that all trees produced by the generator are BSTs, that any element contained

in the tree is within the interval bounded by lo and hi, and moreover, any element in that interval

must be included in the tree. The subtle difference between the two implementations, reflected in

the different implication constraints expressed in their respective refinements, precisely captures

how their coverage properties differ.

let even_gen () =
let (n: int) = int_gen () in
let (b: bool) = n mod 2 == 0 in
if b then n else err

Fig. 2. An even number generator in
terms of an integer number generator.

Control Flow. Just as underapproximate coverage types in-

vert the standard overapproximate subtyping relationship,

they also invert the standard relationship between a control

flow construct and its subexpressions. To see how, consider

the simple program shown in Figure 2 that defines an even

number generator. When the integer number generator yields

an odd number, the program faults; otherwise it simply returns the generated number. Consider

the following type judgment that arises when type checking this program:

n:[𝜈 :𝑖𝑛𝑡 | ⊤int], b:[𝜈 :𝑏𝑜𝑜𝑙 | 𝜈 ⇐⇒ 𝑛 mod 2 = 0] ⊢ if b then n else err : [𝜈 :𝑖𝑛𝑡 | 𝜈 mod 2 = 0] (1)
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Intuitively, this judgment asserts that the if expression covers all even numbers (i.e., has the

type [𝜈 :𝑖𝑛𝑡 | 𝜈 mod 2 = 0]) assuming that the local variable n can be instantiated with an arbitrary

number, and that the variable b is true precisely when 𝑛 is even. Notice how the typing context

encodes the potential control-flow path that must reach the non-faulting branch of the conditional

expression. Enforcing the requirement that the conditional be able to return all even numbers does

not require each of its branches to be a subtype of the expected type, in contrast to standard type

systems. Our type system must instead establish that, in total, the values produced by each of the

branches cover the even numbers. Because the false branch of the conditional faults, it is only

typeable at the universal supertype, i.e., [𝜈 :𝑖𝑛𝑡 | ⊥]. Thus, if the standard subtyping relationship

between this conditional and its branches held, it could only be typed at [𝜈 :𝑖𝑛𝑡 | ⊥]! This is not the
case in our setting, as the true branch contributes all the desired outputs. Formally, this property

is checked by the following assumption of the coverage typing rule for conditionals:

n:[𝜈 :𝑖𝑛𝑡 | ⊤int], b:[𝜈 :𝑏𝑜𝑜𝑙 | 𝜈 ⇐⇒ n mod 2 = 0] ⊢ [𝜈 :𝑖𝑛𝑡 | (b ∧ 𝜈 = n) ∨ (¬b ∧ ⊥)] <: [𝜈 :𝑖𝑛𝑡 | 𝜈 mod 2 == 0]

The b ∧ 𝜈 = 𝑛 and ¬b ∧ ⊥ subformulas correspond to the types of the true and false branches,2

respectively. Taking the disjunction of these two formulas describes the set of values that can be

produced by either branch;
3
this subtyping relationship guarantees this type is at least as large as

the type expected by the entire conditional. To check that this subtyping relationship holds, our

type checker generates the following formula:

∀𝜈, (𝜈 mod 2 = 0) =⇒ (∃n,⊤ ∧ ∃b, b⇐⇒ n mod 2 = 0 ∧ (b ∧ 𝜈 = n) ∨ (¬b ∧ ⊥)) (2)

This formula aligns with the intuitive meaning of (1): in our type system, coverage types of variables

in the typing context tell us what values they must (at least) produce. When checking whether a

particular subtyping or typing relationship holds, we are free to choose any instantiation of the

variables that entails the desired property. Accordingly, in (2), the variables 𝑛 and 𝑏 are existentially
quantified to indicate there exists an execution path that instantiates these local variables in a way

that produces the output 𝜈 , instead of being universally quantified as they would be in a standard

refinement type system.

Function types. To type functions, most refinement type systems add a restricted form of the

dependent function types found in full-spectrum dependent type systems. Such types allow the

qualifiers in the result type of a function to refer to its parameters, enabling the expression of rich

safety conditions governing the arguments that may be supplied to the function. To see how this

capability might be useful in our setting, consider the test generator bst_gen from the introduction.

The complete version of this function produces all BSTs whose elements fall between the range

specified by its two parameters, lo and hi. For the bounds 0 and 3, the application bst_gen 0 3
can be typed as: [𝜈 :𝑖𝑛𝑡 | bst (𝜈) ∧ ∀𝑢,mem(𝜈,𝑢) =⇒ 0 < 𝑢 < 3]. Using the standard typing rule for
functions, the only way to encode this relationship in the type of bst_gen is:

[𝜈 :𝑖𝑛𝑡 | 𝜈 = 0]� [𝜈 :𝑖𝑛𝑡 | 𝜈 = 3]� [𝜈 :𝑖𝑛𝑡 𝑡𝑟𝑒𝑒 | bst (𝜈) ∧ ∀𝑢,mem(𝜈,𝑢) =⇒ 0 < 𝑢 < 3]

Of course, this specification fails to account for the behaviors of bst_gen when supplied with

different bounds: for example, the application bst_gen 2 7 will fail to typecheck against this type.

Since the desired coverage proprty of bst_gen fundamentally depends on the kinds of inputs

given to it, our type system includes dependent products of the form:

lo:{𝜈 :𝑖𝑛𝑡 | ⊤int} � hi:{𝜈 :𝑖𝑛𝑡 | lo ≤ 𝜈} � [𝜈 :𝑖𝑛𝑡 𝑡𝑟𝑒𝑒 | bst (𝜈) ∧ ∀𝑢,mem(𝜈,𝑢) =⇒ lo < 𝑢 < hi]

We use the notation {...} to emphasize that the argument types of a dependent arrow have a similar

purpose and interpretation as in standard refinement type systems. Thus, the above type can be

2
As is standard in dependent type systems, the types of both branches have been refined to reflect the path conditions under

which they will be executed.

3
This is similar to how the derived rule of choice in IL uses disjunction to reason about both branches of a nondeterministic

choice statement.
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read as “if the inputs lo and hi are any number such that lo ≤ hi, then the output must cover
all possible BSTs whose elements are between lo and hi”. Using this type for bst_gen allows our

system to seamlessly type-check both (bst_gen 0 3) and (bst_gen 2 7). Our typing algorithm
will furthermore flag the call (bst_gen 3 1) as being ill-typed, since the function’s type dictates
that the generator’s second argument (1) may only be greater than or equal to its first (3).

let bst_gen_low_bound (low: int) =
let (high: int) = int_gen () in
bst_gen low high

Fig. 3. This function generates a BST
with a supplied lower bound, low.

Function Application. Since the type of a function parameter

is interpreted as a normal (overapproximate, “may”) refine-

ment type, while arguments in an application may be typed

using (underapproximate, “must”) coverage types, we need to

be able to bridge the gap between may and must types when

typing function applications. Intuitively, our type system does

so by ensuring that the set of values in the coverage type of the argument has a nonempty overlap

with the set of possible values expected by the function. We establish this connection by using

the fact that the typing context captures the control flow paths that may and must exist when the

function is called. To illustrate this intuition concretely, consider the function bst_gen_low_bound
shown in Figure 3. This function generates all non-empty BSTs whose elements are integers with

the lower bound given by its parameter. The judgment we need to check is of the form:

bst_gen : lo:{𝜈 :𝑖𝑛𝑡 | ⊤int} � hi:{𝜈 :𝑖𝑛𝑡 | lo ≤ 𝜈} � [𝜈 :𝑖𝑛𝑡 𝑡𝑟𝑒𝑒 | ...], low:{𝜈 :𝑖𝑛𝑡 | ⊤int}, high:[𝜈 :𝑖𝑛𝑡 | ⊤int]
⊢ bst_gen low high : . . .

Note that the type for low is a normal refinement type that specifies a safety condition for function

bst_gen_low_bound, namely that low may be any number. In contrast, the type for high is a

coverage type, representing the result of int_gen() that indicates that it must (i.e., guaranteed to)

be any possible integer. However, the signature for bst_gen demands that parameter hi only be

supplied values greater than its first argument (lo); we incorporate this requirement by strengthening
high’s type (via a subsumption rule) to reflect this additional constraint when typing the body

of the let expression in which high is bound. This strengthening, which is tantamount to a more

refined underapproximation, allows us to typecheck the application (bst_gen low high) in the

following context:

bst_gen : lo:{𝜈 :𝑖𝑛𝑡 | ⊤int} � hi:{𝜈 :𝑖𝑛𝑡 | lo ≤ 𝜈} � [𝜈 :𝑖𝑛𝑡 𝑡𝑟𝑒𝑒 | ...], low:{𝜈 :𝑖𝑛𝑡 | ⊤int}, high:[𝜈 :𝑖𝑛𝑡 | low ≤ 𝜈]

The coverage type associated with high guarantees that int_gen() must produce values greater

than low (along with possibly other values). To ensure that the result type of the call reflects

the underapproximate (coverage) dependences that exist between low and high, we introduce
existential quantifiers in the type’s qualifier:

..., low:{𝜈 :𝑖𝑛𝑡 | ⊤int} ⊢ [𝜈 :𝑖𝑛𝑡 𝑡𝑟𝑒𝑒 | bst (𝜈) ∧ ∃high, low ≤ high ∧ ∀𝑢,mem(𝜈,𝑢) =⇒ low < 𝑢 < high]

This type properly captures the behavior of the generator: it is guaranteed to generate all BSTs

characterized by a lower bound given low such that there exists an upper bound high where low
≤ high and in which every element in the tree is contained within these bounds.

Summary. Coverage types invert many of the expected relationships that are found in a normal

refinement type system. Here, qualifiers provide an underapproximation of the values that an

expression may evaluate to, in contrast to the typically provided overapproximation. This, in turn,

causes the subtyping relation to invert the standard relationship entailed by logical implication

between type qualifiers. Our coverage analysis also considers the disjunction of the coverage

guarantees provided by the branches of control-flow constructs, instead of their conjunction. Finally,
when applying a function with a dependent arrow type to a coverage type, we check semantic

inclusion between the overapproximate and underapproximate constraints provided by the two

types, and manifest the paths that witness the elements guaranteed to be produced by the coverage

type through existentially-quantified variables in the application’s result type.
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Variables 𝑥, 𝑓 ,𝑢, ...

Data constructors 𝑑 ::= () | true | false | O | S | Cons | Nil | Leaf | Node
Constants 𝑐 ::= B | N | Z | . . . | 𝑑 𝑐

Operators 𝑜𝑝 ::= 𝑑 | + | == | < | mod | nat_gen | int_gen | ...
Values 𝑣 ::= 𝑐 | 𝑜𝑝 | 𝑥 | 𝜆𝑥 :𝑡 .𝑒 | fix𝑓 :𝑡 .𝜆𝑥 :𝑡 .𝑒
Terms 𝑒 ::= 𝑣 | err | let 𝑥 = 𝑒 in 𝑒 | let 𝑥 = 𝑜𝑝 𝑣 in 𝑒 | let 𝑥 = 𝑣 𝑣 in 𝑒

| match 𝑣 with 𝑑 𝑦 → 𝑒

Base Types 𝑏 ::= 𝑢𝑛𝑖𝑡 | 𝑏𝑜𝑜𝑙 | 𝑛𝑎𝑡 | 𝑖𝑛𝑡 | 𝑏 𝑙𝑖𝑠𝑡 | 𝑏 𝑡𝑟𝑒𝑒 | . . .
Basic Types 𝑡 ::= 𝑏 | 𝑡 � 𝑡

Method Predicates 𝑚𝑝 ::= emp | hd | mem | ...
Literals 𝑙 ::= 𝑐 | 𝑥

Propositions 𝜙 ::= 𝑙 | ⊥ | ⊤𝑏 | 𝑜𝑝 (𝑙) |𝑚𝑝 (𝑥) | ¬𝜙 | 𝜙 ∧ 𝜙 | 𝜙 ∨ 𝜙 | 𝜙 =⇒ 𝜙 | ∀𝑢:𝑏. 𝜙 | ∃𝑢:𝑏. 𝜙
Refinement Types 𝜏 ::= [𝜈 :b | 𝜙] | {𝜈 :b | 𝜙} | 𝑥 :𝜏�𝜏

Type Contexts Γ ::= ∅ | Γ, 𝑥 :𝜏

Fig. 4. 𝝀TG syntax.

3 LANGUAGE
In order to formalize our typed-based verification approach of input test generators, we introduce

a core calculus for test generators, 𝝀TG
. The language, whose syntax is summarized in Figure 4,

is a call-by-value lambda-calculus with pattern-matching, inductive datatypes, and well-founded

(i.e., terminating) recursive functions whose argument must be structurally decreasing in all

recursive calls made in the function’s body. The syntax of 𝝀TG
is expressed in monadic normal-form

(MNF) [Hatcliff and Danvy 1994], a variant of A-Normal Form (ANF) [Flanagan et al. 1993] that

allows nested let-bindings. The language additionally allows faulty programs to be expressed

using the error term err. As discussed in Section 2, this term is important in our investigation

because coverage types capture an expression’s reachability properties, and we need to ensure the

guarantees offered by such types are robust even in the presence of stuck computations induced by

statements like err. The language is also equipped with primitive operators to generate natural

numbers, integers, etc. (nat_gen (), int_gen(), . . .) that can be used to express various kinds of

non-deterministic behavior relevant to test input generation. As an example, the ⊕ choice operator

used in Figure 1 can be defined as:

𝑒1 ⊕ 𝑒2 � let 𝑛 = nat_gen () mod 2 in match 𝑛 with 0→ 𝑒1 | _→ 𝑒2

Note that the primitive generators of 𝝀TG
are completely agnostic to the specific sampling strategy

they employ, as long as they ensure every value in their range has a nonzero likelihood of being

generated. Indeed, 𝝀TG
does not include any operators to bias the frequency at which values are

produced, e.g., QuickCheck’s frequency. The inclusion of such an operator would not change

anything fundamentally about our type system or its guarantees. 𝝀TG
has a completely standard

small-step operational semantics.

3.1 Types
Like other refinement type systems [Jhala and Vazou 2021], 𝝀TG

supports three classes of types:

base types, basic types, and refinement types. Base types (𝑏) include primitive types such as unit,
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bool, nat, etc., and inductive datatypes (e.g., int list, bool tree, int list list, etc.). Basic
types (𝑡 ) extend base types with function types. Refinement types (𝜏) qualify base types with both

underapproximate and overapproximate propositions, expressed as predicates defined in first-order

logic (FOL). Function parameters can also be qualified with overapproximate refinements that

specify when it is safe to apply this function. In contrast, the return type of a function can only be

qualified using an underapproximate refinement, reflecting the coverage property of the function’s

result and thus characterizing the values the function is guaranteed to produce. The erasure of a

type 𝜏 , ⌊𝜏⌋, is the type that results from erasing all qualifiers in 𝜏 .

Refinements and Logic. To express rich shape properties over inductive datatypes, we allow propo-

sitions to reference method predicates, as it is straightforward to generate verification conditions

using these uninterpreted functions that can be handled by an off-the-shelf theorem prover like

Z3 [de Moura and Bjørner 2008]. As we describe in Section 5, our typechecking algorithm imposes

additional constraints on the form propositions can take, in order to ensure that its validity is

decidable. In particular, we ensure that Z3 queries generated by our typechecker to check refinement

validity are always over effectively propositional (EPR) sentences (i.e., prenex-quantified formulae

of the form ∃∗∀∗𝜑 where 𝜑 is quantifier-free.)

4 TYPE SYSTEM
Despite superficial similarities to other contemporary type systems [Jhala and Vazou 2021], the

typing rules
4
of 𝝀TG

differ in significant ways from those of its peers, due to the fundamental seman-

tic distinction that arises when viewing types as an underapproximation and not overapproximation

of program behavior.

Our type system depends on three auxiliary relations shown in Figure 5. The first group defines

well-formedness conditions on a type under a particular type context, i.e., a sequence of variable-

type bindings consisting of overapproximate refinement types, underapproximate coverage types,

and arrow (function) types. A type 𝜏 that is well-formed under a type context Γ needs to meet three

criteria: (1) the qualifier in 𝜏 needs to be closed in the current typing context, and the denotation
5
of

all the coverage types ([𝜈 :𝑏𝑦 𝑗
| 𝜙𝑦 𝑗

]) found in Γ should not include err (WfBase); (2) overapproxi-

mate types may only appear in the domain of a function type (WfArg); and, (3) underapproximate

coverage types may only appear in the range of a function type (WfRes). To understand the moti-

vation for the first criterion, observe that a type context in our setting provides a witness to feasible

execution paths in the form of bindings to local variables. Accordingly, no type is well formed

under the type context 𝑥 :[𝜈 :𝑛𝑎𝑡 | ⊥] or under 𝑥 :{𝜈 :𝑛𝑎𝑡 | 𝜈 > 0}, 𝑦:[𝜈 :𝑛𝑎𝑡 | 𝑥 = 0 ∧ 𝜈 = 2], as neither
context corresponds to a valid manifest execution path. On the other hand, a well-formed type is

allowed to include an error term in its denotation, e.g., type [𝜈 :𝑛𝑎𝑡 | ⊥] is well-formed under type

context 𝑥 :{𝜈 :𝑛𝑎𝑡 | 𝜈 > 0} as it always corresponds to a valid underapproximation.

Our second set of judgments defines a largely standard subtyping relation based on the underlying

denotation of the types being related. Note also that over- and under-approximate types are

incomparable— our typing rules tightly control when one can be treated as another.

The disjunction rule (Disjunction), which was informally introduced in Section 2, merges the

coverage types found along distinct control paths. Intuitively, the type [𝜈 :𝑛𝑎𝑡 | 𝜈 = 1 ∨ 𝜈 = 2] is
the disjunction of the types [𝜈 :𝑛𝑎𝑡 | 𝜈 = 1] and [𝜈 :𝑛𝑎𝑡 | 𝜈 = 2]. Notice that only an inhabitant of

both [𝜈 :𝑛𝑎𝑡 | 𝜈 = 1] and [𝜈 :𝑛𝑎𝑡 | 𝜈 = 2] should be included in their disjunction: e.g., the term 1 ⊕ 2

4
The full set of typing rules (including the basic typing rules and the bidirectional typing rules from Section 5), proofs of

theorems, and the details of our evaluation are provided in appendix.

5
The definition of a type’s denotation is given in subsection 4.1.
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Well-Formedness Γ ⊢WF 𝜏

Γ ≡ 𝑥𝑖 :{𝜈 :𝑏𝑥𝑖 | 𝜙𝑥𝑖 }, 𝑦 𝑗 :[𝜈 :𝑏𝑦 𝑗
| 𝜙𝑦 𝑗

], 𝑧:(𝑎:𝜏𝑎�𝜏𝑏 )
(∀𝑥𝑖 :𝑏𝑥𝑖 , ∃𝑦 𝑗 :𝑏𝑦𝑖 ,∀𝜈 :𝑏, 𝜙) is a Boolean predicate ∀𝑗, err ∉ J[𝜈 :𝑏𝑦 𝑗

| 𝜙𝑦 𝑗
]KΓ

WfBase

Γ ⊢WF [𝜈 :𝑏 | 𝜙]

Γ, 𝑥 :{𝜈 :𝑏 | 𝜙} ⊢WF 𝜏
WfArg

Γ ⊢WF 𝑥 :{𝜈 :𝑏 | 𝜙}�𝜏

Γ ⊢WF (𝑎:𝜏𝑎�𝜏𝑏 ) Γ ⊢WF 𝜏
WfRes

Γ ⊢WF (𝑎:𝜏𝑎�𝜏𝑏 )�𝜏

Subtyping Γ ⊢ 𝜏1 <: 𝜏2
J[𝜈 :𝑏 | 𝜙1]KΓ ⊆ J[𝜈 :𝑏 | 𝜙2]KΓ

SubUBase

Γ ⊢ [𝜈 :𝑏 | 𝜙1] <: [𝜈 :𝑏 | 𝜙2]
J{𝜈 :𝑏 | 𝜙1}KΓ ⊆ J{𝜈 :𝑏 | 𝜙2}KΓ

SubOBase

Γ ⊢ {𝜈 :𝑏 | 𝜙1} <: {𝜈 :𝑏 | 𝜙2}

Γ ⊢ 𝜏21 <: 𝜏11 Γ, 𝑥 :𝜏21 ⊢ 𝜏12 <: 𝜏22
SubArr

Γ ⊢ 𝑥 :𝜏11�𝜏12 <: 𝑥 :𝜏21�𝜏22

Disjunction Γ ⊢ 𝜏1 ∨ 𝜏2 = 𝜏3

J𝜏1KΓ ∩ J𝜏2KΓ = J𝜏3KΓ
Disjunction

Γ ⊢ 𝜏1 ∨ 𝜏2 = 𝜏3

Fig. 5. Auxillary typing relations

Table 2. Example typings for 𝝀TG primitives

Constants Ty(true) = [𝜈 :𝑏𝑜𝑜𝑙 | 𝜈] Ty(8) = [𝜈 :𝑛𝑎𝑡 | 𝜈 = 8]...

Data Constructors Ty( [ ] ) = [𝜈 :𝑏 𝑙𝑖𝑠𝑡 | emp (𝜈 )]
Ty(Cons) = 𝑥 :{𝜈 :𝑏 | ⊤b} � 𝑦:{𝜈 :𝑏 𝑙𝑖𝑠𝑡 | ⊤t list} � [𝜈 :𝑏 𝑙𝑖𝑠𝑡 | hd (𝜈, 𝑥 ) ∧ tl (𝜈, 𝑦)]...

Operators Ty(nat_gen) = {𝜈 :𝑢𝑛𝑖𝑡 | ⊤unit}� [𝜈 :𝑛𝑎𝑡 | ⊤nat]
Ty(+) = 𝑥 :{𝜈 :𝑛𝑎𝑡 | ⊤unit} � 𝑦:{𝜈 :𝑛𝑎𝑡 | ⊤nat} � [𝜈 :𝑛𝑎𝑡 | 𝜈 = 𝑥 + 𝑦]...

is one such inhabitant. Thus, we formally define this relation as the intersection of the denotations

of two types.

The salient rules of our type system are defined in Figure 6. All our typing rules assume that all

terms are well-typed according to the normal (aka non-refined) type system. The rules collectively

maintain the invariant that terms can only be assigned a well-formed type. The rule for constants

(TConst) is straightforward. It relies on an auxiliary function, Ty, to assign types to the primitives

of 𝝀TG
. Table 2 presents some examples of the typings provided by Ty. We use method predicates

in the types of constructors: the types for list constructors, for example, use emp, hd and tl, to
precisely capture that [] constructs an empty list, and that (Cons𝑥 𝑦) builds a list containing 𝑥 as

its head and 𝑦 as its tail.
6

The typing rules for function abstraction (TFun) and error (TErr) are similarly straightforward.

The type of the function’s argument 𝜏 needs to be consistent with the type of the argument’s erasure

(⌊𝜏𝑥 ⌋) specified by the 𝜆-abstraction. The error term can be assigned an arbitrary bottom coverage

base type. The variable rule (TVarBase) establishes that the variable 𝑥 in the type context with a base

type can also be typed with the tautological qualifier 𝜈 = 𝑥 (the rule’s well-formedness assumption

ensures that 𝑥 is not free). This judgment allows us to, for example, type the function 𝜆𝑥 : nat .𝑥
with the type 𝑥 :{𝜈 :𝑛𝑎𝑡 | ⊤nat} � [𝜈 :𝑛𝑎𝑡 | 𝜈 = 𝑥], indicating that the return value is guaranteed to

6
The auxiliary function Ty also provides a type for operators, thus the rule for operators is the same as TConst.
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Typing Γ ⊢ 𝑒 : 𝜏
Γ ⊢WF Ty(𝑐)

TConst

Γ ⊢ 𝑐 : Ty(𝑐)
Γ, 𝑥 :𝜏𝑥 ⊢ 𝑒 : 𝜏 Γ ⊢WF 𝑥 :𝜏𝑥�𝜏

TFun

Γ ⊢ 𝜆𝑥 :⌊𝜏𝑥 ⌋ .𝑒 : (𝑥 :𝜏𝑥�𝜏)
Γ ⊢WF [𝜈 :𝑏 | ⊥]

TErr

Γ ⊢ err : [𝜈 :𝑏 | ⊥]

Γ ⊢WF [𝜈 :𝑏 | 𝜈 = 𝑥]
TVarBase

Γ ⊢ 𝑥 : [𝜈 :𝑏 | 𝜈 = 𝑥]

Γ(𝑥) = (𝑎:𝜏𝑎�𝜏𝑏 ) Γ ⊢WF 𝑎:𝜏𝑎�𝜏𝑏
TVarFun

Γ ⊢ 𝑥 : (𝑎:𝜏𝑎�𝜏𝑏 )

Γ ⊢ 𝑣1 : 𝑎:{𝜈 :𝑏 | 𝜙} � 𝜏𝑥
Γ ⊢ 𝑣2 : [𝜈 :𝑏 | 𝜙]

Γ, 𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑣2] ⊢ 𝑒 : 𝜏
Γ ⊢WF 𝜏

TApp

Γ ⊢ let 𝑥 = 𝑣1 𝑣2 in 𝑒 : 𝜏

∅ ⊢ 𝜏 <: 𝜏 ′ ∅ ⊢ 𝑒 : 𝜏
Γ ⊢WF 𝜏 ′

TSub

Γ ⊢ 𝑒 : 𝜏 ′

Γ ⊢ 𝜏 ′ <: 𝜏 Γ ⊢ 𝜏 <: 𝜏 ′

Γ ⊢ 𝑒 : 𝜏 Γ ⊢WF 𝜏 ′
TEq

Γ ⊢ 𝑒 : 𝜏 ′

Γ ⊢ 𝑣 : 𝜏𝑣 Γ ⊢WF 𝜏 Γ, 𝑦:𝜏𝑦 ⊢ 𝑑𝑖 (𝑦) : 𝜏𝑣
Γ, 𝑦:𝜏𝑦 ⊢ 𝑒𝑖 : 𝜏

TMatch

Γ ⊢ (match 𝑣 with 𝑑𝑖 𝑦 → 𝑒𝑖 ) : 𝜏

Γ ⊢ 𝑒 : 𝜏1 Γ ⊢ 𝑒 : 𝜏2
Γ ⊢ 𝜏1 ∨ 𝜏2 = 𝜏 Γ ⊢WF 𝜏

TMerge

Γ ⊢ 𝑒 : 𝜏

Γ ⊢ 𝜆𝑥 :𝑏.𝜆𝑓 :(𝑏�⌊𝜏⌋).𝑒 : (𝑥 :{𝜈 :𝑏 | 𝜙}�𝑓 :(𝑥 :{𝜈 :𝑏 | 𝜈≺𝑥 ∧ 𝜙} � 𝜏)�𝜏) Γ ⊢WF 𝑥 :{𝜈 :𝑏 | 𝜙} � 𝜏
TFix

Γ ⊢ fix𝑓 :(𝑏�⌊𝜏⌋). 𝜆𝑥 :𝑏. 𝑒 : (𝑥 :{𝜈 :𝑏 | 𝜙} � 𝜏)

Fig. 6. Selected typing rules

be exactly equal to the input 𝑥 . Observe that the type of 𝑥 under the type context 𝑥 :{𝜈 :𝑛𝑎𝑡 | ⊤nat}
(generated by the function rule TFun) is not [𝜈 :𝑛𝑎𝑡 | ⊤nat]. We cannot simply duplicate the qualifier

for 𝑥 from the type context here, as this is only soundwhen types characterize an overapproximation

of program behavior. As an example, {𝜈 :𝑛𝑎𝑡 | ⊤nat} is a subtype of {𝜈 :𝑛𝑎𝑡 | 𝜈 = 𝑥} under the type
context 𝑥 :{𝜈 :𝑛𝑎𝑡 | ⊤nat}; in our underapproximate coverage type system, in contrast, [𝜈 :𝑛𝑎𝑡 | ⊤nat]
is not a subtype of [𝜈 :𝑛𝑎𝑡 | 𝜈 = 𝑥] under the type context 𝑥 :{𝜈 :𝑛𝑎𝑡 | ⊤nat} .
The typing rule for application (TApp) requires both its underapproximate argument type and

the overapproximate parameter type to have the same qualifier, and furthermore requires that the

type of the body (𝜏) is well-formed under the original type context Γ, enforcing that 𝑥 (the result

of the application) does not appear free in 𝜏 . When argument and parameter qualifiers are not

identical, a subsumption rule is typically used to bring the two types into alignment. Recall the

following example from Section 2, suitably modified to conform to 𝝀TG
’s syntax:

bst_gen : lo:{𝜈 :𝑖𝑛𝑡 | ⊤int} � hi:{𝜈 :𝑖𝑛𝑡 | lo ≤ 𝜈} � [𝜈 :𝑖𝑛𝑡 𝑡𝑟𝑒𝑒 | ...], low : {𝜈 :𝑖𝑛𝑡 | ⊤int} ⊢
let (g: unit -> int) = int_gen in let (x: unit) = () in
let (high: int) = g x in let (y: int tree) = bst_gen low high in y

Here, the type of high, [𝜈 :𝑖𝑛𝑡 | ⊤int] is stronger than the type expected for the second parameter of

bst_gen, [𝜈 :𝑖𝑛𝑡 | lo ≤ 𝜈]. The subsumption rule (TSub), that would normally allow us to strengthen

the type of high to align with the required parameter type, is applicable to only closed terms, which

high is not. For the same reason, we cannot use TSub to strengthen the type of high when it is

bound to g x. Thankfully, we can strengthen g when it is bound to int_gen: according to Table 2,

the operator int_gen has type {𝜈 :𝑢𝑛𝑖𝑡 | ⊤unit}� [𝜈 :𝑖𝑛𝑡 | ⊤int] and is also closed, and can thus be

strengthened via TSub, allowing us to type the call to bst_gen under the following, stronger type

context:
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bst_gen : lo:{𝜈 :𝑖𝑛𝑡 | ⊤int} � hi:{𝜈 :𝑖𝑛𝑡 | lo ≤ 𝜈} � [𝜈 :𝑖𝑛𝑡 𝑡𝑟𝑒𝑒 | ...], low : {𝜈 :𝑖𝑛𝑡 | ⊤int},
g : {𝜈 :𝑢𝑛𝑖𝑡 | ⊤unit}� [𝜈 :𝑖𝑛𝑡 | low ≤ 𝜈], x : [𝜈 :𝑢𝑛𝑖𝑡 | ⊤unit], high : [𝜈 :𝑖𝑛𝑡 | low ≤ 𝜈] ⊢

let (y: int tree) = bst_gen low high in y

The subsumption rule allows us to use int_gen in a context that requires fewer guarantees than
int_gen actually provides, namely those values of high required by the signature of bst_gen.
Intuitively, since our notion of coverage types records feasible executions in the type context in the

form of existentials that serve as witnesses to an underapproximation, the strengthening provided

by the subsumption rule establishes an invariant that all bindings introduced into a type context

only characterize valid behaviors in a program execution. When coupled with TMerge, this allows

us to split a typing derivation into multiple plausible strengthenings when a variable is introduced

into the typing context and then combine the resulting types to reason about multiple feasible

paths.

Now, using TApp to type bst_gen low high, and TVarBase to type the body of the let gives us:

bst_gen : lo:{𝜈 :𝑖𝑛𝑡 | ⊤int} � hi:{𝜈 :𝑖𝑛𝑡 | lo ≤ 𝜈} � [𝜈 :𝑖𝑛𝑡 𝑡𝑟𝑒𝑒 | ...], low : {𝜈 :𝑖𝑛𝑡 | ⊤int},
high : [𝜈 :𝑖𝑛𝑡 | low ≤ 𝜈], y : [𝜈 :𝑖𝑛𝑡 𝑡𝑟𝑒𝑒 | bst (𝜈) ∧ ∀𝑢,mem(𝜈,𝑢) =⇒ lo < 𝑢 < hi][lo ↦→ low] [hi ↦→ high] ⊢

y : [𝜈 :𝑖𝑛𝑡 𝑡𝑟𝑒𝑒 | 𝜈 = y]

Observe that TVarBase types the body as: [𝜈 :𝑖𝑛𝑡 𝑡𝑟𝑒𝑒 | 𝜈 = y], which is not closed. To construct a

well-formed term, we need a formula equivalent to this type that accounts for the type of y in the

current type context. The TEq rule allows us to interchange formulae that are equivalent under a

given type context to ensure the well-formedness of the types constructed. Unlike TSub, it simply

changes the form of a type’s qualifiers, without altering the scope of feasible behaviors under the

current context. In this example, such an equivalent closed type, given the binding for y in the type

context under which the expression is being type-checked, would be:

let (y: int tree) = bst_gen low high in y :
[𝜈 :𝑖𝑛𝑡 𝑡𝑟𝑒𝑒 | ∃y, (bst (y) ∧ ∀𝑢,mem(y, 𝑢) =⇒ low < 𝑢 < high) ∧ 𝜈 = y]

With these pieces in hand, we can see that the typing rule for match is a straightforward adaptation
of the components we have already seen, where the type of matched variable 𝑣 is assumed to have

been strengthened by the rule TSub to fit the type required to take the 𝑖th branch Γ, 𝑦:𝜏𝑦 ⊢ 𝑑𝑖 (𝑦) : 𝜏𝑣 .
We can also safely assume the type of the branch 𝜏𝑖 is closed under original type context Γ, relying
on TEq to meet this requirement. While TMatch only allows for a single branch to be typechecked,

applying TMerge allows us to reason about the coverage provided by multiple branches, which

have all been typed according to this rule.

The typing rule for recursive functions is similarly standard,
7
with the caveat that it can only

type terminating functions; since types in our language serve as witnesses to feasible executions,

the result type of any recursive procedure must characterize the set of values the procedure can

plausibly return. Thus, the TFix rule forces its first argument to always decrease according to some

well-founded relation ≺. To see why we impose this restriction, consider the function loop:

let rec loop (n: nat) = loop n

Without our termination check, this function can be assigned the type {𝜈 :𝑛𝑎𝑡 | ⊤nat}�[𝜈 :𝑛𝑎𝑡 | 𝜈 = 3],
despite the fact that this function never returns 3— or any value at all! The body of this expression

can be type-checked under the following type context (via TFix and TFun):

n:{𝜈 :𝑛𝑎𝑡 | ⊤nat}, loop:(n:{𝜈 :𝑛𝑎𝑡 | ⊤nat} � [𝜈 :𝑛𝑎𝑡 | 𝜈 = 3]) ⊢ loop n : [𝜈 :𝑛𝑎𝑡 | 𝜈 = 3]

7
As in TFun, the self-reference to 𝑓 and the parameter of the lambda abstraction 𝑥 in the recursive function body must

have type annotations consistent with the basic type of the fix expression.
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This judgment reflects an infinitely looping execution, however. Indeed, the same reasoning allows

us to type this function with any result type. Constraining loop’s argument type to be decreasing

according to ≺ yields the following typing obligation:

n:{𝜈 :𝑛𝑎𝑡 | ⊤nat}, loop:(n:{𝜈 :𝑛𝑎𝑡 | 𝜈 ≺ n} � [𝜈 :𝑛𝑎𝑡 | 𝜈 = 3]) ⊢ n : [𝜈 :𝑛𝑎𝑡 | 𝜈 = n]

where the qualifiers 𝜈 ≺ n and 𝜈 = n conflict, raising a type error, and preventing loop from being

recursively applied to n.

4.1 Soundness
Type Denotations. Assuming a standard typing judgement for basic types, ∅ ⊢t 𝑒 : 𝑡 , a type

denotation for a type 𝜏 , J𝜏K, is a set of closed expressions:

J{𝜈 :𝑏 | 𝜙}K � {𝑣 | ∅ ⊢t 𝑣 : 𝑏 ∧ 𝜙 [𝜈 ↦→ 𝑣]}
J[𝜈 :𝑏 | 𝜙]K � {𝑒 | ∅ ⊢t 𝑒 : 𝑏 ∧ ∀𝑣 :𝑏, 𝜙 [𝜈 ↦→ 𝑣] =⇒ 𝑒 ↩→∗ 𝑣}
J𝑥 :𝜏𝑥�𝜏K � {𝑓 | ∅ ⊢t 𝑓 : ⌊𝜏𝑥�𝜏⌋ ∧ ∀𝑣𝑥 ∈ J𝜏𝑥K =⇒ 𝑓 𝑣𝑥 ∈ J𝜏 [𝑥 ↦→ 𝑣𝑥 ]K}

In the case of an overapproximate refinement type, {𝜈 :𝑏 | 𝜙}, the denotation is simply the set of all

values of type 𝑏 whose elements satisfy the type’s refinement predicate (𝜙), when substituted for

all free occurrences of 𝜈 in 𝜙 .8 Dually, the denotation of an underapproximate coverage type is the

set of expressions that evaluate to 𝑣 whenever 𝜙 [𝜈 ↦→ 𝑣] holds, where 𝜙 is the type’s refinement

predicate. Thus, every expression in such a denotation serves as a witness to a feasible, type-correct,

execution. The denotation for a function type is defined in terms of the denotations of the function’s

argument and result in the usual way, ensuring that our type denotation is a logical predicate.

Type Denotation under Type Context. The denotation of a refinement types 𝜏 under a type context

Γ (written J𝜏KΓ) is:9,10

J𝜏K∅ � J𝜏K
J𝜏K𝑥 :𝜏𝑥 ,Γ � {𝑒 | ∀𝑣𝑥 ∈ J𝜏𝑥K, let 𝑥 = 𝑣𝑥 in 𝑒 ∈ J𝜏 [𝑥 ↦→ 𝑣𝑥 ]KΓ [𝑥 ↦→𝑣𝑥 ]} if 𝜏 ≡ {𝜈 :𝑏 | 𝜙}

J𝜏K𝑥 :𝜏𝑥 ,Γ � {𝑒 | ∃𝑒𝑥 ∈ J𝜏𝑥K,∀𝑒𝑥 ∈ J𝜏𝑥K, let 𝑥 = 𝑒𝑥 in 𝑒 ∈
⋂

𝑒𝑥 ↩→∗𝑣𝑥
J𝜏 [𝑥 ↦→ 𝑣𝑥 ]KΓ [𝑥 ↦→𝑣𝑥 ]} otherwise

The denotation of an overapproximate refinement type under a type context is mostly unsurprising,

other than our presentation choice to use a let-binding, rather than substitution, to construct the

expressions included in the denotations. For a coverage type, however, the definition precisely

captures our notion of a reachability witness by explicitly constructing an execution path as a

sequence of let-bindings that justifies the inhabitant of the target type 𝜏 . Using let-bindings
forces expressions in the denotation to make consistent choices when evaluated. The existential

introduced in the definition captures the notion of an underapproximation, while the use of set

intersection allows us to reason about non-determinism introduced by primitive generators like

nat_gen().

Example 4.1. The term𝑥+1 is included in the denotation of the type [𝜈 :𝑛𝑎𝑡 | 𝜈 = 𝑥 + 1 ∨ 𝜈 = 𝑥 + 𝑥]
under the type context 𝑥 : [𝜈 :𝑛𝑎𝑡 | 𝜈 = 1]. This is justified by picking 1 for 𝑒𝑥 , which yields a set

8
The denotation of an overapproximate refinement type is more generally {𝑒 :𝑏 | ∅ ⊢ 𝑒 : 𝑏 ∧ ∀𝑣:𝑏, 𝑒 ↩→∗ 𝑣 =⇒ 𝜙 [𝑥 ↦→ 𝑣 ] }.
However, because such types are only used for function parameters, and our language syntax only admits values as

arguments, our denotation uses the simpler form.

9
In the last case, since 𝑒𝑥 may nondetermistically reduce to multiple values, we employ intersection (not union), similar to

the Disjunction rule.

10
When reasoning about a subset relation between the denotations of two types under a type context J[𝜈 :𝑏 | 𝜙1]KΓ ⊆

J[𝜈 :𝑏 | 𝜙2]KΓ we require that the denotations be computed using the same Γ; details are provided in the appendix.
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intersection that is equivalent to J[𝜈 :𝑛𝑎𝑡 | 𝜈 = 2]K. Observe that any expression in J[𝜈 :𝑛𝑎𝑡 | 𝜈 = 1]K,
e.g. 0 ⊕ 1 and 1 ⊕ 2, yields an expression, let 𝑥 = 0 ⊕ 1 in 𝑥 + 1 or let 𝑥 = 1 ⊕ 2 in 𝑥 + 1, included
in this intersection.

Example 4.2. On the other hand, the term 𝑥 is not a member of this denotation. To see why,

let us pick nat_gen() for 𝑒𝑥 . This yields a set intersection that is equivalent to J[𝜈 :𝑛𝑎𝑡 | ⊤nat]K.
While specific choices for 𝑒𝑥 , e.g., nat_gen(), are included in this denotation, it does not work

for all terms 𝑒𝑥 ∈ J[𝜈 :𝑛𝑎𝑡 | 𝜈 = 1]K. As one example, 0 ⊕ 1 ⊕ 2 is an element of this set, but

let 𝑥 = 0 ⊕ 1 ⊕ 2 in 𝑥 is clearly not a member of J[𝜈 :𝑛𝑎𝑡 | ⊤nat]K. Suppose instead that we picked

a more restrictive expression for 𝑒𝑥 , like the literal 1 from the previous example. Here, it is easy to

choose 𝑒𝑥 ∈ J[𝜈 :𝑛𝑎𝑡 | 𝜈 = 1]K (e.g., the literal 1) such that let 𝑥 = 𝑒𝑥 in 𝑥 ∉ J[𝜈 :𝑛𝑎𝑡 | 𝜈 = 2]K.

Our main soundness result establishes the correctness of type-checking in the presence of

coverage types with respect to a type’s denotation:

Theorem 4.3. [Type Soundness] For all type contexts Γ, terms 𝑒 and coverage types 𝜏 , Γ ⊢ 𝑒 : 𝜏 =⇒
𝑒 ∈ J𝜏KΓ .

It immediately follows that a closed input generator e with coverage type [𝜈 :𝑏 | 𝜙] must produce

every value satisfying 𝜙 , as desired.

5 TYPING ALGORITHM
The declarative typing rules are highly nondeterministic, relying on a combination of the TMerge

and TSub rules to both explore and combine the executions needed to establish the desired coverage

properties. In addition, each of the auxillary typing relations depend on logical properties of the

semantic interpretation of types. Any effective type checking algorithm based on these rules must

address both of these issues. Our solution to the first problem is to implement a bidirectional type

checker [Dunfield and Krishnaswami 2021] whose type synthesis phase characterizes a set of

feasible paths and whose type checking phase ensures those paths produce the desired results. Our

solution to the second is to encode the logical properties into a decidable fragment of first order

logic that can be effectively discharged by an SMT solver.

5.1 Bidirectional Typing Algorithm

Type Synthesis Γ ⊢ 𝑒 ⇒ 𝜏 Type Check Γ ⊢ 𝑒 ⇐ 𝜏

∀𝑖, Ty(𝑑𝑖 ) = 𝑦:{𝜈 :𝑏𝑦 | 𝜃𝑦 }�[𝜈 :𝑏 | 𝜓𝑖] Γ′
𝑖
= 𝑦:[𝜈 :𝑏𝑦 | 𝜃𝑦], 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑣𝑎 ∧𝜓𝑖]

Γ, Γ′
𝑖
⊢ 𝑒𝑖 ⇒ 𝜏𝑖 𝜏 ′

𝑖
= Ex(Γ′

𝑖
, 𝜏𝑖 ) Γ ⊢ Disj(𝜏 ′

𝑖
) <: 𝜏 ′ Γ ⊢WF 𝜏 ′

ChkMatch

Γ ⊢ match 𝑣𝑎 with 𝑑𝑖 𝑦 → 𝑒𝑖 ⇐ 𝜏 ′

Γ ⊢ 𝑣1⇒ (𝑎:𝜏𝑎�𝜏𝑏 )�𝜏𝑥
Γ ⊢ 𝑣2⇐ 𝑎:𝜏𝑎�𝜏𝑏 Γ′ = 𝑥 :𝜏𝑥
Γ, Γ′ ⊢ 𝑒 ⇒ 𝜏 𝜏 ′ = Ex(Γ′, 𝜏)

Γ ⊢WF 𝜏 ′
SynAppFun

Γ ⊢ let 𝑥 = 𝑣1 𝑣2 in 𝑒 ⇒ 𝜏 ′

Γ ⊢ 𝑣1⇒ 𝑎:{𝜈 :𝑏 | 𝜙} � 𝜏𝑥
Γ′ = 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑣2 ∧ 𝜙], 𝑥 :𝜏𝑥
Γ, Γ′ ⊢ 𝑒 ⇒ 𝜏 𝜏 ′ = Ex(Γ′, 𝜏)

Γ ⊢WF 𝜏 ′
SynAppBase

Γ ⊢ let 𝑥 = 𝑣1 𝑣2 in 𝑒 ⇒ 𝜏 ′

Fig. 7. Selected Bidirectional Typing Rules
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As is standard in bidirectional type systems, our typing algorithm consists of a type synthesis

judgement (Γ ⊢ 𝑒 ⇒ 𝜏) and a type checking judgment (Γ ⊢ 𝑒 ⇐ 𝜏). Figure 7 presents the key rules

for both.

Typing match. As we saw in Section 4, applying the declarative typing rule for match expressions
typically requires first using several other rules to get things into the right form: TMerge is required

to analyze and combine the types of each branch, TSub is used to equip each branch with the

right typing context, and TEq is used to remove any local or pattern variables from the type of a

branch. Our bidirectional type system combines all of these into the single ChkMatch rule shown

in Figure 7. At a high level, this rule synthesizes a type for all the branches and then ensures that,

in combination, they cover the desired type.

Similarly to other refinement type systems, when synthesizing the type for the branch for

constructor 𝑑𝑖 , we use a ghost variable 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑣𝑎 ∧𝜓𝑖] to ensure that the types of any pattern

variables 𝑦 are consistent with the parameters of 𝑑𝑖 . This strategy allows us to avoid having to

apply TSub to focus on a particular branch: instead, we simply infer a type for each branch, and

then combine them using our disjunction operation. In order for the inferred type of a branch to

make sense, we need to remove any occurrences of pattern variables or the ghost variable 𝑎. To do,

we use the Ex function, which intuitively allows us to embed information from the typing context

into a type. This function takes as input a typing context Γ and type 𝜏 and produces an equivalent

type 𝜏 <: 𝜏 ′ <: 𝜏 in which pattern and ghost variables do not appear free. Finally, ChkMatch

uses Disj to ensure that the combination of the types of all the branches cover the required type

Γ ⊢ Disj(𝜏 ′
𝑖
) <: 𝜏 .

Example 5.1. Consider how we might check that the body of the generator for natural numbers

introduced in Section 2 has the expected type [𝜈 :𝑖𝑛𝑡 | 𝜈 mod 2 = 0]:11

int_gen:{𝜈 :𝑢𝑛𝑖𝑡 | ⊤unit}� [𝜈 :𝑖𝑛𝑡 | ⊤int] ⊢
let (n: int) = int_gen() in let (b: bool) = n mod 2 == 0 in
match b with true -> err | false -> n ⇐ [𝜈 :𝑖𝑛𝑡 | 𝜈 mod 2 = 0]

Our typing algorithm first adds the local variable n and b to the type context, and then checks the

pattern-matching expression against the given type:

int_gen:{𝜈 :𝑢𝑛𝑖𝑡 | ⊤unit}� [𝜈 :𝑖𝑛𝑡 | ⊤int], n:[𝜈 :𝑖𝑛𝑡 | ⊤int], b:[𝜈 :𝑏𝑜𝑜𝑙 | 𝜈 ⇐⇒ n mod 2 = 0] ⊢
match b with true -> err | false -> n ⇐ [𝜈 :𝑖𝑛𝑡 | 𝜈 mod 2 = 0]

The ChkMatch rule first synthesizes types for the two branches separately. Inferring a type of the

first branch using the existing type context:

..., b:[𝜈 :𝑏𝑜𝑜𝑙 | 𝜈 ⇐⇒ n mod 2 = 0], b′:[𝜈 :𝑏𝑜𝑜𝑙 | 𝜈 = b ∧ 𝜈] ⊢ err ⇒ [𝜈 :𝑖𝑛𝑡 | ⊥]
adds a ghost variable b′ to reflect the fact that nmust be less than 0 in this branch. By next applying

the TErr rule, our algorithm infers the type [𝜈 :𝑖𝑛𝑡 | ⊥] for this branch. The rule next uses Ex to
manifest b′ in the inferred type, encoding the path constraints under which this type holds (i.e. 𝑏 is

true).

..., b:[𝜈 :𝑏𝑜𝑜𝑙 | 𝜈 ⇐⇒ n mod 2 = 0], b′:[𝜈 :𝑏𝑜𝑜𝑙 | 𝜈 = b ∧ 𝜈] ⊢ err ⇒ [𝜈 :𝑖𝑛𝑡 | ∃b′, b′ = b ∧ b′ ∧ ⊥]
Thus, the synthesized type for the first branch is [𝜈 :𝑖𝑛𝑡 | b ∧ ⊥] after trivial simplification. The

type of the second branch provides a better demonstration of why Ex is needed:
..., b:[𝜈 :𝑏𝑜𝑜𝑙 | 𝜈 ⇐⇒ n mod 2 = 0], b′:[𝜈 :𝑏𝑜𝑜𝑙 | 𝜈 = b ∧ ¬𝜈] ⊢ n ⇒ [𝜈 :𝑖𝑛𝑡 | 𝜈 = n]

After applying this operator, the inferred type is [𝜈 :𝑖𝑛𝑡 | ∃b′, b′ = b ∧ ¬b′ ∧ 𝜈 = n]; after simplifi-

cation, this becomes [𝜈 :𝑖𝑛𝑡 | ¬b ∧ 𝜈 = n]. The disjunction of these two types:

Disj([𝜈 :𝑖𝑛𝑡 | b ∧ ⊥], [𝜈 :𝑖𝑛𝑡 | ¬b ∧ 𝜈 = n]) = [𝜈 :𝑖𝑛𝑡 | (b ∧ ⊥) ∨ (¬b ∧ 𝜈 = n)]
11
We have replaced the if from the original example with a match expression, to be consistent with the syntax of 𝝀TG

.
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results in exactly the type shown in Section 2. This can be then successfully checked against the

target type [𝜈 :𝑛𝑎𝑡 | 𝜈 mod 2 = 0].

Application. Our type synthesis rules for function application adopt a strategy similar to Chk-

Match’s, trying to infer the strongest type possible for an expression that uses the result of a

function application. The rule for a function whose parameter is an overapproximate refinement

type (SynAppBase) is most interesting, since it has to bridge the gap with an argument that has

an underappproximate coverage type. When typing 𝑒 , the expression that uses the result of the

function call, the rule augments the typing context with a ghost variable 𝑎. This variable records

that the coverage type of the argument must overlap with the type expected by the function (both

must satisfy the refinement predicate 𝜙): if this intersection is empty, i.e., the type of 𝑎 is equivalent

to ⊥, we will fail to infer a type for 𝑒 , as no type will be well-formed in this context. As with

ChkMatch, SynAppBase uses Ex to ensure that it does not infer a type that depends on 𝑎.

5.2 Auxiliary Typing Functions
The auxillary Disj and Ex operations are a straightforward syntactic transformations; their full

definitions can be found in the appendix. More interesting is how we check well-formedness and

subtyping. Our type checking algorithm translates both obligations into logical formulae that can

be discharged by a SMT solver. Both obligations are encoded by theQuery subroutine shown in

Algorithm 1.Query(Γ, [𝜈 :𝑏 | 𝜙1], [𝜈 :𝑏 | 𝜙2]) encodes the bindings in Γ in the typing context from

right to left, before checking whether 𝜙1 implies 𝜙2. Variables with function types, on the other

hand, are omitted entirely, as qualifiers cannot have function variables in FOL. Variables with an

overapproximate (underapproximate) type are translated as a universally (existential) quantified

variable, and are encoded into the refinement of both coverage types.

Example 5.2. Consider the subtyping obligation generated by Example 5.1 above:

int_gen:{𝜈 :𝑢𝑛𝑖𝑡 | ⊤unit}� [𝜈 :𝑖𝑛𝑡 | ⊤int], n:[𝜈 :𝑖𝑛𝑡 | ⊤int], b:[𝜈 :𝑏𝑜𝑜𝑙 | 𝜈 ⇐⇒ n mod 2 = 0] ⊢
[𝜈 :𝑖𝑛𝑡 | (𝑏 ∧ ⊥) ∨ (¬𝑏 ∧ 𝜈 = 𝑛)] <: [𝜈 :𝑖𝑛𝑡 | 𝜈 ≥ 0]

This obligation is encoded by the following call to Query

Query(int_gen:{𝜈 :𝑢𝑛𝑖𝑡 | ⊤unit}� [𝜈 :𝑖𝑛𝑡 | ⊤int], n:[𝜈 :𝑖𝑛𝑡 | ⊤int], b:[𝜈 :𝑏𝑜𝑜𝑙 | 𝜈 ⇐⇒ n mod 2 = 0])
[𝜈 :𝑖𝑛𝑡 | (b ∧ ⊥) ∨ (¬b ∧ 𝜈 = n)], [𝜈 :𝑖𝑛𝑡 | 𝜈 ≥ 0]) ≡

Query(int_gen:{𝜈 :𝑢𝑛𝑖𝑡 | ⊤unit}� [𝜈 :𝑖𝑛𝑡 | ⊤int], n:[𝜈 :𝑖𝑛𝑡 | ⊤int],
[𝜈 :𝑖𝑛𝑡 | ∃b, b⇐⇒ n mod 2 = 0 ∧ (b ∧ ⊥) ∨ (¬b ∧ 𝜈 = n)], [𝜈 :𝑖𝑛𝑡 | ∃b, b⇐⇒ n mod 2 = 0 ∧ 𝜈 ≥ 0]) ≡

Query(int_gen:{𝜈 :𝑢𝑛𝑖𝑡 | ⊤}� [𝜈 :𝑖𝑛𝑡 | ⊤int],
[𝜈 :𝑖𝑛𝑡 | ∃n,⊤int ∧ ∃b, b⇐⇒ n mod 2 = 0 ∧ (b ∧ ⊥) ∨ (¬b ∧ 𝜈 = n)],
[𝜈 :𝑖𝑛𝑡 | ∃n,⊤int ∧ ∃b, b⇐⇒ n mod 2 = 0 ∧ 𝜈 ≥ 0]) ≡

Query(∅, [𝜈 :𝑖𝑛𝑡 | ∃n,⊤int ∧ ∃b, b⇐⇒ n mod 2 = 0 ∧ (b ∧ ⊥) ∨ (¬b ∧ 𝜈 = n)],
[𝜈 :𝑖𝑛𝑡 | ∃n,⊤int ∧ ∃b, b⇐⇒ n mod 2 = 0 ∧ 𝜈 ≥ 0]) ≡
∀𝜈, ∃n,⊤int ∧ ∃b, b⇐⇒ n mod 2 = 0 ∧ 𝜈 ≥ 0) =⇒
∃n,⊤int ∧ ∃b, b⇐⇒ n mod 2 = 0 ∧ (b ∧ ⊥) ∨ (¬b ∧ 𝜈 = n)

This is equivalent to formula (2) from Section 2:

∀𝜈, (𝜈 ≥ 0) =⇒ (∃n, ∃b, b⇐⇒ n mod 2 = 0 ∧ (b ∧ ⊥) ∨ (¬b ∧ 𝜈 = n))

UsingQuery, it is straightforward to discharge well-formedness and subtyping obligations using

the rules shown in Figure 8. In the case of WfBase, for example, observe that the error term err
is always an inhabitant of the type [𝜈 :𝑏 | ⊥] for arbitrary base type 𝑏. Thus, to check the last

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 157. Publication date: June 2023.



Covering All the Bases: Type-based Verification of Test Input Generators 157:17

̸ |= Query(Γ, [𝜈 :𝑏 | ⊥], [𝜈 :𝑏 | 𝜙])
err ∉ J[𝜈 :𝑏 | 𝜙]KΓ

|= Query(Γ, [𝜈 :𝑏 | 𝜙1], [𝜈 :𝑏 | 𝜙2])
Γ ⊢ [𝜈 :𝑏 | 𝜙1] <: [𝜈 :𝑏 | 𝜙2]

|= Query(Γ, [𝜈 :𝑏 | 𝜙2], [𝜈 :𝑏 | 𝜙1])
Γ ⊢ {𝜈 :𝑏 | 𝜙1} <: {𝜈 :𝑏 | 𝜙2}

Fig. 8. Auxillary Typing Functions

Algorithm 1: Subtyping Query

1 ProcedureQuery((Γ, [𝜈 :𝑏 | 𝜙1], [𝜈 :𝑏 | 𝜙2]) :=
2 match Γ:
3 case ∅ do
4 return ∀𝜈 :𝑏, 𝜙2 =⇒ 𝜙1;

5 case Γ, 𝑥 :(𝑎:𝜏𝑎�𝜏) do
6 𝜙 ←Query((Γ, [𝜈 :𝑏 | 𝜙1], [𝜈 :𝑏 | 𝜙2]);
7 return 𝜙 ;

8 case Γ, 𝑥 :{𝜈 :𝑏𝑥 | 𝜙𝑥 } do
9 𝜏1 ← [𝜈 :𝑏 | ∀𝑥 :𝑏𝑥 , 𝜙𝑥 [𝜈 ↦→ 𝑥] =⇒ 𝜙1];

10 𝜏2 ← [𝜈 :𝑏 | ∀𝑥 :𝑏𝑥 , 𝜙𝑥 [𝜈 ↦→ 𝑥] =⇒ 𝜙2];
11 return Query(Γ, [𝜈 :𝑏 | 𝜏1], [𝜈 :𝑏 | 𝜏2]);
12 case Γ, 𝑥 :[𝜈 :𝑏𝑥 | 𝜙𝑥 ] do
13 𝜏1 ← [𝜈 :𝑏 | ∃𝑥 :𝑏𝑥 , 𝜙𝑥 [𝜈 ↦→ 𝑥] ∧ 𝜙1];
14 𝜏2 ← [𝜈 :𝑏 | ∃𝑥 :𝑏𝑥 , 𝜙𝑥 [𝜈 ↦→ 𝑥] ∧ 𝜙2];
15 return Query(Γ, [𝜈 :𝑏 | 𝜏1], [𝜈 :𝑏 | 𝜏2]);

assumption of WfBase, it suffices to iteratively check if any coverage types in the type context are

a supertype of their associated bottom type.

Discharging subtyping obligations is slightly more involved, as we need to ensure that the

formulas sent to the SMT solver are decidable. Observe that in order to produce effectively decidable

formulas, the encoding strategy realized byQuery always generates a formula of the form ∀𝑥 .∃𝑦.𝜙 ,
i.e. it does not allow for arbitrary quantifier alternations. To ensure that this is sound strategy, we

restrict all overapproximate refinement types in a type context to not have any free variables that

have a coverage type. This constraint allows us to safely lift all universal quantifiers to the top

level, thus avoiding arbitrary quantifier alternations.

As an example of a scenario disallowed by this restriction, consider the following type checking

judgment:

𝑥 :[𝜈 :𝑛𝑎𝑡 | 𝜈 > 0] ⊢ 𝜆y : 𝑛𝑎𝑡 . x + y⇐ 𝑦:{𝜈 :𝑛𝑎𝑡 | 𝜈 > 𝑥 + 1} � [𝜈 :𝑛𝑎𝑡 | 𝜙]
This judgment produces the following subtyping check:

𝑥 :[𝜈 :𝑛𝑎𝑡 | 𝜈 > 0], 𝑦:{𝜈 :𝑛𝑎𝑡 | 𝜈 > 𝑥 + 1} ⊢ [𝜈 :𝑛𝑎𝑡 | 𝜈 = 𝑥 + 𝑦] <: [𝜈 :𝑛𝑎𝑡 | 𝜙]
where the normal refinement type {𝜈 :𝑛𝑎𝑡 | 𝜈 > 𝑥 + 1} in the type context has free variable 𝑥 that

has coverage type. Evaluating this judgment entails solving the formula:

∀𝜈, (∃𝑥, 𝑥 > 0 ∧ (∀𝑦,𝑦 > 𝑥 + 1 =⇒ 𝜙)) =⇒ (∃𝑥, 𝑥 > 0 ∧ (∀𝑦,𝑦 > 𝑥 + 1 =⇒ 𝜈 = 𝑥 + 𝑦))
which is not decidable due to the quantifier alternation ∀𝜈∃𝑥∀𝑦.

Theorem 5.3. [Soundness of Algorithmic Typing] For all type context Γ, term 𝑒 and coverage type
𝜏 , Γ ⊢ 𝑒 ⇐ 𝜏 =⇒ Γ ⊢ 𝑒 : 𝜏

Theorem 5.4. [Completeness of Algorithmic Typing] Assume an oracle for all formulas produced by
theQuery subroutine. Then for any type context Γ, term 𝑒 and coverage type 𝜏 , Γ ⊢ 𝑒 : 𝜏 =⇒ Γ ⊢ 𝑒 ⇐ 𝜏 .

6 EVALUATION
Implementation. We have implemented a coverage type checker, called Poirot, based on the

above approach. Poirot targets functional, non-concurrent OCaml programs that rely on libraries
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Table 3. Experimental results on hand-written generators. Existing benchmarks are annotated with their
source: QuickChick [Lampropoulos and Pierce 2022] (*), QuickCheck [Claessen and Hughes 2000] (◦), and
bespoke test input generators from [Lampropoulos et al. 2019] (★) and [Zhou et al. 2021] (⋄).

#Branch Recursive #LocalVar #MP #Query (max. #∀,#∃) total (avg. time)(s)

SizedList* 4 ✓ 12 2 11 (7, 9) 0.35(0.03)
SortedList* 4 ✓ 11 4 13 (9, 9) 6.77(0.52)
UniqueList⋄ 3 ✓ 8 3 10 (7, 7) 0.64(0.06)
SizedTree* 4 ✓ 13 2 14 (9, 12) 0.48(0.03)

CompleteTree★ 3 ✓ 10 2 13 (8, 10) 0.38(0.03)
RedBlackTree* 6 ✓ 36 3 70 (16, 53) 6.69(0.10)
SizedBST★ 5 ✓ 20 4 29 (17, 18) 12.20(0.42)

BatchedQueue⋄ 2 6 1 9 (7, 5) 0.52(0.06)
BankersQueue⋄ 2 6 1 11 (7, 6) 0.46(0.04)

Stream⋄ 4 13 2 13 (8, 11) 0.44(0.03)
SizedHeap◦ 5 ✓ 16 4 18 (12, 15) 3.89(0.22)
LeftistHeap⋄ 3 ✓ 11 1 16 (9, 11) 0.54(0.03)
SizedSet◦ 4 ✓ 16 4 23 (14, 15) 4.66(0.20)

UnbalanceSet⋄ 5 ✓ 20 4 29 (17, 18) 9.32(0.32)

to manipulate algebraic data types; it consists of approximately 11K lines of OCaml and uses

Z3 [de Moura and Bjørner 2008] as its backend solver.

Poirot takes as input an Ocaml program representing a test input generator and a user-supplied

coverage type for that generator. After basic type-checking and translation into MNF, Poirot applies
bidirectional type inference and checking to validate that the program satisfies the requirements

specified by the type. Our implementation provides built-in coverage types for a number of OCaml

primitives, including constants, various arithmetic operators, and data constructors for a range of

datatypes. Refinements defined in coverage types can also use predefined (polymorphic) method

predicates that capture non-trivial datatype shape properties. For example, the method predicate

mem(l, u) indicates the element u:𝑏 is contained in the data type instance l:𝑏 𝑇 ; the method

predicate len(l, 3) indicates the list l has length 3, or the tree l has depth 3. The semantics of these

method predicates are defined as a set of FOL-encoded lemmas and axioms to facilitate automated

verification; e.g., the lemma len(l, 0) =⇒ ∀u,¬mem(l, u) indicates that the empty datatype instance

contains no element.

6.1 Completeness of Hand-Written Generators
We have evaluated Poirot on a corpus of hand-written, non-trivial test input generators drawn

from a variety of sources (see Table 3). These benchmarks provide test input generators over a

diverse range of datatypes, including various kinds of lists, trees, queues, streams, heaps, and sets.

For each datatype implementation, Poirot type checks the provided implementation against its

supplied coverage type to verify that the generator is able to generate all possible datatype instances

consistent with this type. Our method predicates allow us capture non-trivial structural properties.

For example, to verify a red-black tree generator, we use the predicate black_height (𝜈, 𝑛) to indicate
that all branches of the tree 𝜈 have exactly 𝑛 black nodes, the predicate no_red_red (𝜈) to indicates

𝜈 contains no red node with red children, and the predicate root_color (𝜈, 𝑏) to indicate the root of

the tree 𝜈 has the red (black) color when the boolean value 𝑏 is true (false).
12

Given this rich set of predicates, it is straightforward to express interesting coverage types. For

example, given size s and lower bound lo, we can express the property that a sorted list generator

12
These method predicates can be found in the implementation of the red-black tree generator given in [Lampropoulos and

Pierce 2022].
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sorted_list_gen must generate all possible sorted lists with the length s and in which all elements

are greater than or equal to lo, as the following type:

s:{𝜈 :𝑖𝑛𝑡 | 𝜈 ≤ 0} � lo:{𝜈 :𝑖𝑛𝑡 | ⊤} � [𝜈 :𝑖𝑛𝑡 𝑙𝑖𝑠𝑡 | len(𝜈, s) ∧ sorted (𝜈) ∧ ∀𝑢,mem(𝜈,𝑢) =⇒ lo ≤ 𝑢]

Notice that this type is remarkably similar to a normal refinement type:

s:{𝜈 :𝑖𝑛𝑡 | 𝜈 ≤ 0} � lo:{𝜈 :𝑖𝑛𝑡 | ⊤} � {𝜈 :𝑖𝑛𝑡 𝑙𝑖𝑠𝑡 | len(𝜈, s) ∧ sorted (𝜈) ∧ ∀𝑢,mem(𝜈,𝑢) =⇒ lo ≤ 𝑢}

albeit with the return type marked as a coverage type to capture our desired must-property.

The first group of columns in Table 3 describes the salient features of our benchmarks. Each

benchmark exhibits non-trivial control-flow, containing anywhere from 2 to 6 nested branches;

the majority of our benchmarks are also recursive (column Recursive). The number of local (i.e.,

let-bound) variables (column #LocalVars) is a proxy for path lengths that must be encoded within

the types inferred by our type-checker; column #MP indicates the number of method predicates

found in the benchmark’s type specification.

The second group of columns presents type checking results. Column #Query indicates the

number of SMT queries that are triggered during type checking. Column #(∀, ∃) indicates the
maximum number of universal and existential quantifiers in these queries, respectively. The ∃
column is a direct reflection of control-flow (path) complexity — complex generators with deeply

nested match-expressions like RedBlackTree result in queries with over 50 existential quantifiers.

These numbers broadly track with the values in columns #Branch and #LocalVar. Despite the

complexity of some of these queries, as evidenced by the number of their quantifiers, overall

verification time (average verification time per query, resp.), reported in the last column, is quite

reasonable, with times ranging from .35 to 12.20 seconds, with more than half of the benchmarks

finishing in less than a second.

6.2 Case Study: Well-Typed STLC Terms
type ty = Ty_nat

| Ty_arr of ty * ty

type term =
| Const of int
| Var of int
| Abs of ty * term
| App of term * term

type tyctx = ty list

Fig. 9. Datatypes from the
STLC case study.

We have also applied Poirot to a more substantial example: a gen-

erator for well-typed simply typed lambda calculus (STLC) terms in

the vein of Lampropoulos et al. [2017]; Pałka et al. [2011a]. Such a

generator can be used to test that the typing relation guarantees the

expected runtime behaviors of programs, e.g. progress and preser-

vation. In addition to the complexity of the coverage property itself

(well-typedness), this case study features multiple inductive datatypes

(for types, terms, and typing contexts, as shown in Figure 9), and 13

auxiliary functions. The coverage type of gen_term_size, the top-
level generator, stipulates that it can generate all terms of a desired

type, up to a user-provided size bound:

gen_term_size : n:{𝜈 :𝑖𝑛𝑡 | 0 ≤ 𝜈}︸               ︷︷               ︸
maximum term size

� t:{𝜈 :ty | ⊤}︸         ︷︷         ︸
type of term

� Γ:{𝜈 :tyctx | ⊤}︸              ︷︷              ︸
typing context

� [𝜈 :term | has_ty Γ 𝜈 t ∧max_app_num 𝜈 n]︸                                                        ︷︷                                                        ︸
result is well-typed and has at most n applications

The results of using Poirot to verify that gen_term_size meets the above specification are shown

in Table 4. The table also reports the results for the most interesting auxiliary functions used by the

function. The last column shows that Poirot is able to verify these functions within a reasonable time,

ranging from 0.47 to 149.39 seconds. Although more complex functions (as indicated by the column

labeled #Branch) require more time to verify, total verification time is nonetheless reasonable:

198.43 seconds in total. Taken together, these results highlight the compositionality of Poirot’s
type-based approach: each of the 13 auxiliary functions used by gen_term_size is individually
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Table 4. Experimental results from the STLC case study. Each function is implemented as a wrapper around a
subsidiary function that takes an additional strictly decreasing argument to ensure termination (the original
QuickChick implementations uses Coq’s Program command for this purpose). These subsidiary functions are
responsible for the bulk of the computation, so we report the results for those functions here.

#Branch Recursive #LocalVar #MP #Query (max. #∀,#∃) total (avg. time)(s)

type_eq 6 ✓ 7 5 9 (10, 9) 36.26(4.03)
gen_type 3 ✓ 10 1 15 (10, 12) 0.47(0.03)

var_with_type 5 ✓ 12 7 13 (12, 8) 7.77(0.60)
gen_term_no_app 3 ✓ 13 10 20 (14, 15) 4.37(0.22)
gen_term_size 4 ✓ 24 9 50 (27, 27) 148.39(2.97)

type-checked against its signature; these signatures are then used to verify any procedures that

call the function.

Interestingly, the function type_eq has a longer average query time than all other functions,

despite having fewer local variables and method predicates. This function implements a determin-

istic equality test, returning true when two types are the same and false otherwise. Thus, the
coverage type of this function degenerates into a singleton type for each of the branches, resulting

in stricter queries to the SMT solver that take longer to find a valid witness.

Discussion. To handle the complexity of this benchmark, Poirot requires 14 method predicates

and 35 axioms, the large majority of which correspond to helper definitions and lemmas from

the original development. The predicates that encode typing and the bounds on the number of

applications in a term (has_ty and max_num_app, resp.) come directly from the QuickCheck

version, for example. The following axiom encodes the semantic relationship of these predicates

∀(Γ:tyctx) (t:ty) (e:term), has_ty Γ e t ⇐⇒ (∃(n:𝑛𝑎𝑡),max_num_app e n ∧ has_ty Γ e t)

and is analogous to the helper lemma has_ty_max_tau_correct in the Coq development. In

addition, some predicates and axioms are independent of this particular case study: the typing

context is implemented as a list of STLC types, and thus we were able to reuse generic predicates

and axioms about polymorphic lists.

6.3 Completeness of Synthesized Generators
Table 5. Quantifying the space of
safe and complete test input gen-
erators constructed using an auto-
mated program synthesis tool.

Benchmark #Total #Complete

UniqueList 284 10

SizedList 126 28

SortedList 30 8

SizedTree 103 2

SizedBST 229 54

RedBlackTree 234 2

An underlying hypothesis motivating our work is that writing

sound and complete test input generators can be subtle and tricky,

as demonstrated by our motivating example (Figure 1). To justify

this hypothesis, we repurposed an existing deductive component-

based program synthesizer [Mishra and Jagannathan 2022] to

automatically synthesize correct (albeit possibly incomplete) gen-

erators that satisfy a specification given as an overapproximate

refinement type; these generators are then fed to Poirot to val-

idate their completeness. We provided the synthesizer with a

datatype definition and a set of specifications describing con-

straints on that datatype the synthesized generator should use, along with a library of functions,

including primitive generators such as nat_gen, available to the synthesizer for construction. A
refinement type-guided enumeration is performed to find all correct programs consistent with the

specification. Since the space of these programs is potentially quite large (possibly infinite), we

constrain the synthesizer to only generate programs with bounded function call depths; in our

experiments, this bound was set to three. The generator outputs all programs that are safe with

respect to the specification. Table 5 shows results of this experiment for five of the benchmarks

given in Table 3; results for the other benchmarks are similar. We report the total number of
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1 let rec sized_list_gen
2 (size : int) : (int list) =
3 if (size == 0) then []
4 else
5 if (bool_gen ()) then
6 sized_list_gen (size - 1)
7 else
8 int_gen () ::
9 (sized_list_gen (size - 1))

(a) A sound and complete generator.

let rec sized_list_gen
(size : int) : (int list) =

if (size == 0) then []
else
int_gen () ::
(sized_list_gen (size - 1))

(b) A sound but incomplete generator.

let rec sized_list_gen
(size : int) : (int list) =

if (size == 0) then []
else
if (bool_gen ()) then
sized_list_gen (size - 1)

else
size ::
(sized_list_gen (size - 1))

(c) Another sound but incomplete generator.

Fig. 10. Three example generators that generate size-bounded lists.

synthesized generators (#Total) constructed and the number of those that are correct and complete
as verified by Poirot (#Complete). The table confirms our hypothesis that the space of complete

generators with respect to the supplied coverage type is significantly smaller than the space of safe

generators, as defined by an overapproximate refinement type specification.

More concretely, Figure 10 shows three synthesized generators that satisfy the following spec-

ification of a list generator that is meant to construct all lists no longer than some provided

bound:

size:{𝜈 :𝑖𝑛𝑡 | 𝜈 ≤ 0} � [𝜈 :𝑖𝑛𝑡 𝑙𝑖𝑠𝑡 | ∀𝑢, len(𝜈,𝑢) =⇒ (0 ≤ 𝑢 ∧ 𝑢 ≤ size)]
Figure 10b is incomplete because it never generates an empty list when the size parameter size
is greater than 0. On the other hand, while Figure 10c does generate empty lists, the else branch

of its second conditional has a fixed first element and will therefore never generate lists with

distinct elements. The complete generator shown in Figure 10a incorporates a control-flow path

(line 5) that can non-deterministically choose to make a recursive call to sized_list_gen with a

smaller size, thereby allowing it to generate lists of variable size up to the size bound, including
the empty list; another conditional branch uses int_gen() to generate a new randomly selected

list element, thereby allowing the implementation to generate lists containing distinct elements. We

again emphasize that Poirot was able to verify the correct generator and discard the two incorrect

generators automatically, without any user involvement.

7 RELATEDWORK
The effectiveness of PBT suffers when the property of interest has a strict precondition [Lam-

propoulos 2018], because most of the inputs produced by a purely random test generation strategy

will be simply discarded. As a result, there has been much recent interest on improving the coverage

of test generators with respect to a particular precondition. Proposed solutions range from adopting

ideas from fuzzing [Dolan 2022; Zalewski 2020] to intelligently mutate the outputs produced by the

generator [Lampropoulos et al. 2019; Padhye et al. 2019], to focusing on generators for particular

classes of inputs (e.g., well-typed programs) [Fetscher et al. 2015; Pałka et al. 2011b; Yang et al.

2011], to automatically building complete-by-construction generators [Claessen et al. 2014; Lam-

propoulos et al. 2017, 2018]. While sharing broadly similar goals with these proposals, our approach

differs significantly in its framing of coverage in purely type-theoretic terms. This fundamental

change in perspective allows us to statically and compositionally verify coverage properties of a

generator without the need for any form of instrumentation on, or runtime monitoring of, the

program under test (as in [Dolan 2022; Lampropoulos et al. 2019]). Unlike other approaches that

have also considered the verification of a generator’s coverage properties [Dybjer et al. 2003, 2004;

Paraskevopoulou et al. 2015] using a mechanized proof assistant, our proposed type-based framing

is highly-automated and inherently compositional. Expressing coverage as part of a type system

also allows us to be agnostic to (a) how generators are constructed, (b) the particulars of the

application domain [Fetscher et al. 2015; Pałka et al. 2011b; Yang et al. 2011], and (c) the specific

structure of the properties being tested [Lampropoulos et al. 2017, 2018]. Poirot’s ability to specify
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and type-check a complex coverage property depends only on whether we can express a desired

specification using available method predicates.

A number of logics have been proposed for reasoning about underapproximations of program

behavior, including the recently developed incorrectness logic (IL) [O’Hearn 2019b; Raad et al.

2020], reverse Hoare logic (RHL) [de Vries and Koutavas 2011], and dynamic logic (DL) [Pratt 1976].

Both IL and RHL are formalisms similar to Hoare logic, but support composable specifications that

assert underapproximate postconditions, with IL adding special post-assertions for error states. IL

was originally proposed as a way of formalizing the conditions under which a particular program

point (say an error state) is guaranteed to be reachable, and has recently been used in program

analyses that discover memory errors [Le et al. 2022]. DL, in contrast, reinterprets Hoare logic as a

multi-modal logic equipped with operators for reasoning about the existence of executions that end

in a state satisfying some desired postcondition. This paper instead provides the first development

that interprets these notions in the context of a type system for a rich functional language. While

our ideas are formulated in the context of verifying coverage properties for test input generators,

we believe our framework can be equally adept in expressing type-based program analyses for bug

finding or compiler optimizations.

Our focus on reasoning about coverage properties of test input generators distinguishes our

approach, in obvious ways from other refinement type-based testing solutions such as target [Sei-

del et al. 2015]. Nonetheless, our setup follows the same general verification playbook as Liquid

Types [Jhala and Vazou 2021; Vazou et al. 2014] — our underapproximate specifications are identical

to their overapproximate counterpart, except that we syntactically distinguish the return types for

functions to reflect their expected underapproximate (rather than overapproximate) behavior. An

important consequence of this design is that the burden of specifying and checking the coverage

behavior of a program is no greater than specifying its safety properties.

Another related line of work has explored how to reason about the distribution of data produced

by a function [Albarghouthi et al. 2017; Bastani et al. 2019], with a focus on ensuring that these

distributions are free of unwanted biases. These works have considered decision-making and

machine-learning applications, in which these sorts of fairness properties can be naturally encoded

as (probabilistic) formulas in real arithmetic. In contrast, coverage types can only verify that a

generator has a nonzero probability of producing a particular output. Extending our type system

and its guarantees to provide stronger fairness guarantees about the distribution of the sorts of

discrete data produced by test input generators is an exciting direction for future work.

8 CONCLUSION
This paper adapts principles of underapproximate reasoning found in recent work on Incorrect-

ness Logic to the specification and automated verification of test input generators used in modern

property-based testing systems. Specifications are expressed in the language of refinement types,

augmented with coverage types, types that reflect underapproximate constraints on program be-

havior. A novel bidirectional type-checking algorithm enables an expressive form of inference over

these types. Our experimental results demonstrate that our approach is capable of verifying both

sophisticated hand-written generators, as well as being able to successfully identify type-correct

(in an overapproximate sense) but coverage-incomplete generators produced from a deductive

refinement type-aware synthesizer.
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9 DATA AVAILABILITY
An artifact containing our implementation, benchmark suite, results and corresponding Coq

proofs is publicly available on Zenodo[Zhe 2023].
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Operational Semantics 𝑒 ↩→ 𝑒

𝑜𝑝 𝑣 ≡ 𝑣𝑦
StAppOp

let 𝑦 = 𝑜𝑝 𝑣 in 𝑒 ↩→ 𝑒 [𝑦 ↦→ 𝑣𝑦]

𝑒1 ↩→ 𝑒′
1

StLetE1

let 𝑦 = 𝑒1 in 𝑒2 ↩→ let 𝑦 = 𝑒′
1
in 𝑒2

StLetE2

let 𝑦 = 𝑣 in 𝑒 ↩→ 𝑒 [𝑦 ↦→ 𝑣]

StLetAppLam

let 𝑦 = 𝜆𝑥 :𝑡 .𝑒1 𝑣𝑥 in 𝑒2 ↩→ let 𝑦 = 𝑒1 [𝑥 ↦→ 𝑣𝑥 ] in 𝑒2

StLetAppFix

let 𝑦 = fix𝑓 :𝑡 .𝜆𝑥 :𝑡𝑥 .𝑒1 𝑣𝑥 in 𝑒2 ↩→ let 𝑦 = (𝜆𝑓 :𝑡 .𝑒1 [𝑥 ↦→ 𝑣𝑥 ]) (fix𝑓 :𝑡 .𝜆𝑥 :𝑡𝑥 .𝑒1) in 𝑒2

StMatch

match 𝑑𝑖 𝑣 𝑗 with 𝑑𝑖 𝑦 𝑗 → 𝑒𝑖 ↩→ 𝑒𝑖 [𝑦 𝑗 ↦→ 𝑣 𝑗 ]

Fig. 11. Small Step Operational Semantics

Basic Typing Γ ⊢t 𝑒 : 𝑡

BtErr

Γ ⊢t err : 𝑡
BtConst

Γ ⊢t 𝑐 : Ty(𝑐)
BtOp

Γ ⊢t 𝑜𝑝 : Ty(𝑜𝑝)
Γ(𝑥) = 𝑡

BtVar

Γ ⊢t 𝑥 : 𝑡

Γ, 𝑥 :𝑡1 ⊢t 𝑒 : 𝑡2
BtFun

Γ ⊢t 𝜆𝑥 :𝑡1 .𝑒 : 𝑡1�𝑡2

Γ, 𝑓 :𝑡1�𝑡2 ⊢t 𝜆𝑥 :𝑡1 .𝑒 : 𝑡1�𝑡2
BtFix

Γ ⊢t fix𝑓 :(𝑡1�𝑡2)𝜆𝑥 :𝑡1 .𝑒 : 𝑡1�𝑡2

∅ ⊢t 𝑒1 : 𝑡𝑥 Γ, 𝑥 :𝑡𝑥 ⊢t 𝑒2 : 𝑡
BtLetE

Γ ⊢t let 𝑥 = 𝑒1 in 𝑒2 : 𝑡

Ty(𝑜𝑝) = 𝑡𝑖�𝑡𝑥 Γ ⊢t 𝑣𝑖 : 𝑡𝑖 Γ, 𝑥 :𝑡𝑥 ⊢t 𝑒 : 𝑡
BtAppOp

Γ ⊢t let 𝑥 = 𝑜𝑝 𝑣𝑖 in 𝑒 : 𝑡

Γ ⊢t 𝑣1 : 𝑡2�𝑡𝑥 Γ ⊢t 𝑣2 : 𝑡2 Γ, 𝑥 :𝑡𝑥 ⊢t 𝑒 : 𝑡
BtApp

Γ ⊢t let 𝑥 = 𝑣1 𝑣2 in 𝑒 : 𝑡

Γ ⊢t 𝑣 : 𝑡𝑣 ∀𝑖, Ty(𝑑𝑖 ) = 𝑡 𝑗�𝑡𝑣 Γ, 𝑦 𝑗 :𝑡 𝑗 ⊢t 𝑒𝑖 : 𝑡
BtMatch

Γ ⊢t match 𝑣 with 𝑑𝑖 𝑦 𝑗 → 𝑒𝑖 : 𝑡

Fig. 12. Basic Typing Rules

A TYPING RULES
A.1 Operational Semantics

The operational semantics of our core language is shown in Figure 11, which is a standard small

step semantics.

A.2 Basic Typing rules
The basic typing rules of our core language is shown in Figure 12.
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A.3 Coverage Typing rules

Typing Γ ⊢ 𝑒 : 𝜏

Γ ⊢WF [𝜈 :𝑏 | ⊥]
TErr

Γ ⊢ err : [𝜈 :𝑏 | ⊥]
Γ ⊢WF Ty(𝑐)

TConst

Γ ⊢ 𝑐 : Ty(𝑐)
Γ ⊢WF Ty(𝑜𝑝)

TOp

Γ ⊢ 𝑜𝑝 : Ty(𝑜𝑝)

Γ ⊢WF [𝜈 :𝑏 | 𝜈 = 𝑥]
TVarBase

Γ ⊢ 𝑥 : [𝜈 :𝑏 | 𝜈 = 𝑥]

Γ(𝑥) = (𝑎:𝜏𝑎�𝜏𝑏 ) Γ ⊢WF 𝑎:𝜏𝑎�𝜏𝑏
TVarFun

Γ ⊢ 𝑥 : (𝑎:𝜏𝑎�𝜏𝑏 )

Γ, 𝑥 :𝜏𝑥 ⊢ 𝑒 : 𝜏 Γ ⊢WF 𝑥 :𝜏𝑥�𝜏
TFun

Γ ⊢ 𝜆𝑥 :⌊𝜏𝑥 ⌋ .𝑒 : (𝑥 :𝜏𝑥�𝜏)

Γ ⊢ 𝜆𝑥 :𝑏.𝜆𝑓 :(𝑏�⌊𝜏⌋).𝑒 : (𝑥 :{𝜈 :𝑏 | 𝜙}�𝑓 :(𝑥 :{𝜈 :𝑏 | 𝜈≺𝑥 ∧ 𝜙} � 𝜏)�𝜏) Γ ⊢WF 𝑥 :{𝜈 :𝑏 | 𝜙} � 𝜏
TFix

Γ ⊢ fix𝑓 :(𝑏�⌊𝜏⌋).𝜆𝑥 :𝑏.𝑒 : (𝑥 :{𝜈 :𝑏 | 𝜙} � 𝜏)

∅ ⊢ 𝜏 <: 𝜏 ′ ∅ ⊢ 𝑒 : 𝜏
Γ ⊢WF 𝜏 ′

TSub

Γ ⊢ 𝑒 : 𝜏 ′

Γ ⊢ 𝜏 ′ <: 𝜏 Γ ⊢ 𝜏 <: 𝜏 ′

Γ ⊢ 𝑒 : 𝜏 Γ ⊢WF 𝜏 ′
TEq

Γ ⊢ 𝑒 : 𝜏 ′

Γ ⊢ 𝑒 : 𝜏1 Γ ⊢ 𝑒 : 𝜏2
Γ ⊢ 𝜏1 ∨ 𝜏2 = 𝜏 Γ ⊢WF 𝜏

TMerge

Γ ⊢ 𝑒 : 𝜏

Γ ⊢ 𝑒𝑥 : 𝜏𝑥 Γ, 𝑥 :𝜏𝑥 ⊢ 𝑒 : 𝜏
Γ ⊢WF 𝜏

TLetE

Γ ⊢ let 𝑥 = 𝑒𝑥 in 𝑒 : 𝜏

Γ ⊢ 𝑜𝑝 : 𝑎𝑖 :{𝜈 :𝑏𝑖 | 𝜙𝑖 } � 𝜏𝑥
∀𝑖, Γ ⊢ 𝑣𝑖 : [𝜈 :𝑏𝑖 | [𝜙𝑖]
Γ, 𝑥 :𝜏𝑥 [𝑎𝑖 ↦→ 𝑣𝑖 ] ⊢ 𝑒 : 𝜏

Γ ⊢WF 𝜏
TAppOp

Γ ⊢ let 𝑥 = 𝑜𝑝 𝑣𝑖 in 𝑒 : 𝜏

Γ ⊢ 𝑣1 : (𝜏1�𝜏2)�𝜏𝑥
Γ ⊢ 𝑣2 : 𝜏1�𝜏2 Γ, 𝑥 :𝜏𝑥 ⊢ 𝑒 : 𝜏

Γ ⊢WF 𝜏
TAppFun

Γ ⊢ let 𝑥 = 𝑣1 𝑣2 in 𝑒 : 𝜏

Γ ⊢ 𝑣1 : 𝑎:{𝜈 :𝑏 | 𝜙} � 𝜏𝑥
Γ ⊢ 𝑣2 : [𝜈 :𝑏 | 𝜙]

Γ, 𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑣2] ⊢ 𝑒 : 𝜏
Γ ⊢WF 𝜏

TApp

Γ ⊢ let 𝑥 = 𝑣1 𝑣2 in 𝑒 : 𝜏

Γ ⊢ 𝑣 : 𝜏𝑣 Γ ⊢WF 𝜏 Γ, 𝑦:𝜏𝑦 ⊢ 𝑑𝑖 (𝑦) : 𝜏𝑣
Γ, 𝑦:𝜏𝑦 ⊢ 𝑒𝑖 : 𝜏

TMatch

Γ ⊢ (match 𝑣 with 𝑑𝑖 𝑦 → 𝑒𝑖 ) : 𝜏

Fig. 13. Full Typing Rules

The full set of coverage typing rules of our core language is shown in Figure 13. The rule TOp

(which is similar with TConst), TAppFun and TAppOp (which is similar with TApp) are not shown

in Section 4.
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Algorithm 2: Disjunction and Conjunction

1 i Procedure Disj(𝜏1, 𝜏2) :=
2 match 𝜏1, 𝜏2:
3 case [𝜈 :𝑡 | 𝜙1], [𝜈 :𝑡 | 𝜙2] do
4 return [𝜈 :𝑡 | 𝜙1 ∨ 𝜙2];
5 case {𝜈 :𝑡 | 𝜙1}, {𝜈 :𝑡 | 𝜙2} do
6 return {𝜈 :𝑡 | 𝜙1 ∧ 𝜙2};
7 case 𝑎:𝜏𝑎1�𝜏1, 𝑎:𝜏𝑎2�𝜏2 do
8 𝜏𝑎 ← Conj(𝜏𝑎1 , 𝜏𝑎2 );
9 return 𝑎:𝜏𝑎�Disj(𝜏1, 𝜏2);

10 Procedure Conj(𝜏1, 𝜏2) :=
11 match 𝜏1, 𝜏2:
12 case [𝜈 :𝑡 | 𝜙1], [𝜈 :𝑡 | 𝜙2] do
13 return [𝜈 :𝑡 | 𝜙1 ∧ 𝜙2];
14 case {𝜈 :𝑡 | 𝜙1}, {𝜈 :𝑡 | 𝜙2} do
15 return {𝜈 :𝑡 | 𝜙1 ∨ 𝜙2};
16 case 𝑎:𝜏𝑎1�𝜏1, 𝑎:𝜏𝑎2�𝜏2 do
17 𝜏𝑎 ← Disj(𝜏𝑎1 , 𝜏𝑎2 );
18 return 𝑎:𝜏𝑎�Conj(𝜏1, 𝜏2);

A.4 Subset Relation of Denotation under Type Context
The subset relation between the denotation of two refinement types 𝜏1 and 𝜏2 under a type

context Γ (written J𝜏1KΓ ⊆ J𝜏1KΓ) is:

J𝜏1K∅ ⊆ J𝜏2K∅ � J𝜏1K ⊆ J𝜏2K
J𝜏1K𝑥 :𝜏𝑥 ,Γ ⊆ J𝜏1K𝑥 :𝜏𝑥 ,Γ � ∀𝑣𝑥 ∈ J𝜏𝑥K,

J𝜏1 [𝑥 ↦→ 𝑣𝑥 ]KΓ[𝑥 ↦→𝑣𝑥 ] ⊆ J𝜏2 [𝑥 ↦→ 𝑣𝑥 ]KΓ [𝑥 ↦→𝑣𝑥 ] if 𝜏 ≡ {𝜈 :𝑏 | 𝜙}
J𝜏1K𝑥 :𝜏𝑥 Γ ⊆ J𝜏2K𝑥 :𝜏𝑥 Γ � ∃𝑒𝑥 ∈ J𝜏𝑥K,∀𝑣𝑥 , 𝑒𝑥 ↩→∗ 𝑣𝑥 =⇒

J𝜏1 [𝑥 ↦→ 𝑣𝑥 ]KΓ [𝑥 ↦→𝑣𝑥 ] ⊆ J𝜏2 [𝑥 ↦→ 𝑣𝑥 ]KΓ [𝑥 ↦→𝑣𝑥 ] otherwise

The way we interpret the type context Γ here is the same as the definition of the type denotation

under the type context, but we keep the denotation of 𝜏1 and 𝜏2 as the subset relation under the

same interpretation of Γ, that is under the same substitution [𝑥 ↦→ 𝑣𝑥 ]. This constraint is also
required by other refinement type systems, which define the denotation of the type context Γ as

a set of substitutions, with the subset relation of the denotation of two types holding under the

same substitution. However, our type context is more complicated, since it has both under- and

overapproximate types that are interpreted via existential and universal quantifiers, and cannot

simply be denoted as a set of substitution. Thus, we define a subset relation over denotations under

a type context to ensure the ame substitution is applied to both types.

A.5 Bidirectional Typing rules
The full set of bidirectional typing rules of our core language is shown in Figure 14 and Figure 15.

Similar to other refinement type systems, there are no synthesis rules for functions which require

synthesis of a refinement type for the input argument. The user can only type check functions

against given types (ChkFun and ChkFix).

A.6 Algorithm Details
Disjunction Function. We implement our disjunction function Disj as a function with type Disj :

𝜏 → 𝜏 → 𝜏 . The disjunction of multiple types is equal to defined compositionally:

Disj(𝜏1, 𝜏2, ..., 𝜏𝑛−1, 𝜏𝑛) � Disj(𝜏1,Disj(𝜏2, ...,Disj(𝜏𝑛−1, 𝜏𝑛)))
As shown in Algorithm 2, the Disj and Conj functions call each other recursively. As discussed

in Section 4, the disjunction of two base coverage type (underapproximate type) [𝜈 :𝑡 | 𝜈 = 1]
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Type Synthesis Γ ⊢ 𝑒 ⇒ 𝜏

Γ ⊢WF Ty(𝑐)
SynConst

Γ ⊢ 𝑐 ⇒ Ty(𝑐)
Γ ⊢WF Ty(𝑜𝑝)

SynOp

Γ ⊢ 𝑜𝑝 ⇒ Ty(𝑜𝑝)
Γ ⊢WF [𝜈 :𝑏 | ⊥]

SynErr

Γ ⊢ err⇒ [𝜈 :𝑏 | ⊥]

Γ ⊢WF [𝜈 :𝑏 | 𝜈 = 𝑥]
SynVarBase

Γ ⊢ 𝑥 ⇒ [𝜈 :𝑏 | 𝜈 = 𝑥]

Γ(𝑥) = (𝑎:𝜏𝑎�𝜏𝑏 ) Γ ⊢WF 𝑎:𝜏𝑎�𝜏𝑏
SynVarFun

Γ ⊢ 𝑥 ⇒ (𝑎:𝜏𝑎�𝜏𝑏 )

Γ ⊢ 𝑣1⇒ (𝑎:𝜏𝑎�𝜏𝑏 )�𝜏𝑥
Γ ⊢ 𝑣2⇐ 𝑎:𝜏𝑎�𝜏𝑏 Γ′ = 𝑥 :𝜏𝑥
Γ, Γ′ ⊢ 𝑒 ⇒ 𝜏 𝜏 ′ = Ex(Γ′, 𝜏)

Γ ⊢WF 𝜏 ′
SynAppFun

Γ ⊢ let 𝑥 = 𝑣1 𝑣2 in 𝑒 ⇒ 𝜏 ′

Γ ⊢ 𝑣1⇒ 𝑎:{𝜈 :𝑏 | 𝜙} � 𝜏𝑥
Γ′ = 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑣2 ∧ 𝜙], 𝑥 :𝜏𝑥
Γ, Γ′ ⊢ 𝑒 ⇒ 𝜏 𝜏 ′ = Ex(Γ′, 𝜏)

Γ ⊢WF 𝜏 ′
SynAppBase

Γ ⊢ let 𝑥 = 𝑣1 𝑣2 in 𝑒 ⇒ 𝜏 ′

Γ ⊢ 𝑜𝑝 ⇒ 𝑎𝑖 :{𝜈 :𝑏𝑖 | 𝜙𝑖 } � 𝜏𝑥

Γ′ = 𝑎𝑖 :[𝜈 :𝑏𝑖 | 𝜈 = 𝑣𝑖 ∧ 𝜙𝑖], 𝑥 :𝜏𝑥
Γ, Γ′ ⊢ 𝑒 ⇒ 𝜏 𝜏 ′ = Ex(Γ′, 𝜏)

Γ ⊢WF 𝜏 ′
SynAppOp

Γ ⊢ let 𝑥 = 𝑜𝑝 𝑣𝑖 in 𝑒 ⇒ 𝜏 ′

Γ ⊢ 𝑒𝑥 ⇒ 𝜏𝑥 Γ′ = 𝑥 :𝜏𝑥
Γ, Γ′ ⊢ 𝑒 ⇒ 𝜏 𝜏 ′ = Ex(Γ′, 𝜏)

Γ ⊢WF 𝜏 ′
SynLetE

Γ ⊢ let 𝑥 = 𝑒𝑥 in 𝑒 ⇒ 𝜏

∀𝑖, Ty(𝑑𝑖 ) = 𝑦:{𝜈 :𝑏𝑦 | 𝜃𝑦 }�[𝜈 :𝑏 | 𝜓𝑖] Γ′
𝑖
= 𝑦:[𝜈 :𝑏𝑦 | 𝜃𝑦], 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑣𝑎 ∧𝜓𝑖]

Γ, Γ′
𝑖
⊢ 𝑒𝑖 ⇒ 𝜏𝑖 𝜏 ′

𝑖
= Ex(Γ′

𝑖
, 𝜏𝑖 ) Γ ⊢WF Disj(𝜏 ′

𝑖
)

SynMatch

Γ ⊢ match 𝑣𝑎 with 𝑑𝑖 𝑦 → 𝑒𝑖 ⇒ Disj(𝜏 ′
𝑖
)

Fig. 14. Typing Synthesis Rules

Type Check Γ ⊢ 𝑒 ⇐ 𝜏

∅ ⊢ 𝑒 ⇒ 𝜏 Γ ⊢ 𝜏 <: 𝜏 ′ Γ ⊢WF 𝜏 ′
ChkSub

Γ ⊢ 𝑒 ⇐ 𝜏 ′
Γ, 𝑥 :𝜏𝑥 ⊢ 𝑒 ⇐ 𝜏 Γ ⊢WF 𝑥 :𝜏𝑥�𝜏

ChkFun

Γ ⊢ 𝜆𝑥 :⌊𝜏𝑥 ⌋ .𝑒 ⇐ (𝑥 :𝜏𝑥�𝜏)

∀𝑖, Ty(𝑑𝑖 ) = 𝑦:{𝜈 :𝑏𝑦 | 𝜃𝑦 }�[𝜈 :𝑏 | 𝜓𝑖] Γ′
𝑖
= 𝑦:[𝜈 :𝑏𝑦 | 𝜃𝑦], 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑣𝑎 ∧𝜓𝑖]

Γ, Γ′
𝑖
⊢ 𝑒𝑖 ⇒ 𝜏𝑖 𝜏 ′

𝑖
= Ex(Γ′

𝑖
, 𝜏𝑖 ) Γ ⊢ Disj(𝜏 ′

𝑖
) <: 𝜏 ′ Γ ⊢WF 𝜏 ′

ChkMatch

Γ ⊢ match 𝑣𝑎 with 𝑑𝑖 𝑦 → 𝑒𝑖 ⇐ 𝜏 ′

Γ ⊢ 𝜆𝑥 :𝑏.𝜆𝑓 :(𝑏�⌊𝜏⌋).𝑒 ⇐ (𝑥 :{𝜈 :𝑏 | 𝜙}�𝑓 :(𝑥 :{𝜈 :𝑏 | 𝜈≺𝑥 ∧ 𝜙} � 𝜏)�𝜏) Γ ⊢WF 𝑥 :{𝜈 :𝑏 | 𝜙} � 𝜏
ChkFix

Γ ⊢ fix𝑓 :(𝑏�⌊𝜏⌋) .𝜆𝑥 :𝑏.𝑒 ⇐ (𝑥 :{𝜈 :𝑏 | 𝜙} � 𝜏)

Fig. 15. Typing Synthesis Rules

and [𝜈 :𝑡 | 𝜈 = 2] takes the disjunction of their qualifiers: [𝜈 :𝑡 | 𝜈 = 1 ∨ 𝜈 = 2]. On the other hand,

the disjunction of normal refinement types (overapproximate types) is the conjunction of their

corresponding qualifiers. The disjunction of function types conjuncts their argument type and

disjuncts their return type.
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Algorithm 3: Exists and Forall

1 Procedure Ex(𝑥, [𝜈 :𝑡 | 𝜙𝑥 ], 𝜏) :=
2 match 𝜏 :
3 case [𝜈 :𝑡 | 𝜙] do
4 return [𝜈 :𝑡 | ∃𝑥 :𝑡, 𝜙𝑥 [𝜈 ↦→ 𝑥] ∧ 𝜙];
5 case {𝜈 :𝑡 | 𝜙} do
6 return {𝜈 :𝑡 | ∀𝑥 :𝑡, 𝜙𝑥 [𝜈 ↦→ 𝑥] =⇒ 𝜙};

7 case 𝑎:𝜏𝑎�𝜏 do
8 𝜏 ′𝑎 ← Fa(𝑥, [𝜈 :𝑡 | 𝜙𝑥 ], 𝜏𝑎);
9 return 𝑎:𝜏 ′𝑎�Ex(𝑥, [𝜈 :𝑡 | 𝜙𝑥 ], 𝜏);

10 Procedure Fa(𝑥, [𝜈 :𝑡 | 𝜙𝑥 ], 𝜏) :=
11 match 𝜏 :
12 case [𝜈 :𝑡 | 𝜙] do
13 return [𝜈 :𝑡 | ∀𝑥 :𝑡, 𝜙𝑥 [𝜈 ↦→ 𝑥] =⇒ 𝜙];

14 case {𝜈 :𝑡 | 𝜙} do
15 return {𝜈 :𝑡 | ∃𝑥 :𝑡, 𝜙𝑥 [𝜈 ↦→ 𝑥] ∧ 𝜙};
16 case 𝑎:𝜏𝑎�𝜏 do
17 𝜏 ′𝑎 ← Ex(𝑥, [𝜈 :𝑡 | 𝜙𝑥 ], 𝜏𝑎);
18 return 𝑎:𝜏 ′𝑎�Fa(𝑥, [𝜈 :𝑡 | 𝜙𝑥 ], 𝜏);

"Exists" Function. We implement our "Exists" function Ex as a function with type Ex(𝑥, 𝜏𝑥 , 𝜏) :
𝑉𝑎𝑟 → 𝜏 → 𝜏 → 𝜏 , where 𝑥 and 𝜏𝑥 is a variable and corresponding binding type that we want

to existentialize into the type 𝜏 , thus it can also be notated as Ex(𝑥 :𝜏𝑥 , 𝜏). Existentializing a type
context 𝑥1:𝜏1, 𝑥2:𝜏2, ...𝑥𝑛 :𝜏𝑛 into a type 𝜏 is equal to existentializing each binding consecutively:

Ex(𝑥1:𝜏1, 𝑥2:𝜏2, ...𝑥𝑛 :𝜏𝑛, 𝜏) � Ex(𝑥1:𝜏1, Ex(𝑥1:𝜏1, ..., Ex(𝑥𝑛 :𝜏𝑛, 𝜏)))
As shown in Algorithm 2, the Ex function relys on the Fa function. More specifically, as we

mentioned in Section 5, existentializing a binding 𝑥 :[𝜈 :𝑛𝑎𝑡 | 𝜈 > 0] into type [𝜈 :𝑛𝑎𝑡 | 𝜈 = 𝑥 + 1]
will derive the type [𝜈 :𝑛𝑎𝑡 | ∃𝑥, 𝑥 > 0 ∧ 𝜈 = 𝑥 + 1] which has an existentially-quantified qualifier;

the function type is contravariant in its argument types and covariant in its return types.

SMT Query Encoding for data types. In order to reason over data types, we allow the user to specify

refinement types with method predicates (e.g., mem) and quantifiers (𝑒.𝑔.,∀𝑢,¬mem(𝜈,𝑢)). These
method predicates are encoded as uninterpreted functions. In order to ensure the query is an EPR

sentence, we require that a normal refinement type (overapproximate types) can only use universal

quantifiers. In addition, as shown in Figure 4, we disallow nested method predicate application

(e.g., mem(𝜈,mem(𝜈,𝑢))) and can only apply a method predicate over constants mem(𝜈, 3) (it can
be encoded as ∀𝑢,𝑢 = 3 =⇒ mem(𝜈,𝑢)).

B PROOFS
Type Soundness. The Coq formalization of our core language, typing rules and the proof of

Theorem 4.3 is publicly available on Zenodo[Zhe 2023].

Soundness of Algorithmic Typing. We present the proof for Theorem 5.3 from Section 5. The proof

requires the following lemmas about the Query subroutine, Ex and Disj functions.

Lemma B.1. [Soundness ofQuery subroutine] For all all type context Γ and coverage type [𝜈 :𝑏 | 𝜙1]
and [𝜈 :𝑏 | 𝜙2], Query(Γ, [𝜈 :𝑏 | 𝜙1], [𝜈 :𝑏 | 𝜙2]) implies Γ ⊢ [𝜈 :𝑏 | 𝜙1] <: [𝜈 :𝑏 | 𝜙2].

Lemma B.2 (The Disj Function implies disjunction judgement). For all type context Γ, type 𝜏1
and 𝜏2, Γ ⊢ 𝜏1 ∨ 𝜏2 = Disj(𝜏1, 𝜏2).

Lemma B.3 (The Ex Function implies type judgement transformation). For all type context
Γ, Γ′, term 𝑒 , and type 𝜏 ,

Γ, Γ′ ⊢ 𝑒 : 𝜏 =⇒ Γ, Γ′ ⊢ 𝑒 : Ex(Γ′, 𝜏) ∧ Γ ⊢WF Ex(Γ′, 𝜏)
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We also lift the subtyping relation to type contexts.

Definition B.4 (Subtyping relation over Type Contexts). As in the subtyping relation between types,

the subtyping relation between two type context Γ1 ⊑ Γ2 means that if a term have type 𝜏 under

one context, it should also have the same type in the second context.

Γ1 ⊑ Γ2 � ∀𝜏,∀𝑒, 𝑒 ∈ J𝜏KΓ1 =⇒ 𝑒 ∈ J𝜏KΓ2

Lemma B.5. [Sub Type Context Implies Type Judgement Transformation] For two type context
Γ1 ⊑ Γ2, term 𝑒 and coverage type 𝜏 ,

Γ1 ⊢ 𝑒 : 𝜏 =⇒ Γ2 ⊢ 𝑒 : 𝜏

Intuitively, modifying a type binding in a type context is equivalent to applying the subsumption

rule before we introduce this binding into the type context. This subtype context relation allows us

to prove the correctness of the typing algorithm, which lazily strengthens the types in the type

context by need.

Now we can prove the soundness theorem of our typing algorithm with respect to our declarative

type system. As the type synthesis rules are defined mutually recursively, we simultaneously prove

both are correct:

Theorem B.6. [Soundness of the type synthesis and type check algorithm] For all type context Γ,
term 𝑒 and coverage type 𝜏 ,

Γ ⊢ 𝑒 ⇒ 𝜏 =⇒ Γ ⊢ 𝑒 : 𝜏
Γ ⊢ 𝑒 ⇐ 𝜏 =⇒ Γ ⊢ 𝑒 : 𝜏

Proof. We proceed by induction of the mutual recursive structure of Γ ⊢ 𝑒 ⇒ 𝜏 and Γ ⊢ 𝑒 ⇐ 𝜏 .

In the cases for; synthesis and checking rules of rule SynConst, SynOp, SynErr, SynVarBase,

SynVarFun, ChkSub,ChkFun, and ChkFix, the coverage typing rules in Figure 13 aligns exactly

with these rules, thus the soundness is immediate in these cases.

In addition, the rule SynAppOp is similar to SynAppBase, but has multiple arguments; the rule

SynLetE is the same as SynAppFun but has no application; the rule SynMatch is similar with

ChkMatch, thus we discuss one rule in each of these pairs while the second follows in a similar

fashion. Consequently, there are three interesting cases, corresponding to the rules shown in

Figure 7.

Case SynAppFun: This rule can be treated as a combination of TAppFun and TEq. From the

induction hypothesis and the precondition of SynAppFun, we know

Γ ⊢ 𝑣1 : (𝑎:𝜏𝑎�𝜏𝑏)�𝜏𝑥 since Γ ⊢ 𝑣1⇒ (𝑎:𝜏𝑎�𝜏𝑏)�𝜏𝑥

Γ ⊢ 𝑣2 : 𝑎:𝜏𝑎�𝜏𝑏 since Γ ⊢ 𝑣2⇐ 𝑎:𝜏𝑎�𝜏𝑏

Γ, 𝑥 :𝜏𝑥 ⊢ 𝑒 : 𝜏 since Γ, 𝑥 :𝜏𝑥 ⊢ 𝑒 ⇒ 𝜏

For the 𝜏 ′ = Ex(𝑥 :𝜏𝑥 , 𝜏), according to Lemma B.3, we know

Γ, 𝑥 :𝜏𝑥 ⊢ 𝑒 : 𝜏 ′ ∧ Γ ⊢WF 𝜏 ′

Using the above conclusions, Since all the preconditions of TAppFun hold, applying the rule

TAppFun, we have Γ ⊢ let 𝑥 = 𝑣1 𝑣2 in 𝑒 : 𝜏
′
.

Case SynAppBase: Notice that the value 𝑣2 has the base type 𝑡 , and can only be a constant or a

variable, doing a case split on this:
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(a) If 𝑣2 is a constant 𝑐2, notice that𝜙 [𝜈 ↦→ 𝑐2] has to be true, otherwise the binding𝑎:[𝜈 :𝑏 | 𝜈 = 𝑐2 ∧ 𝜙]
has the bottom type, and the type context that contains it is not well formed. Thus, using

the well-formedness of the context, it follows that

𝜈 = 𝑐2 ∧ 𝜙 ≡ 𝜈 = 𝑐2

Thus, again using the Induction Hypothesis on the antecedents of the rule we have:

Γ ⊢ 𝑣1 : 𝑎:{𝜈 :𝑏 | 𝜈 = 𝑐2 ∧ 𝜙} � 𝜏𝑥 [𝑎 ↦→ 𝑐2] since Γ ⊢ 𝑣1⇒ 𝑎:{𝜈 :𝑏 | 𝜈 = 𝑐2 ∧ 𝜙} � 𝜏𝑥 and TSub

Γ ⊢ 𝑐2 : [𝜈 :𝑏 | 𝜈 = 𝑐2 ∧ 𝜙] since TConst and 𝜈 = 𝑐2 ≡ 𝜈 = 𝑐2 ∧ 𝜙
Γ, 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑐2 ∧ 𝜙], 𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑐2] ⊢ 𝑒 : 𝜏 [𝑎 ↦→ 𝑐2] since Γ, 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑐2 ∧ 𝜙], 𝑥 :𝜏𝑥 ⊢ 𝑒 ⇒ 𝜏

Since the variable 𝑎 is not free in the type judgment, we can remove it from the type context

Γ, 𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑐2] ⊢ 𝑒 : 𝜏 [𝑎 ↦→ 𝑐2]
According to the Lemma B.3, we know that

Γ, 𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑐2] ⊢ 𝑒 : Ex(𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑐2], 𝜏 [𝑎 ↦→ 𝑐2])
The type Ex(𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑐2], 𝜏) is well formed under the type context Γ, and all preconditions
of the rule TApp are satisfied, so we can conclude

Γ ⊢ 𝑒 : let 𝑥 = 𝑣1 𝑐2 in 𝑒 : Ex(𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑐2], 𝜏 [𝑎 ↦→ 𝑐2])
Notice that, 𝜙 [𝜈 ↦→ 𝑐2] is true, thus we have

Ex(𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑐2], 𝜏 [𝑎 ↦→ 𝑐2])
≡ Ex(𝑎:[𝜈 :𝑏 | 𝜈 = 𝑐2], 𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑎], 𝜏 [𝑎 ↦→ 𝑎])
≡ Ex(𝑎:[𝜈 :𝑏 | 𝜈 = 𝑐2 ∧ 𝜙], 𝑥 :𝜏𝑥 , 𝜏)
≡ 𝜏 ′

Thus, we can conclude Γ ⊢ 𝑒 : let 𝑥 = 𝑣1 𝑐2 in 𝑒 : 𝜏
′
.

(b) If 𝑣2 is a variable 𝑥2, we first construct a subcontext of Γ where we modify the type of 𝑥2 in

the type context Γ. Since the variable 𝑥2 has a type in the context Γ, then13

Γ ≡ Γ1, 𝑥2:[𝜈 :𝑡2 | 𝜙2], Γ2
we build a type context Γ∗

Γ ≡ Γ1, 𝑥2:[𝜈 :𝑡2 | 𝜙2 ∧ 𝜙], Γ2
Intuitively, this new context gives us an assumption similar to the constant case above:

𝜈 = 𝑥2 ∧ 𝜙 ⇐⇒ 𝜈 = 𝑥2

In fact, the new context Γ∗ implies two subtyping relations over the context:

Γ∗ ⊑ Γ

Γ, 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑥2 ∧ 𝜙] ⊑ Γ∗, 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑥2 ∧ 𝜙]
The first is obvious, since we only add a conjunction into the type of 𝑥2. On the other

hand, Γ, 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑥2 ∧ 𝜙] is a subtype of Γ∗, 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑥2 ∧ 𝜙] in reverse, since we

strengthen the coverage type of 𝑥2 in the last binding 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑥2 ∧ 𝜙]. Then, according
to the second subtype context relation, we have

Γ∗ ⊢ 𝑣1 : 𝑎:{𝜈 :𝑏 | 𝜈 = 𝑥2 ∧ 𝜙} � 𝜏𝑥 since Γ ⊢ 𝑣1⇒ 𝑎:{𝜈 :𝑏 | 𝜙} � 𝜏𝑥 and TSub

13
We use the same way when the variable 𝑥2 having a normal refinement type {𝜈 :𝑡2 | 𝜙2}, thus we omitted this situation.
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Based on the fact 𝜈 = 𝑥2 ∧ 𝜙 ⇐⇒ 𝜈 = 𝑥2, we have

Γ∗ ⊢ 𝑣2 : [𝜈 :𝑏 | 𝜈 = 𝑥2 ∧ 𝜙] According to the rule TVar

According to the second subtype context relation, we have

Γ∗, 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑥2 ∧ 𝜙], 𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑥2] ⊢ 𝑒 : 𝜏 [𝑎 ↦→ 𝑥2] since Γ, 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑥2 ∧ 𝜙], 𝑥 :𝜏𝑥 ⊢ 𝑒 ⇒ 𝜏

Again, since the variable 𝑎 is not free, we can also remove it. Moreover, according to the

typing rule TApp and the Lemma B.3, we know

Γ∗ ⊢ let 𝑥 = 𝑣1 𝑥2 in 𝑒 : Ex(𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑥2], 𝜏 [𝑎 ↦→ 𝑥2])

Again, we have

Ex(𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑥2], 𝜏 [𝑎 ↦→ 𝑥2])
≡ Ex(𝑎:[𝜈 :𝑏 | 𝜈 = 𝑥2], 𝑥 :𝜏𝑥 [𝑎 ↦→ 𝑎], 𝜏 [𝑎 ↦→ 𝑎])
≡ Ex(𝑎:[𝜈 :𝑏 | 𝜈 = 𝑥2 ∧ 𝜙], 𝑥 :𝜏𝑥 , 𝜏)
≡ 𝜏 ′

Then we have

Γ∗ ⊢ let 𝑥 = 𝑣1 𝑥2 in 𝑒 : 𝜏
′

Finally, by combining Lemma B.5 and Γ∗ ⊑ Γ, we have

Γ ⊢ let 𝑥 = 𝑣1 𝑥2 in 𝑒 : 𝜏
′

Case ChkMatch: The rule is a combination of TMatch and TMerge. For the 𝑖𝑡ℎ branch of the

pattern matching branch, we have the following judgment after unfolding Γ′𝑖

Γ, 𝑦:[𝜈 :𝑏𝑦 | 𝜃𝑦], 𝑎:[𝜈 :𝑏 | 𝜈 = 𝑣𝑎 ∧𝜓𝑖] ⊢ 𝑒𝑖 : 𝜏𝑖 since Γ, Γ′𝑖 ⊢ 𝑒𝑖 ⇒ 𝜏𝑖

Similarly to the approach we used for the SynAppBase case, since 𝑣𝑎 is a value of base type,

it can only be a constant or a variable. Then we can derive the following judgement without

the variable 𝑎:

Γ, 𝑦:[𝜈 :𝑏𝑦 | 𝜃𝑦] ⊢ 𝑒𝑖 : Ex(𝑦:[𝜈 :𝑏𝑦 | 𝜃𝑦], 𝜏𝑖 [𝑎 ↦→ 𝑣𝑎]) ≡ 𝜏 ′𝑖
According to the rule TMatch, we have the following judgement for all branches

Γ ⊢ match 𝑣𝑎 with 𝑑𝑖 𝑦 → 𝑒𝑖 : 𝜏
′
𝑖

Then according to the Lemma B.2, we have

Γ ⊢ match 𝑣𝑎 with 𝑑𝑖 𝑦 → 𝑒𝑖 : Disj(𝜏 ′𝑖 )

Finally, according to TSub, for a type 𝜏 ′ that Γ ⊢ Disj(𝜏 ′
𝑖
) <: 𝜏 ′, we have

Γ ⊢ match 𝑣𝑎 with 𝑑𝑖 𝑦 → 𝑒𝑖 : 𝜏
′

which is exactly what we needed to prove for this case.

□
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Completeness of Algorithmic Typing. We present the proof for Theorem 5.4 from Section 5. The

theorem assumes“an oracle for all formulas produced by the Query subroutine”, which can be

stated as the following lemma.

Lemma B.7. [An oracle of Query subroutine exists] For all all type context Γ and coverage type
[𝜈 :𝑏 | 𝜙1] and [𝜈 :𝑏 | 𝜙2], Γ ⊢ [𝜈 :𝑏 | 𝜙1] <: [𝜈 :𝑏 | 𝜙2] iff Query(Γ, [𝜈 :𝑏 | 𝜙1], [𝜈 :𝑏 | 𝜙2]).
With the assumption above, we introduce the following lemmas about the Query subroutine,

Disj and Ex functions as we did in the soundness proof.

Lemma B.8 (Query subroutine implies propositional eqality). For all type context Γ, type
[𝜈 :𝑏 | 𝜙1], [𝜈 :𝑏 | 𝜙2]

Query(Γ, [𝜈 :𝑏 | 𝜙1], [𝜈 :𝑏 | 𝜙2]) ∧Query(Γ, [𝜈 :𝑏 | 𝜙2], [𝜈 :𝑏 | 𝜙1]) =⇒ 𝜙1 = 𝜙2

Lemma B.9 (Disjunction judgement can be simulated by the Disj Function). For all type
context Γ, type 𝜏1, 𝜏2, 𝜏3, Γ ⊢ 𝜏1 ∨ 𝜏2 = 𝜏3 =⇒ Γ ⊢ 𝜏3 <: Disj(𝜏1, 𝜏2) ∧ Γ ⊢ Disj(𝜏1, 𝜏2) <: 𝜏3.

Lemma B.10 (Ex Function is identical when well-fromed). For all type context Γ, Γ′ and type
𝜏 , Γ ⊢WF 𝜏 =⇒ ∀𝑒, Γ, Γ′ ⊢ 𝑒 ⇒ 𝜏 ⇐⇒ Γ, Γ′ ⊢ 𝑒 ⇒ Ex(Γ′, 𝜏).

We also have the corresponding lemma about the subtyping judgement.

Lemma B.11 (Subtyping judgement iff the Ex Function). For all type context Γ, and type 𝜏1,
𝜏2, Γ ⊢ 𝜏1 <: 𝜏2 ⇐⇒ ∅ ⊢ Ex(Γ, 𝜏1) <: Ex(Γ, 𝜏2).

Now we can prove the completeness theorem of our typing algorithm with respect to our

declarative type system.

Theorem B.12 (Relative completeness of typing algorithm). For all type context Γ, term 𝑒

and coverage type 𝜏 , Γ ⊢ 𝑒 : 𝜏 =⇒ Γ ⊢ 𝑒 ⇐ 𝜏 .

Proof. We proceed by induction of Γ ⊢ 𝑒 : 𝜏 . In the cases for typing rules of rule TErr, TConst,

TOp, TVarBase, TVarFun, TFun, and TFix, the coverage typing synthesis rules in Figure 14 aligns

exactly with these rules. By applying the rule ChkSub to shift from the typing synthesis judgement

to the typing check judgement, the completeness is immediate in these cases. For the same reason,

in the case for the rule TSub, the completeness also holds.

Case TLetE, TAppOp, TAppFun, TApp, TMatch: The coverage typing synthesis rules in Figure 14

aligns similar rules (SynLetE, SynAppOp, SynAppFun, SynAppBase, SynMatch) in these

cases, which synthesis the type Ex(Γ′, 𝜏) instead of 𝜏 . This difference can be fixed by the

Lemma B.10 and the precondition that 𝜏 is well formed under type context Γ.
Case TEq: The key idea of this case is to use the auxiliary term let 𝑥 = 𝑒 in 𝑥 and the rule SynLetE

to simulate the type judgment transformation. Notice that the auxiliary term let 𝑥 = 𝑒 in 𝑥
is equivalent to 𝑒 with respect to the operational semantics, that is,

∀𝑣, 𝑒 ↩→∗ 𝑣 ⇐⇒ let 𝑥 = 𝑒 in 𝑥 ↩→∗ 𝑣
It also implies that

∀Γ 𝑒 𝜏, 𝑒 ∈ J𝑒KΓ ⇐⇒ Jlet 𝑥 = 𝑒 in 𝑥KΓ
Thus, the goal of this case can be simplified as

∀Γ 𝑒 𝜏1 𝜏2, Γ ⊢ 𝑒 ⇒ 𝜏1 ∧ Γ ⊢ 𝜏1 <: 𝜏2 ∧ Γ ⊢ 𝜏2 <: 𝜏1 =⇒ Γ ⊢ let 𝑥 = 𝑒 in 𝑥 ⇒ 𝜏2

According to the Lemma B.11, we know

∅ ⊢ Ex(Γ, 𝜏1) <: Ex(Γ, 𝜏2) ∧ ∅ ⊢ Ex(Γ, 𝜏1) <: Ex(Γ, 𝜏2)
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Table 6. Experimental results from the STLC case study. Each function is implemented as a wrapper (whose
name has a trialing ′) around a subsidiary function that takes an additional strictly decreasing argument
that ensures termination (the original QuickChick implementations uses Coq’s Program command for this
purpose).

#Branch Recursive #LocalVar #MP #Query (max. #∀,#∃) total (avg. time)(s)

nonderter_dec 2 4 1 5 (4, 2) 0.10(0.02)
gen_const 2 5 2 3 (4, 2) 0.06(0.02)
type_eq 6 ✓ 7 5 9 (10, 9) 36.26(4.03)
type_eq′ 2 6 2 5 (5, 2) 0.10(0.02)
gen_type 3 ✓ 10 1 15 (10, 12) 0.47(0.03)
gen_type′ 2 5 1 3 (4, 2) 0.05(0.02)

var_with_type 5 ✓ 12 7 13 (12, 8) 7.77(0.60)
var_with_type′ 2 6 3 6 (5, 2) 0.50(0.08)

or_var_in_typectx 3 7 4 4 (5, 2) 0.06(0.01)
combine_terms 3 9 6 8 (6, 5) 0.14(0.02)

gen_term_no_app 3 ✓ 13 10 20 (14, 15) 4.37(0.22)
gen_term_no_app′ 2 6 3 5 (5, 2) 0.07(0.01)
gen_term_size 4 ✓ 24 9 50 (27, 27) 148.39(2.97)
gen_term_size′ 2 7 3 6 (6, 2) 0.09(0.01)

According to the Lemma B.7 and Lemma B.8, we know Ex(Γ, 𝜏1) = Ex(Γ, 𝜏2). On the other

hand, according to the rule SynVarBase (or, SynVarFun) and the rule SynLetE, we can infer

the type of the auxiliary term let 𝑥 = 𝑒 in 𝑥 as Ex(Γ, 𝜏1), thus we know
Γ ⊢ let 𝑥 = 𝑒 in 𝑥 ⇒ Ex(Γ, 𝜏2)

The according to Lemma B.11 and the type Ex(Γ, 𝜏2) has no free variable, we know

Γ ⊢ let 𝑥 = 𝑒 in 𝑥 ⇒ 𝜏2

which is exactly what we needed to prove for this case.

Case TMerge: Similarly to the approach we used in the case TEq, the key idea is to use the auxiliary

term 𝑒 ⊕ 𝑒 (non-deterministic choice between two 𝑒) and the rule SynMatch to simulate the

typing rule TMerge. Notice that the auxiliary term 𝑒 ⊕ 𝑒 is equivalent to 𝑒 with respect to

the operational semantics, which implies that

∀Γ 𝑒 𝜏, 𝑒 ∈ J𝑒KΓ ⇐⇒ J𝑒 ⊕ 𝑒KΓ
Thus, the goal of this case can be simplified as

∀Γ 𝑒 𝜏1 𝜏2 𝜏3, Γ ⊢ 𝑒 ⇒ 𝜏1∧ ⊢ 𝑒 ⇒ 𝜏2 ∧ Γ ⊢ 𝜏1 ∨ 𝜏2 = 𝜏3 =⇒ Γ ⊢ 𝑒 ⊕ 𝑒 ⇒ 𝜏3

With the rule SynMatch, we can infer the type of the term 𝑒 ⊕ 𝑒 as Disj(𝜏1, 𝜏2). On the other

hand, according to the Lemma B.9, we know

Γ ⊢ 𝜏3 <: Disj(𝜏1, 𝜏2) ∧ Γ ⊢ Disj(𝜏1, 𝜏2) <: 𝜏3
Finally, it falls back to the same situation of the case TEq, obviously can be proved in the

same way.

□

C EVALUATION DETAILS
The details result of the STLC case study is shown in Table 6.

An artifact containing this tool, our benchmark suite, results and corresponding Coq proofs is

publicly available on Zenodo[Zhe 2023].
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