
1 

 

A vision for safer food contact materials: public health concerns as 

drivers for improved testing 

Jane Munckea*, Anna-Maria Anderssonb, Thomas Backhausc, Scott M. 

Belcherd, Justin M. Bouchera, Bethanie Carney Almrothc, Terrence J. 

Collinse, Birgit Geuekea, Ksenia J. Grohf, Jerrold J. Heindelg, Frank A. von 

Hippelh, Juliette Legleri, Maricel V. Maffinij, Olwenn V. Martink, John 

Peterson Myerse,l, Angel Nadalm, Cristina Nerinn, Ana M. Sotoo, Leonardo 

Trasandep, Laura N. Vandenbergq, Martin Wagnerr, Lisa Zimmermanna, R. 

Thomas Zoellerq and Martin Scheringers* 

aFood Packaging Forum Foundation, Zurich, Switzerland; bDept. of Growth and 

Reproduction, Rigshospitalet and Centre for Research and Research Training in Male 

Reproduction and Child Health (EDMaRC), Copenhagen University Hospital – 

Rigshospitalet, Copenhagen, Denmark, Copenhagen, Denmark; cDept of Biological and 

Environmental Sciences, University of Gothenburg, Sweden; dDept. of Biological 

Sciences, North Carolina State University, Raleigh, NC, USA; eDept. of Chemistry, 

Carnegie Mellon University, PA, USA; fDepartment of Environmental Toxicology, 

Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, 

Switzerland; gHealthy Environment and Endocrine Disruptor Strategies, Commonweal, 

Durham, NC, USA; hMel & Enid Zuckerman College of Public Health, University of 

Arizona, AZ, USA; iDept. of Population Health Sciences, Faculty of Veterinary 

Medicine, University of Utrecht, Netherlands; jIndependent consultant, Frederick, MD, 

USA; kPlastic Waste Innovation Hub, Department of Arts and Science, University 

College London, England, UK; lEnvironmental Health Sciences, Charlottesville, VA, 

USA; mIDiBE and CIBERDEM, Miguel Hernández University of Elche, Alicante, Spain; 
nDept. of Analytical Chemistry, I3A, University of Zaragoza, Zaragoza, Spain; 
oDepartent of Immunology, Tufts University School of Medicine, Boston, MA, USA and 

Centre Cavaillès, Ecole Normale Supérieure, Paris, France; pCollege of Global Public 

Health and Grossman School of Medicine and Wagner School of Public Service, New 

York University, New York, NY, USA; qDepartment of Environmental Health Sciences, 

School of Public Health & Health Sciences, University of Massachusetts Amherst, 

Amherst, MA, USA; rDept. of Biology, Faculty of Natural Sciences, Norwegian 

University of Science and Technology, Trondheim, Norway; sEnvironmental Chemistry 

and Modelling, RECETOX, Masaryk University, Brno, Czech Republic and Department 

of Environmental System Sciences, ETH Zurich, Switzerland 

*corresponding authors: jane.muncke@fp-forum.org; scheringer@usys.ethz.ch  

 

 

 

 

 

 

mailto:jane.muncke@fp-forum.org
mailto:scheringer@usys.ethz.ch


2 

 

Abbreviations 

AOP  Adverse Outcome Pathway 

BPA  bisphenol A 

CVD Cardiovascular Disease 
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NIAS Non-Intentionally Added Substance 
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A vision for safer food contact materials: public health concerns as 

drivers for improved testing 

Food contact materials and articles are ubiquitous in today’s globalized food 

system. Chemicals migrate from food contact materials into foodstuffs, but 

current regulatory requirements do not sufficiently protect public health from 

hazardous food contact chemicals (FCCs) because only individual substances 

used to make food contact materials are tested and mostly only for  genotoxicity 

while endocrine disruption and other hazard properties are disregarded. Indeed, 

food contact materials are a known source of a wide range of hazardous 

chemicals, and they likely contribute to highly prevalent non-communicable 

diseases. Food contact materials can also include non-intentionally added 

substances (NIAS), which often are unknown and therefore not subject to risk 

assessment. To address these important shortcomings, we outline how the safety 

of food contact materials may be improved by (1) testing the overall migrate, 

including (unknown) NIAS, and (2) expanding toxicological testing beyond 

genotoxicity to multiple endpoints associated with non-communicable diseases 

relevant to human health. To identify mechanistic endpoints for testing, we group 

chronic health outcomes associated with chemical exposure into Six Clusters of 

Disease (SCOD) and we propose that finished food contact materials should be 

tested for their impacts on these SCOD. Future research should focus on 

development of robust, relevant and sensitive in vitro assays based on 

mechanistic information linked to the SCOD, e.g., through Adverse Outcome 

Pathways (AOPs) or Key Characteristics of Toxicants. Implementing this vision 

will improve prevention of chronic diseases that are associated with hazardous 

chemical exposures, including from food contact materials. 

Keywords: food packaging; risk assessment; chronic disease; chemical safety  
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1. Introduction 

In today’s globalized food system, food contact materials and articles such as 

food packaging, tableware, and food processing equipment are ubiquitous, especially 

those made of plastic (1, 2). This increases exposures to food contact chemicals (FCCs) 

migrating from food contact materials (3-5). This widespread, continuous exposure to a 

wide range of synthetic chemicals requires a more stringent safety assessment of food 

contact materials than the current approaches used in both low- and high-income 

countries (6-10). 

Food contact materials have been studied for over 50 years and are a known 

source of chemicals that migrate into foodstuffs (11-19). Numerous FCCs, either 

intentionally used in the manufacture of food contact materials or non-intentionally 

added substances (NIAS) that are present in the finished food contact material/article 

and that migrate into foodstuffs (5, 20, 21), are known to be hazardous and implicated 

with adverse human health impacts (22-29).  

However, the current approach to chemical risk assessment for food contact 

materials is largely focused on assessing genotoxicity of single substances used to 

manufacture food contact materials and therefore fails to account for other highly 

relevant mechanisms of toxicity that are of equal concern as genotoxicity (10) and, what 

is more, the current approach does not assess NIAS that also migrate from  food contact 

materials (Fig. 1) (17, 30). Addressing both issues is feasible in a cost-efficient way and 

necessary to protect public health. 

Indeed, non-cancer non-communicable diseases (NCDs) of increasing 

prevalence in the global human population have been associated with several widely 

used FCCs, such as bisphenol A (BPA), bisphenol F, perchlorate, and di(2-ethyl hexyl) 

phthalate (DEHP), to name a few (Table 1). Given that humans are in daily contact with 

food contact materials, those materials are likely a relevant exposure source of 

hazardous chemicals that contribute to various NCDs globally.  

In this article, we outline an improved assessment scheme for hazard 

identification of FCCs that captures all exposure-relevant chemicals including 

(unknown) NIAS, and we present a vision for assessing the safety of food contact 

materials that addresses biological effects linked to the most prevalent NCDs (31, 32). 

These include heart disease, stroke, cancer, diabetes, reproductive disorders, and several 

neurological conditions. We provide guidance on research and policy actions that 

should be developed to protect the public from avoidable chronic chemical exposures 

originating from food contact materials and articles.  
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Figure 1. Chemical risk assessment for food contact chemicals (FCCs): current 

practice. The current approach for assessing the safety of FCCs focuses on testing single 

substances that are intentionally used to make food contact materials. The toxicological focus is 

on mutagenicity and genotoxicity, therefore only carcinogenicity is currently determined as a 

human health relevant endpoint for predicting chronic disease. However, many more chemicals 

can migrate simultaneously from the finished food contact material, including unidentified 

compounds that are non-intentionally added substances (NIAS). The migrating mixture is 

known as the overall migrate, and it can also exert adverse effects (mixture toxicity). Currently, 

the assessment of overall migrate mixture toxicity is not legally required. Illustrator: Michael 

Stünzi. 

 

2. Problem set-up: Shortcomings of the current approach 

2.1 Non-communicable diseases are increasingly prevalent and associated with 

chemical exposures  

NCDs are a significant contributor to global mortality (33). However, the impact 

of NCDs is far greater than mortality alone, especially in low- and middle-income 

countries. Both mortality and morbidity of selected NCDs have increased substantially 

over the last 30 years. Premature deaths (<70 years) are primarily associated with 

cardiovascular disease (17.7 million deaths per year, accounting for 45% of all NCD 

deaths), cancer (8.8 million deaths per year, 22% of all NCD deaths), chronic 

respiratory disease (3.9 million deaths per year, 10% of all NCD deaths) and diabetes 

(1.6 million deaths per year, 4% of all NCD deaths) (33). Expressed in Disability-

Adjusted Life Years, cardiovascular diseases have increased by a factor of 1.4 from 

1990 to 2017, neoplasms by a factor of 1.5, and diabetes, urogenital, blood and 

endocrine diseases by a factor of 1.6 (from 1990 to 2016) (34) (Figure S1, Supplemental 

Material). Furthermore, among reproductive-age women and men, infertility is now the 

most prevalent chronic disease (35). Importantly, NCDs incur significant human 

suffering in addition to their estimated economic costs (36-40), which further stresses 
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the need for urgent action towards prevention of morbidities associated with NCDs.  

Chemical exposures are an important contributor to NCDs. Several well-studied 

types of chemicals such as toxic metals, halogenated aromatics, and some pesticides 

(41, 42), as well as some members of the endocrine disrupting compounds (43-47) are 

associated with NCDs such as brain-related disorders, cancers, metabolic disorders and 

cardiovascular disease. Specific FCCs such as BPA and  several members of the ortho-

phthalates group are associated with NCDs such as heart disease, diabetes, and some 

forms of cancer (48, 49) (Table 1). Further, the effects of chemical exposures on risk of 

NCDs are complex and multifaceted, with some outcomes occurring across generations 

through transgenerational inheritance (47, 50, 51). It is also clear that these effects are 

not limited to laboratory animals, as mixtures of chemicals including FCCs have been 

associated with adverse health outcomes in prenatally exposed humans (46, 49, 52-55).  

 

 
Table 1. Food contact chemicals (FCCs) associated with non-communicable diseases (NCDs) 

from each of the Six Clusters of Disease (SCOD) (non-exhaustive and non-systematic 

overview). Identification of FCCs was based on the Food Contact Chemicals database (FCCdb) 

(24) and the database on migrating and extractable food contact chemicals (FCCmigex) (17). 

This overview is not a complete list of FCCs that are associated with adverse health outcomes. 

Systematic reviews are indicated with*. Cancer agents are classified by cancer site (125). 

 
Disease Cluster Example disease Associated FCC 

exposure 

References 

Cancers Testicular cancer PFOA  (229, 230) 

Kidney cancer PFOA  (229, 231)  

Breast cancer PFOA  (232) 

Ortho-phthalates 

 (232) 

Cardiovascular 

diseases 

Cardiovascular diseases: including 

myocardial infarction, arrhythmias, dilated 

cardiomyopathy, atherosclerosis, and 

hypertension 

BPA    (233-236) 

Ortho-phthalates   (237) 

Brain-related 

disorders 

Hypothyroid BPA  (238) 

Ortho-phthalates  (239) 

Perchlorate   (239) 

PFAS   (240) 

Abnormal neurodevelopment Ortho-phthalates: 

DEHP, DBP, BBP and 

DEP 

  (241) 

Attention Deficit Hyperactivity 

Disorder/behavior 

Lead, BPA, ortho-

phthalates 

 (242-244) 

Lower Intelligence Quotient Endocrine disrupting 

chemical (EDC) 

mixture (Ortho-

phthalates) 

 (46, 245) 

Language delay EDC mixture  (55) 

Metabolic and 

endocrine diseases 

Type-1 diabetes BPA, Ortho-phthalates, 

PFAS 

 (246) 
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Type-2 diabetes BPA  (247-249) 

PFOA  (250) 

Pre-diabetes and diabetes  Ortho-phthalates  (241, 251, 

252) 

Obesity (BMI, waist circumference) 

BPA  (237, 253, 

254) 

 

PFAS 

 (255, 256) 

Childhood Obesity BPA  (257) 

Ortho-phthalates 

 (258) 

Gestational diabetes Antimony  (259) 

Ortho-phthalates 

 (260) 

Non-alcoholic fatty liver disease EDC mixture  (261) 

PFAS 

 (262) 

Immunological 

disorders 

Immunosuppression PFAS: PFOS and 

PFOA  

 (263) 

Childhood asthma Ortho-phthalates: 

DEHP and BBzP  

 (241) 

Kidney damage Melamine  (264) 

Reproductive 

disorders 

Male infertility BPA  (265) 

Dibutyl phthalate  (266) 

Semen quality  Ortho-phthalates: DBP, 

BBP, DEHP, and DINP 

 (241, 251, 

267) 

Female infertility (reduced follicular count) DEHP  (268) 
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NCDs that are increasingly prevalent in the human population and that are 

associated with hazardous chemical exposures can be grouped into disease clusters. On 

this basis, we developed the novel concept of Six Clusters of Disease (SCOD) (Figure 

2). The six clusters are cancers, cardiovascular diseases, reproductive disorders, brain-

related disorders, immunological disorders, and metabolic diseases. The SCOD concept 

provides a rationale for systematically assessing the safety of chemicals in food contact 

materials, with a focus on the prevention of chemical-associated, highly prevalent, and 

severe NCDs. As such, the SCOD concept expands current efforts for chemical risk 

assessment of FCCs. 

 

 
Figure 2. The novel Six Clusters of Disease (SCOD) concept comprises non-

communicable diseases (NCDs) that are highly prevalent in the global human population, of 

increasing concern, and associated with hazardous chemical exposures that can be clustered by 

disease type. They include cancers, cardiovascular diseases, reproductive disorders, brain 

disorders, immunological disorders, and metabolic diseases. The SCOD are of major concern 

for public health and require novel approaches for prevention, namely the identification of 

chemical contributors. Chemical risk assessment of food contact chemicals (FCCs) should 

determine contributions to diseases of public health concern. Preventing exposure to chemicals 

in food contact materials that contribute to NCDs is critical for successful primary prevention 

strategies. Illustrator: Michael Stünzi. 

 

2.2 Current risk assessment of food contact chemicals is not sufficiently 

protective of human health 

The universe of known FCCs comprises at least 14,153 substances, and for at 

least 1,518 FCCs empirical evidence for migration from food contact articles and 

materials is publicly available (17). Evidence of human exposure exists for hundreds of 

these chemicals (4, 55-66). At least 388 FCCs in use today are known to be 

carcinogenic, mutagenic or toxic to reproduction, possess endocrine disrupting 

properties, or have other properties of concern such as persistence (22).  

Currently, in the United States (US), Canada, the European Union (EU), China 

and other countries, chemical risk assessment is required for all migrating substances 

(Figure 1). In practice, however, it is predominantly the intentionally used substances 

that are assessed for their risk to human health. Humans are exposed to many more 

FCCs that are non-intentionally added to the finished food contact material or foodstuff. 

These NIAS include impurities of the starting substances, reaction by-products, or 

degradation products of starting substances (like additives) (5, 67-69). NIAS most often 

are unidentified, they are common in food contact materials with high chemical 

complexity, and they are likely to be biologically active (70).  Under the current 
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chemicals risk assessment paradigm for food contact materials, where a chemical’s 

identity must be known, unidentified FCCs cannot be assessed, although, for example, 

the EU plastic food contact regulation requires the risk assessment of NIAS (71), and 

also US FDA’s Food Contact Notification has information requirements on impurities 

and reaction by-products (72).   

A second problem is the lack of testing of substances present in the finished 

food contact material. Several approaches have been developed to approximate the 

health risks of unknown NIAS (73-79), but these approaches contain substantial 

uncertainties related to hazard estimation, chemical identification, and quantification 

(80, 81) because they are based on assumptions that cannot be entirely supported by 

empirical evidence. For example, generic thresholds for chronic exposures to 

nongenotoxic carcinogens were derived from testing chemicals at maximum tolerable 

doses (MTD) and at 1/2 MTD, but it depends on the exact mechanism by which a 

chemical exerts its toxicity whether a low-dose extrapolation from MTD dosing is 

appropriate or not (82, 83). 

Finally, because some laws prohibit the use of chemicals that cause cancer in 

humans or animals, testing methods currently focus on genotoxicity as a proxy for 

predicting cancer risk (10, 84). This focus on genotoxic effects is at the expense of other 

hazards, including outcomes relevant to other chronic NCDs.  Thus, there is a need for 

novel and more robust approaches to more fully evaluate all the relevant hazards to 

human health associated with FCCs. 

3. Our vision: to make safer food contact materials  

3.1 Assessing toxicological effects relevant to the Six Clusters of Disease  

Chronic exposure to hazardous chemicals is a known modifiable risk factor for 

cancer and reducing exposure to hazardous or untested chemicals from consumer 

products, including food contact materials, is a recommended preventive measure (85). 

It is reasonable to assume that the same holds true for other NCDs that are associated 

with chemical exposures, especially for endocrine disrupting chemicals (Table 1). 

Indeed, exposure reductions can lower the incidence of disease (86), for example for 

neurodevelopmental disorders (87), obesity (88) or male reproductive disorders (89). 

NCDs that are increasingly prevalent in the human population and that are 

associated with hazardous chemical exposures can be grouped into disease clusters. On 

this basis, we have developed the novel concept of SCOD (Fig. 2). The SCOD concept 

emerged from discussions with the Food Packaging Forum’s Scientific Advisory Board 

(SAB) during several meetings between 2016 and 2022. The SCOD concept provides 

for the first time a rationale for systematically assessing the safety of chemicals in food 

contact materials, with a focus on the prevention of chemical-associated, highly 

prevalent and severe NCDs. As such, the SCOD concept expands current efforts for 

chemical risk assessment of FCCs beyond cancers induced via a genotoxic mechanism. 

For each disease cluster within the SCOD, many widely used FCCs have been 

associated with relevant diseases in both epidemiology and animal studies (Table 1). 

For some, mechanistic evidence strengthens these associations. It is also this 

mechanistic evidence that provides opportunities to use in silico and in vitro assays to 

better map toxicity profiles of individual FCCs in finished food contact materials, 
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before they are placed on the market, as well as mixtures, extracts and migrates from 

food contact materials and articles. The SCOD provides organizing principles for such 

an approach. 

3.2 Assessing real-life chemical exposures: testing overall migrate from food 

contact materials 

All FCCs that are relevant for human exposure should be tested, in other words, 

FCCs used in the manufacturing of food contact materials should be tested as single 

substances, and the real-life mixture of all migrating FCCs, the overall migrate, should 

also be tested. In addition, the overall migrate should be subjected to non-targeted 

chemical analyses that are aimed to identify its chemical composition, including NIAS 

(90). This combined testing and chemical identification approach could inform the 

development of safer food contact materials by selecting less hazardous ingredients and 

developing manufacturing processes that generate fewer and less biologically active 

NIAS. Such an approach would be aligned with the proposed Safe and sustainable by 

Design criteria included in the EU’s Chemicals Strategy for Sustainability (91).  

The already available as well as emerging in vitro assays provide an opportunity 

to identify hazardous properties of single substances and of the overall migrate. In vitro 

test systems are small-scale, often single-cell or small organism systems, for example 

human cancer cell lines, bacteria, and fungi (e.g. yeast). Other high-throughput 

screening assays utilize embryos and larvae from vertebrates such as zebrafish (Danio 

rerio) or African clawed frog (Xenopus laevis). These assays can be performed 

efficiently both in terms of time and cost and are usually based on mechanistic 

pathways (92, 93). 

Test batteries, where several relevant assays are combined simultaneously, can 

also be operated as high-throughput screening methods such as those developed in 

Tox21 and ToxCast (94-96), which demonstrate the feasibility of this approach. In this 

way, diverse information about the interaction properties of a single chemical with 

different biological systems can be generated efficiently, and with lower cost, compared 

to whole-animal testing used in traditional toxicology. 

These assessments should be guided by the SCOD concept. However, gaps exist 

in the current understanding of molecular pathways related to the SCOD, and these in 

vitro assays remain insufficient to identify the full panoply of potential hazards, 

especially those mediated by endocrine mechanisms. In vitro assays included in high-

throughput test batteries need to be appropriate for predicting relevant human health 

outcomes; should be demonstrated to be reproducible, sufficiently specific and 

sensitive; and must be executed transparently (97, 98). Because of the limited in vitro 

assays for known pathways and mechanisms of action associated with endocrine 

disruption and other complex biological cascades, animal testing needs to continue, but 

at a reduced level than in the past. For example, no current in vitro approaches would 

have revealed what is now known to be a feature of some chemical exposures, e.g., 

transgenerational epigenetic inheritance (99). Acknowledging these and other gaps, the 

European Commission is funding EURION, a program to develop new testing and 

screening methods (including many in vitro approaches) for identifying endocrine 

disrupting chemicals (100). 
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3.3 Shifting from the status quo to a more comprehensive approach to testing  

Within the SCOD, increasingly available mechanistic information enables an 

understanding of how chemicals contribute to highly prevalent NCDs. Two emerging 

frameworks are being implemented to describe how chemicals affect complex diseases 

and to provide a more uniform approach to evaluating mechanistic evidence: the key 

characteristics concept, and adverse outcome pathways (AOPs). Both offer 

opportunities to shift from the status quo, modernize hazard assessments, and develop 

suitable in vitro assays. 

3.3.1 The Key Characteristics concept: modernizing chemical hazard assessments  

The key characteristics concept makes use of information about the properties of 

hazardous chemicals that have empirical evidence linking them causally to relevant 

apical (disease) endpoints (101). The underlying premise is that chemicals that cause the 

same disease outcomes in whole organisms share molecular properties (i.e., key 

characteristics) that are relevant for their hazardous properties. The key characteristics 

for different disease outcomes are hence defined using empirical evidence for well-

characterized chemicals, combined from epidemiological, in vivo and mechanistic 

studies. These disease-specific key characteristics can then be used to develop 

mechanistic in vitro assays to screen chemicals for their propensity to contribute to 

different disease clusters and thereby reduce the need for in vivo experiments while still 

decreasing scientific uncertainty normally associated with in vitro data. 

The key characteristics were first developed for carcinogens, drawing from 

existing mechanistic information from thoroughly assessed chemicals that are known to 

be carcinogenic in humans (101-105). Additional key characteristics of other disease-

causing chemicals have also been described, such as for hepatotoxicants (106), 

endocrine disrupting chemicals (107), female reproductive toxicants (108), male 

reproductive toxicants (109), cardiovascular toxicants (110), and immunotoxicants 

(111). For metabolic toxicants and neurotoxicants, work to describe key characteristics 

is ongoing. Taken together, the key characteristics approach provides an excellent 

starting point for the mechanistic understanding of how certain chemicals are associated 

with NCDs, such as those covered in the SCOD.  

3.3.2 Using other mechanistic information to develop suitable in vitro assays 

In addition to the key characteristics, further important mechanistic 

understanding is becoming available and can be useful to inform development of 

dedicated in vitro screening assays for hazard assessments of FCCs. Chemicals exert 

toxic effects by combinations of many different molecular-level events. These 

mechanistic events leading to apical endpoints of toxicity can be organized in an AOP 

(112). Several AOPs relevant to NCDs in the SCOD have been proposed, such as 

estrogen receptor activation leading to breast cancer (113)  and the upregulation of 

thyroid hormone catabolism (via activation of hepatic nuclear receptors) leading to 

subsequent adverse neurodevelopmental outcomes in mammals, specifically the loss of 

cochlear function (114).Thus, AOPs are an emerging approach to organize mechanistic 

information so that molecular or cellular-level targets can be identified for developing 

in vitro assays that are relevant to the SCOD.  

3.3.3 The novel approach: A vision for safer food contact materials 
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Based on the presumption that mechanistic in vitro testing of chemicals supports 

the prevention of NCDs within the SCOD, we propose a novel approach for testing 

FCCs that 

(1) covers individual FCCs as well as real-life mixtures, migrating (or extractable) 

from finished food contact materials, including all known and unknown NIAS,  

(2) assesses the health impacts of FCCs and real-life mixtures with respect to the 

most prevalent NCDs in the human population, and  

(3) evaluates effects that are upstream from the disease, relying on mechanistic 

information and in vitro screening approaches (wherever possible) to accurately 

predict health effects induced by FCCs and migrates. 

This shift from current practice to the proposed approach is summarized in Fig. 3, 

and a detailed overview is provided in Fig. 4. Our approach overcomes the most 

challenging shortcomings of the current testing paradigm of chemical hazard 

assessment of food contact materials, fully recognizing that to assess all adverse effects 

of chemicals on biological systems, adequate in vivo testing is required, where 

additional aspects would be addressed such as metabolic activation, unknown modes of 

action leading to apical endpoints, and transgenerational effects. However, we also 

realize that such extensive, multigeneration in vivo testing may not always be feasible 

for various reasons, including ethical and practical ones. Therefore, we propose this 

vision to improve FCC testing from the currently too limited scope towards a much 

more comprehensive yet feasible approach that holds promise for better protection of 

public health. 



13 

 

 
Figure 3. Schematic overview of the current vs. proposed approach to food contact 

chemical (FCC) testing. Currently, single substances intentionally used to make food contact 

materials are tested for genotoxicity using in vitro assays. The proposed new approach focuses 

on testing the overall migrate (i.e., the human exposure-relevant mixture of all migrating FCCs) 

for its potential to contribute to the Six Clusters of Disease (SCOD). Notably, single substances 

used to make food contact materials would also be tested individually for the SCOD-relevant 

endpoints and, if found to have biological activity, excluded from use in the manufacturing of 

food contact materials. Illustrator: Michael Stünzi. 
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Figure 4. The vision for a novel approach to safety assessment of food contact 

materials and articles. Finished food contact materials and articles are tested for their real-life 

mixture of all migrating chemicals (the overall migrate), using in vitro screening assays as well 

as non-targeted chemical analyses. The screening assays are mechanism-based and identify the 

key characteristics, key initiating events, or other mechanisms of action of the overall migrate. 

Screening assays are selected around the Six Clusters of Disease (SCOD) concept. In addition, 

intentionally added substances used for the manufacture of food contact materials are also tested 

as individual substances prior to their authorization, and the overall migrate is chemically 

characterized using non-targeted approaches. Illustrator: Michael Stünzi. 

 

4. Implementing the vision: assessing impacts of FCCs and relevant mixtures 

on human health outcomes in the SCOD using mechanistic approaches 

Here we review the mechanistic basis for each of the disease clusters included in 

the SCOD, and selectively highlight available in vitro testing methods. Importantly, 

some available assays cover key characteristics that are relevant for several disease 

clusters. 

This vision for expanded hazard assessment of food contact materials is based 

on the finding that for each of the disease clusters included in the SCOD, some 

mechanistic understanding is available for the way that chemicals cause disease (Table 

2). 

4.1 Cancer  

As defined by Willis,  

A neoplasm is an abnormal mass of tissue, the growth of which exceeds and is 
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uncoordinated with that of the normal tissues and persists in the same excessive 

manner after cessation of the stimulus which evoked the change (115).  

Regarding cancer causation, the somatic mutation theory posits that cancer is a 

cellular disease caused by mutations of genes that disrupt the control of cell 

proliferation. Yet, substantive contradictions exist between this theory and empirical 

evidence (116), which inspired competing theories consider cancer as a problem of 

tissue organization akin to organogenesis (117-119). Importantly, not all carcinogens 

are mutagens (120) and, thus, carcinogenicity cannot be equated with genotoxicity. Yet, 

because legal requirements restrict the use of cancer-causing agents in food contact 

materials, testing of FCCs has focused on genotoxicity as a proxy to identify 

carcinogenic substances. 

Both carcinogens and mutagens are found in food contact materials including 1) 

formaldehyde, a known human carcinogen (121), which migrates from various plastics 

including melamine-formaldehyde plastics used as tableware for children, and 

polyethylene terephthalate plastic (PET) (122, 123); 2) antimony trioxide, which  “is 

reasonably anticipated to be a human carcinogen” (124) and “probably carcinogenic to 

humans” (125), and it is used in the manufacture of PET, where antimony is found to 

migrate into soft drinks (123, 126); and 3) per- and polyfluoroalkyl substances (PFAS) 

are widely used in the manufacture of food contact materials as processing aids in 

plastic and paper food contact material production (127, 128), and perfluorooctanoic 

acid has limited evidence for testicular and kidney cancers in humans (129). 

The key characteristics for carcinogens reveal that these chemicals can be 

mutagens, but that there are numerous other common features for these agents as well 

(101-105). Guyton and Schubauer-Berigan (2021) recommended the use of in vitro 

assays based on the key characteristics to identify carcinogens in high-throughput 

screening (105). Further, Rider et al. (2021) proposed methods to use the key 

characteristics to test chemical mixtures and their propensity to affect cancer 

development including in mixtures of chemicals with different key characteristics of 

carcinogens (130). Approaches such as these will provide important information for 

testing mixtures such as the overall migrate from finished food contact materials. 

Methods for evaluating genotoxicity are readily available, validated, and trusted. 

Chemicals are considered genotoxic if they damage the structure, information content, 

or segregation of DNA, with mutagenicity (i.e. changes to the nucleotide sequence) 

being a sub-type of genotoxicity (131).  

These methods include: 

• Mutagenicity: The Ames test, based on bacterial reverse mutagenicity, is the 

most employed test for mutagenicity (Organisation for Economic Co-operation 

and Development (OECD) test guideline (TG) 471). A mammalian cell (mouse 

lymphoma) gene mutation test (OECD TG 490) is also available (132) 

• Chromosomal aberration: Cultured mammalian cells are assessed for the 

presence of chromatid-type and chromosome-type aberrations during metaphase 

(OECD TG 473)  

• Micronucleus: Micronuclei represent chromosomal damage (chromosome 

fragments or whole chromosomes) that have been transmitted to daughter cells. 

Micronuclei can be assessed in vitro by using mammalian cells (OECD TG 487) 
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or in vivo with erythrocytes collected from bone marrow or peripheral blood 

(OECD TG 874) 

These methods are recommended or required for assessing intentionally used 

FCCs (72, 133). Several other in vitro assays for assessing the genotoxic potential of 

FCCs are also available (134). However, these strategies have not kept pace with 

discoveries in cancer biology (135). Currently, no in vitro assays are available that 

capture features of carcinogenicity beyond genotoxicity, but research is underway to 

address this technical gap (136). On the other hand, the causal role of the 

microenvironment in carcinogenicity, as put forward by tissue-based theories on 

carcinogenicity (118), is not captured by such in vitro assays, because the reciprocal 

interactions between stroma and parenchyma during development, regeneration, and 

remodeling are not being considered (137). Although in vivo assays involving mammals 

are available, traditional 2-year rodent carcinogenicity studies (OECD TG 451), either 

alone or in combination with chronic toxicity studies, are rarely performed for FCCs. 

4.2 Cardiovascular diseases 

Cardiovascular diseases (CVDs) are a group of disorders arising due to 

disfunction of the heart and blood vessels. The most recognized forms of CVD, 

coronary heart disease and cerebrovascular disease, result in damage to tissues caused 

by limited or complete loss of blood supply (138).  

FCCs including several phthalates and bisphenols contribute to the causation of 

CVDs, independent of obesity and diabetes (110). Bisphenols can disrupt calcium 

signalling in myocardium and vasculature; and phthalates and bisphenols are oxidant 

stressors that accelerate coronary and other arterial inflammation (110). In the US alone, 

100,000 premature deaths from CVD among 55–64-year-olds each year are attributed to 

exposure to one phthalate, DEHP (139). Other FCCs, such as antimony, may also 

impair cardiovascular function and accelerate CVDs (140).  

Lind et al. (2021) compiled the key characteristics of cardiovascular toxicants 

and provided a comprehensive overview of robust and sensitive in vitro, ex vivo and in 

vivo assays that are available for measuring dysregulation of Ca2+ ion homeostasis and 

resulting arrhythmogenic activities of chemicals. For example, the increased risk for 

CVDs associated with higher exposures to BPA is mechanistically associated with Ca2+ 

release and reuptake resulting in proarrhythmic delays after depolarizations in isolated 

cardiomyocytes. BPA promotes Ca2+-mediated arrhythmias ex vivo in the whole heart 

of rats and mice (141). However, this is only one of many possible mechanisms for 

inducing CVDs, and further assay development is required. 

Although several FCCs have been associated with CVDs, cardiovascular 

toxicity is generally not evaluated for FCCs, whether they are intentionally used to 

make food contact materials or NIAS present in finished food contact materials. This is 

in part due to a reliance on in vivo guideline testing of general toxicity for chemicals 

migrating at very high levels and limited to assessment of neoplastic and non-neoplastic 

cardiac lesions in rodent models, which can be confounded by a high incidence of 

background pathology in many of the rodent strains used for toxicity testing (142). 

However, these are insensitive apical endpoints that only identify highly cardiotoxic 

chemicals that result in robust pathology but miss subtle molecular effects (143, 144). 
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We recommend that comprehensive testing for all new chemicals include in 

vitro and in silico testing harmonized with the Comprehensive in vitro Proarrhythmia 

Assay approach (145, 146). 

4.3 Brain-based disorders 

Disrupted neurodevelopment can have numerous consequences including a 

lower intelligence quotient, delayed language acquisition, ADHD, and autism (53, 55, 

147). Because the role of thyroid hormone in brain development is well established, 

hypothyroidism, especially during early development, is also a condition of concern 

upstream of neurodevelopmental disorders. Neurotoxicity can also result from impaired 

neuronal function due to a variety of factors, such as neuronal misplacement during 

development, altered synapses, hypomyelin, or degeneration. Other neurodegenerative 

conditions that typically arise later in life include Parkinson’s disease, Alzheimer’s 

disease, and other forms of dementia. 

The role of FCCs in the causation of many brain-based disorders is well 

established, with substantial contribution to the burden of disease for both 

neurodevelopmental and neurodegenerative disorders (37). For example, FCCs that 

interfere with thyroid hormone systems or sex steroids (e.g., phthalates and perchlorate) 

can affect brain development as well as cognitive function in adults (87, 148). The 

vulnerability of the developing brain and the lack of systematic assessment of 

neurodevelopmental toxicity for FCCs raises serious concerns (149). At present, the key 

characteristics of neurotoxicants remain undescribed, but relevant work is ongoing.  

In addition to assays covering interference with the thyroid and sex steroid axes, 

in vitro testing of neurotoxicants requires sophisticated and reliable models due to the 

complexity of the brain. Neuronal cell lines, primary central nervous system cells, 

transformed neuronal precursors and stem cell derived progenitor cells are used in 

neurotoxicity assays (150) to evaluate endpoints including migration, synapsis 

formation, network activity and differentiation. Although single-cell cultures are 

informative, multi-cell type and three-dimensional models utilizing microfluidics more 

adequately represent the diversity and spatial properties of the brain (151-154), but high 

throughput versions of these methods are not yet available, and thus their use in 

evaluating FCCs has been limited. Additional in vitro assays for chemical screening of 

neurotoxicants are under development in EU-funded research programs (155) and 

research is ongoing to develop further in vitro assays targeting the thyroid system (156). 

Recently, the establishment of a human cell-based in vitro battery has been reported; it 

combines 10 assays selected to cover major key events in the relevant AOPs (157) and 

was shown to provide 82% sensitivity in that it was able to identify 24 out of 28 known 

neurotoxicants (158). 

New low- and medium-throughput screening assays have been developed. For 

example, the nematode is a promising model for evaluating known neurodevelopmental 

toxicants and could be expanded to profiling chemicals with unknown neurotoxicity 

(159, 160). Spontaneous movements (161), number and location of neurons (162), and 

behavioral effects (163) are some of the neurological endpoints measured in zebrafish. 

Validated high-throughput screening assays using African clawed frog tadpoles are also 

available (OECD TG 248).  
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In vivo testing in rodents can be used to assess different functional aspects of 

neurotoxicity including impacts on cognition, learning and memory; and anxiety-like, 

depressive-like and reproductive behaviors. OECD developmental neurotoxicity 

(OECD TG 426) and extended one-generation reproductive toxicity assays (OECD TG 

443) include optional measurements of learning and memory, motor and sensory 

function, motor activity, and auditory startle. Neurodegeneration is not covered because 

animals are not kept until the end of their lifetime (164).      

4.4 Obesity and Metabolic diseases 

Metabolic diseases, including obesity, involve the many tissues that comprise 

the metabolic system (165). These include adipose tissue, skeletal muscle, pancreas, 

liver, gastrointestinal tract, bone, and brain. Type-2 diabetes, an important metabolic 

disease with increasing prevalence in human populations, occurs due to systemic insulin 

resistance, often with an increasing production of insulin by the pancreas. Type-1 

diabetes occurs due to a progressive loss of β-cell insulin secretion. Non-alcoholic fatty 

liver disease is another metabolic disease with increasing prevalence in human 

populations. 

While poor diet and insufficient physical activity are considered the chief drivers 

of the obesity and diabetes twin pandemics, chemical exposures (for example, to 

phthalates, bisphenols, parabens, PFAS, etc.) can disrupt the balance between energy 

expenditure and energy intake (166). A large comprehensive review of metabolic 

disrupting chemicals, including those that can induce obesity (obesogens), provides 

strong evidence that numerous FCCs are associated with type-2 diabetes, obesity, and 

fatty liver disease (167). The key characteristics of metabolic disruptors and obesogens 

are being compiled. Rusyn et al. (2021) have described the key characteristics of acute 

and chronic human hepatotoxicants and note that only one of 12 key characteristics are 

specific to liver tissue (KC9: causing cholestasis) (106). 

The simplest assays to identify an obesity hazard are those that measure the 

effect of chemical exposures on the development of adipocytes (168-170). Primary 

preadipocyte cultures, or mesenchymal stem cell assays, use animal or human cells to 

assess proliferation and differentiation into adipocytes (169, 171-176), and a recent 

study found that around one third of tested food contact articles contained metabolic 

disrupting chemicals (177). Recently, spheroid adipocyte models have been developed 

that improve the efficiency and speed of differentiation (178) and can be used for a 

more comprehensive understanding of adipocyte physiology than monolayer cultures. 

Other non-adipocyte cell lines, when well characterized, are also useful for mechanistic 

studies (97, 179). In addition to adipocyte differentiation, several other mechanisms are 

implicated with metabolic disease causations, for example the disruption of energy 

homeostasis at the level of the hypothalamus and brain. Therefore, in vitro assays that 

examine effects on hypothalamic neurons are useful (180, 181).  

No assays have been developed to identify metabolic disruptors acting as 

diabetogens. Ongoing projects are developing assays to measure β-cell function and 

survival (182-184) using rodent β-cell lines (INS-1E and MIN-6) and a human β-cell 

line (ENDOC-βH1). Assays of insulin function on the human liver cell line HepaRG, 

the skeletal muscle cell line C2C12, and adipocytes are also under investigation (183). 

One well established system of assays employing both in vitro and in vivo methods has 
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been used to explore the relationship between BPA and type-2 diabetes (185). 

The most used assay to screen chemicals for effects on the liver uses the 

HepaRG cell line. This cell line can be customized with different expression levels of 

various drug metabolizing enzymes (186). Other 2D and 3D in vitro approaches use 

primary hepatocytes (187) and other liver models (188) to screen for effects on liver 

outcomes.  

4.5 Immunological disorders 

The immune system is an intricate network of many different, highly specialized 

cells interacting with each other and with the nervous and endocrine systems (189). 

Disorders of the immune system include autoimmune disorders such as multiple 

sclerosis, Graves’ and Hashimoto’s diseases, lupus, Celiac’s, Addison’s, and 

rheumatoid arthritis, among others. Other diseases including type-1 diabetes and asthma 

have an important immune component. Therefore, assays for immunotoxicity need to 

capture a multitude of potential effects, including immunosuppression, 

immunostimulation, hypersensitivity reactions, mechanisms of autoimmunity, and 

developmental immunotoxicity, e.g., delayed immunotoxic responses to toxic 

influences (190).  

The human immune system is highly effective, but also sensitive to synthetic 

chemical insults during development and adult life. Effects of chemicals on the immune 

system are less well understood in humans than other disease endpoints, but emerging 

evidence implicates PFAS exposure in reducing immune response to vaccines and 

increasing susceptibility to infections in early life (191). Other FCCs including 

bisphenols and phthalates increase the risk of atopy and asthma (192-194), and 

infections in early life (195).   

The key characteristics of immunotoxicants have been described (111). This 

offers a starting point for development of suitable in vitro assays for testing FCCs for 

immunotoxicity. Due to the complexity of the immune system components and 

responses, a comprehensive battery of in vitro assays covering all relevant aspects of 

immunotoxicity has not been established. However, several in vitro assays, dealing for 

example with direct immunosuppression, allergic hypersensitivity, or autoimmunity, are 

being developed to detect a range of immunotoxicants (196-199) and these assays could 

be used to screen FCCs (200).  

4.6 Reproductive disorders 

In industrialized countries, male reproductive health has declined over the past 

decades, including a 50-60% decrease in sperm counts since 1973 (201, 202) and an 

increase in testicular cancer (203). Female fertility is also affected, as are maternal 

health and pregnancy outcomes, and conditions such as polycystic ovary syndrome 

(PCOS), endometriosis, and premature ovarian failure (204).  

The sperm count decrease is associated with chemical exposures (to, e.g. 

phthalates), especially during fetal development (205). Strong evidence from animal 

experiments support this interpretation (43, 206-208). FCC exposures are also 

associated with PCOS (209), and other aspects of reproductive toxicity (210, 211). 

These adverse outcomes have even been found for FCCs promoted as safer alternatives 
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to hazardous chemicals such as the plasticizer 1,2-cyclohexane dicarboxylic acid 

diisononyl ester (tradename Hexamoll DINCH) (212), which is used as a replacement 

for DEHP and other phthalates. Several FCCs such as BPA have been studied for 

mechanistic-level impacts on female fertility, including oogenesis, folliculogenesis, and 

altered expression of gonadotropin and gonadotropin hormone-releasing hormone 

receptors (213). The key characteristics of male (109) and female reproductive toxicants 

(108) have been described. Development and function of the reproductive system is 

fundamentally dependent on sex hormone action. Thus, the key characteristics of 

endocrine disrupting chemicals (114) are also relevant to the study of chemicals that 

affect reproductive outcomes.  However, a systematic overview of available in vitro 

assays for hazard identification of endocrine disrupting chemicals that affect male and 

female fertility is unavailable.  

In vitro assays that identify chemical interference with sex hormone production 

and signalling have been validated (OECD TG 493, 455, 458, 456). These include 

assays based on nuclear receptor activation and steroid hormone synthesis. The bovine 

oocyte maturation assay (ECVAM TM 2010-05) is also a reproduction-relevant in vitro 

assay. A good correlation between in vitro results and in vivo observations has been 

established for female fertility endpoints (214, 215). Validated in vivo assays exist to 

evaluate reproductive toxicity for impacts on both male and female fertility (OECD TG 

443), but these may not be sufficiently sensitive or comprehensive. 

 

  
Table 2. Examples of food contact chemicals (FCCs) that are associated with diseases from the 

Six Clusters of Disease (SCOD) by mechanisms from in vitro and/or in vivo studies. Not a 

complete list: Select references only.  

Disease Cluster Food Contact Chemical Reference 

Cancers  Melamine (CAS 108-78-1)   (269) 

Formaldehyde (CAS 50-00-0)  (121) 

Benzidine (CAS 92-87-5) 

  

 (270) 

4,4′-Diamino-3,3′ - 

Dichlorodiphenylmethane (MOCA) (CAS 101-14-4) 

 (121) 

Antimony trioxide (CAS 1309-64-4)  (271) 

Perfluorooctanoic acid (PFOA) (CAS 335-67-1)  (272-274) 

Di (2-ethylhexyl) phthalate (DEHP) (CAS 117-81-7)  (275, 276) 

Bisphenol A (BPA) (CAS 80-05-7)  (277-280) 

Cardiovascular 

diseases  

Bisphenol A (BPA) (CAS 80-05-7)  (143, 281-

285) 

Triclosan (CAS 3380-34-5)  (284) 

Tributyltin chloride (CAS 1461-22-9)  (284) 

Diethanolamine (CAS 111-42-2)  (286) 

DEHP  (287) 

Brain-related Perchlorate (CAS 14797-73-0)  (288) 



21 

 

disorders  
Ortho-phthalates 

 (289) 

BPA  (290, 291) 

Bisphenol S (BPS) (CAS 80-09-1)  (290, 292) 

Metabolic diseases BPA  (293-297) 

Bisphenol A diglycidyl ether (BADGE) (CAS 1675-

54-3) 

 (298) 

Organotins  (299) 

Perchlorate  (300) 

Perfluorooctanesulfonic acid (PFOS) (CAS 1763-23-

1) 

 (301, 302) 

Bisphenol F (BPF) (CAS 620-92-8)  (303) 

BPS  (303) 

2,4,7,9-tetramethyl-5-decyne-4,7-diol (TMDD; 

Surfynol) (CAS 126-86-3) 

 (304-306) 

DEHP  (297, 307) 

Immunological 

disorders  

Melamine  (269) 

BPA  (290) 

BPF  (290) 

BPS  (290, 308) 

2,4-di-tert-butylphenol (CAS 96-76-4)  (309) 

DEHP  (308, 310) 

Reproductive 

disorders 

BPA  (311-314) 

BADGE  (298, 306) 

BPS  (315) 

DEHP  (287, 312) 
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5. What is needed to implement the vision for safer food contact materials? 

To achieve our vision, we propose a multi-pronged approach that is grounded in 

the SCOD concept, which includes many of the most prevalent NCDs of high relevance 

to human health. We identified three components needed to realize this vision: 

analytical methods and testing strategies, data integration and interpretation, and science 

to inform decision making. 

5.1 Analytical methods and testing strategies 

In Section 4 we list several available and emerging assays used in the 

identification of hazard for each of the SCOD. However much more is needed, 

especially high-throughput non-animal and low-medium throughput assays with non-

mammalian models. These assays would overcome challenges with cost, time, and 

scientific relevance as the selection of suitable in vitro assays would be based on robust 

mechanistic evidence from key characteristics and AOPs. Identification of the key 

characteristics for brain disorders and metabolic diseases will form the basis for 

identification and/or development of relevant in vitro assays to identify hazardous 

chemicals related to these clusters. For in vitro testing based on mechanistic pathways 

to succeed, additional dedicated expertise and financial support are needed to identify 

assays that would address relevant key characteristics. This work is ongoing and the 

website keycharacteristics.org collates all available information and publications in this 

area (216). 

Another important aspect of testing is the development and validation of 

methods that reflect real-world chemical exposures from food contact materials. 

Migration testing protocols exist but ongoing research efforts need to be expanded and 

validated to ensure minimal loss of potentially hazardous chemicals during sample 

preparation (e.g. by using polar and apolar food simulants and by capturing not only 

non-volatile compounds, but also those that are semi-volatile and volatile). 

Lastly, a battery of screening assays addressing the SCOD needs to be defined 

and validated. This step will need the contribution of experts in each field to ensure that 

the selected endpoints are reliable and result in high confidence. 

5.2 Data interpretation and integration 

Methods must be developed to interpret and corroborate in vitro test results. 

Individual assays should be integrated into an overall high-level / aggregated scheme 

(e.g. using visualization approaches such as ToxPi (217, 218)). Also, non-targeted 

chemical analysis needs advancing to allow for better identification of currently 

unknown compounds, especially when present at low concentrations. One way to 

improve the latter is to create comprehensive and open mass spectrometry libraries of 

FCCs, including NIAS. Ideally, an open-access repository of information about food 

contact material manufacturing processes and the major FCCs associated with specific 

materials should be generated. Confidential business information poses a critical 

obstacle, as the full disclosure of the chemical composition of food contact materials is 

commonly not available. Accordingly, a mechanism needs to be developed that enables 

such an FCC library without infringing on intellectual property rights. 
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5.3 Science for decision making 

The results of testing single chemical or overall migrate from a food contact 

material using a battery of assays for each of the SCOD would need to be interpreted 

and integrated with available evidence to reach a conclusion within a regulatory context. 

A framework, similar to that available for read-across (219, 220), should be developed 

to effectively utilize results and support conclusions that are actionable for policy 

makers and regulatory enforcement. The experience gained from development of effect-

based trigger values for water quality assessment in Europe could be highly informative 

(221, 222). Here, effect-based trigger values have been developed as a means to 

interpret the results of in vitro assays through linking the existing water quality 

guideline values to observed levels of bioactivity elicited by a reference chemical. Then, 

if a test chemical or mixture causes an activity above the trigger value set for a specific 

assay, it is highlighted for a follow-up assessment, such as calculation of concentration 

factors and in vitro to in vivo extrapolation (223-225). In theory, effect-based trigger 

values for food contact materials could be developed following the same principle, e.g. 

by matching effect concentrations in relevant bioassays with existing specific migration 

limits for FCCs of concern, and possibly factoring in additional exposure-related 

parameters. This approach appears highly promising, since it has been demonstrated 

that derivation of effect-based trigger values greatly facilitates regulatory and practical 

uptake of in vitro methods into specific assessment pipelines (222). 

6. Conclusion 

The novel approach we present here is in line with the goals laid out in the EU’s 

Chemicals Strategy for Sustainability (91), the EU Farm to Fork Strategy (226), and the 

European Parliament’s report on food contact materials (227), which emphasize the 

need for revising food contact material regulation in Europe to adequately reflect recent 

scientific understanding and improve compliance. Further, this work adds to previous 

publications on policies and methods related to the risk assessment of food contact 

chemicals and materials (10, 22, 30).  

We think that our vision to create safer food contact materials by linking hazard 

identification more directly to human health has the potential to spur innovation in assay 

development and testing, and ultimately, for safer materials as such. Additionally, new 

findings on the key characteristics for the NCDs included in the SCOD, as well as 

mechanistic understanding derived from AOP research, will support the development of 

new assays.  

Awareness of adverse health effects of synthetic chemicals is increasing globally, 

and the need is obvious for significant and urgent improvements in the ways that risks 

are assessed and managed for FCCs (228).  
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Supplemental Material 

 

Figure S1: Disability-Adjusted Life Years (DALYs) of worldwide selected non-communicable 

diseases in both sexes and all age groups, 1990 - 2017 (Diabetes, urogenital, blood, and 

endocrine diseases: data 1990-2016). Data: Global Burden of Disease 2021.  

 


