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Abstract
In this paper, we present our workflow to automatically reconstruct 
three-dimensional (3D) building models based on two-dimensional 
building polygons and a lidar point cloud. The workflow generates 
models at different levels of detail (LoDs) to support data require-
ments of different applications from one consistent source. Specific 
attention has been paid to make the workflow robust to quickly 
run a new iteration in case of improvements in an algorithm or in 
case new input data become available. The quality of the recon-
structed data highly depends on the quality of the input data and 
is monitored in several steps of the process. A 3D viewer has been 
developed to view and download the openly available 3D data at 
different LoDs in different formats. The workflow has been ap-
plied to all 10 million buildings of the Netherlands. The 3D ser-
vice will be updated after new input data becomes available.

Introduction
Three-dimensional (3D) city models are widely used in urban applica-
tions. The outcomes of such applications serve as input for planning 
and decision-making processes that aim at making cities cooler, 
sustainable, more accessible, greener, carbon dioxide-neutral, etc. 
(Biljecki et al. 2016; Deren et al. 2021). Models of buildings are prom-
inent objects in these models. The building models can be generated at 
different levels of detail (LoDs). Taking the terminology of CityGML, 
a building can be modeled at four main levels of detail for the outer 
shell of the building, i.e., LoD0, LoD1, LoD2, and LoD3, and at LoD4 
for the interior of the building (OGC 2012; Kutzner et al 2020). Each 
of these four CityGML LoDs can be further refined (Biljecki et al. 
2016; Sun et al. 2019).

A higher level of detail is often preferred over a lower one, since 
building models at higher LoDs look closer to reality. However, higher 
levels of detail are more complicated (and therefore more expensive) 
to acquire because it is harder to reconstruct them in an automated 
manner from available source data. In addition, using models at higher 
levels of detail in spatial analysis does not automatically lead to better 
results (Biljecki et al. 2018), while at the same time too much detail 
may have a negative impact on performance. Therefore, for some ap-
plications it is better to avoid too much irrelevant detail.

The LoD of a 3D city model is therefore driven by the specific data 
requirements of the urban application for which it is built (see also the 
section “LoD in Relation to Urban Applications”). However, the high-
est achievable LoD is also restricted by the available source data and 
the reconstruction method used (see also the section “LoD in Relation 
to Reconstruction Method”).

While many 3D city models exist for various parts of the 
Netherlands, they are often generated for relatively small areas, are us-
ing different reconstruction methods, and are based on different source 

data. Furthermore, the update cycles are different, and the level of 
detail is also different because it is collected for different applications.

This can result in inconsistencies between 3D city models of the 
same area. There may be discrepancies between the geometries of 
building models like the geometry or height of the footprint. Also, 
the reference heights for the same building might differ over data sets 
since the heights may represent different references (e.g., gutter, ridge, 
maximum) or the reference heights are based on different statistical 
calculations. In addition, buildings (or building parts) available in 
one data set might be missing in another data set. There may also be 
temporal differences because the input data sets that were used for the 
reconstruction come from another date. Typically, there is no plan to 
maintain and update the once generated 3D data. This may be another 
source for indiscrepancies.

All these differences have profound influences in practice, such as 
affecting the applications for which an existing 3D model can be used, 
the processing that is necessary to use it, and the likely errors that will 
be present in the end result.

In this research, we demonstrate how to create a consistent country-
wide 3D city model in LoD1.2, LoD1.3, and LoD2.2. In order to 
achieve this, we look at three main aspects.

First, to ensure consistency between 3D city models of the same 
area and different LoDs, to improve efficiency, and serve the 3D data 
needs of different urban applications, we investigate how to reconstruct 
building models for large areas at different LoDs in one reconstruc-
tion process, based on the same reconstruction principles and based on 
the same source data. For the block models, we provide the user with 
several reference heights, so that the user can select the appropriate 
reference height to extrude building blocks for the specific application.

Second, our objective is to develop a fully automated reconstruction 
method. Our focus is on 3D city models covering large areas to support 
countrywide urban applications. This requires a fully automated recon-
struction method. Automated reconstruction also enables standardiza-
tion of the output data resulting in consistent geometries, semantics, 
and temporal aspects of the data. This consistency is also ensured when 
new models are reconstructed in the future with the same automated 
procedure based on updated source data.

Third, we investigate how to monitor and assess the quality of the 
building models that are automatically generated on such a large scale. 
This is essential for users to assess if models are fit for a specific use.

Finally, we also investigate the visualization and dissemination of 
such a big data set so that the city model is accessible and usable in an 
efficient manner.

Structure of this Paper
In this paper, we present our methodology to reconstruct LoD1.2, 
LoD1.3, and LoD2.2 models of all buildings in the Netherlands 
in one process. The section “Scope of the Research and Previous 
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Work” further outlines the scope of this research by elaborating on 
the different LoDs of 3D city models and related work. We present 
our reconstruction methodology in the section “Methodology for 
Automated 3D Reconstruction” and the implementation in the section 
“Implementation”. We close with conclusions in the last section.

Scope of the Research and Previous Work
In this section, we first explain how the reconstructed level of detail of 
3D building models depends on the one hand on the data requirements 
for which the data is collected (section “LoD in Relation to Urban 
Applications”) and on the other hand on the reconstruction method 
(section “LoD in Relation to Reconstruction Method”). We then de-
scribe the motivation for the LoDs that we reconstruct in our research 
in the section “The LoDs in Our Research”. Finally, the section “3D 
City Models of Large Areas” presents other work on the reconstruction 
of 3D data for large areas.

LoD in Relation to Urban Applications
As in two dimensions (2D), a one-fits-all approach does not exist for a 
3D city model. Instead, specific applications require specific 3D data 
as is analyzed in Biljecki et al. (2015). For example, block models 
(LoD1) are sufficient for shadow-, wind-, and noise-simulations. Roof 
structures (LoD2) with information on the roof materials are needed 
for solar potential estimation or in accurate energy demand estimation. 
Although LoD2 models are often also preferred in visualizations since 
they provide a realistic experience, realistic looking LoD2 models 
could still be ambiguous (Biljecki et al. 2018).

LoD in Relation to Reconstruction Method
LoD1 models for every building can be automatically generated rather 
easily from point clouds and 2D building polygons, i.e., footprints 
(Ledoux et al. 2021). Therefore, LoD1 models are frequently generated 
by various organizations, as such source data are increasingly available 
as open data. However, automatically generated LoD1 models for the 
same area can still differ in, for example, their reference heights (e.g., 
the rooftop, the gutter height, one third of the roof-height) and the 
underlying statistical calculations. Many users are not aware of those 
multiple options to reconstruct a 3D block model, while these options 
do influence the outcome of analyses for which the LoD1 models are 
used (Biljecki et al. 2018).

With respect to LoD2 models, many roof shapes can be generated 
fully automatically, although LoD2 reconstruction is still a current 
topic of research, as both the quality of available surveyed data and 
new 3D reconstruction algorithms still steadily improve (Rottensteiner 
et al. 2014; Lafarge 2015; Pârvu et al. 2018).

The additional elements for LoD3 models are hard to reconstruct in 
an automated manner. Therefore, they are generated manually or are 
the result of converted Industry Foundation Classes (IFC) models from 
the BIM domain (Donkers et al. 2016; Colucci et al. 2020).

The LoDs in Our Research
In our research, we focus on the reconstruction of LoD1.2, LoD1.3, 
and LoD2.2 building models using the terminology of the refined LoD 
framework of Biljecki et al. (2016). We distinguish between two types 
of LoD1 models: LoD1 models that are a result of extruding a com-
plete building footprint to one height, i.e., LoD1.2 models in Biljecki et 
al. (2016) and models that are extruded to one or more heights in case 
significant height jumps occur within the footprint, like a church with a 
tower or a house with a shed attached, i.e., LoD1.3 models. Both mod-
els are relatively simple and are therefore appropriate for applications 
that need simplified models. But LoD1.3 models enable more realistic 
visualizations. In addition, LoD1.3 models are also more accurate data 
for simulations that take block-shaped models of buildings as input, 
such as noise simulation where buildings act as noise barriers. This is 
why the automated reconstruction of LoD1.3 models is included in our 
research. LoD1.3 models are more difficult to automatically generate 
than LoD1.2 because it requires the detection of height discontinuities 
within the building footprint.

The LoD1.0/LoD2.0 and LoD1.1/LoD2.1 models are based on 
generalized footprints and therefore outside the scope of our research. 
The LoD3 representations are outside our scope since they require 
manual work.

3D City Models of Large Areas
There are many other examples of data sets containing building 
models of large cities or even nations as shown by an inventory by 
Santhanavanich (2020). Examples are the whole United States, con-
taining 125 million building models at LoD1, the city of New York 
(with 100 LoD2 models of iconic buildings), as well as the LoD2 mod-
els of Montreal, Helsinki, Singapore, cities in North Rhine-Westphalia 
State (in LoD 1 and LoD2), and many other cities in Germany. An 
example of an LoD2 building data set covering a whole nation is the 
swissBUILDINGS3D 2.0 data set (Swisstopo, 2021). It is a vector-
based data set which describes (among other topographic objects) 
buildings as 3D models with roof geometries and roof overhangs. The 
building models were extracted in a semi-automated manner from aer-
ial images using a photogrammetric method of digital image (stereo) 
correlation, enhanced with additional information as attributes. Other 
building elements (footprint, facades, roof overhangs) are created with 
automated procedures.

Several of these initiatives highlight a problem of existing 3D 
models: often they are the result of a one-time capture, with a few 
mostly manual updating exceptions. Updates and extensions may be 
considered in the future but were not foreseen at the moment they 
were captured. In addition, existing models resulting from the same 
workflow (and thus consistent) are limited to one or at the most to two 
different levels of detail for the same area and therefore the 3D data are 
limited to specific applications. More often, different LoDs of the same 
area are a result of different workflows and are therefore nonconsistent 
with respect to geometry, temporal aspects, and semantics. Finally, de-
tailed metadata about how the buildings were reconstructed, including 
quality information, are often not generated and thus missing.

Methodology for Automated 3D Reconstruction
In this section, we describe the reconstruction methodology of LoD1.2, 
LoD1.3, and LoD2.2 that we have developed and implemented for 
large areas, which we deliver as both 3D models and 2D+heights data 
(see Figure 1).

Figure 1. Overview of the six representations that we reconstruct 
in our process. (BAG stands for “Basisregistraties Adressen en 
Gebouwen”, or the Building and Address register of the Netherlands; 
LoD is level of detail.)

First, we describe the input data that we use in the reconstruction. 
Then, we describe the process itself. Since the LoD2.2 reconstruction 
generates information that is used in the reconstructions of the other 
LoDs (e.g., distinguishing between points that fall on walls and on 
roofs; generating a planar partition of the original footprint based on 
the identified roof planes), we start with the LoD2.2 reconstruction.
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Input Data
For our reconstruction process we use building polygons 
(“Basisregistraties Adressen en Gebouwen”, or the Building and 
Address register of the Netherlands (BAG)) and lidar point data 
(“Actueel Hoogtebestand Nederland”, the national height model of the 
Netherlands (AHN)) as input.

BAG: The polygons come from the Building and Address register 
of the Netherlands (BAG). This data set contains all buildings and ad-
dresses in the Netherlands. The geometry of addresses is collected as 
points and those of buildings as polygons (i.e., outline as seen from 
above). Municipalities are responsible for collecting the BAG data and 
keeping the data up-to-date.

The geometry for BAG buildings is acquired from aerial photos and 
terrestrial measurements and the data positional data accuracy is 30 
cm. The data is provided via the national geo-portal PDOK (2021) both 
in a viewer and as download service. BAG also contains the history 
of buildings, i.e., buildings that are planned and buildings that have 
existed in the past but now have been removed.

For our reconstruction, we make a selection of the BAG buildings 
that have been realized and have not (yet) been demolished, i.e., the 
input building polygon data set represents the current situation.

AHN: The national height model of the Netherlands (AHN, 2019) is 
a point cloud acquired by airborne lidar. The first version of AHN (with 
a density of at least one point per 16 square meters, and in forests one 
point per 36 square meters) was completed in 2003. In the period of 
2009 to 2012, the second version of the data set was acquired with an av-
erage point density of 10 points per square meter. The third version was 
collected between 2014 and 2019. The resolution of AHN3 that we use 
for our reconstruction process is similar to the one of AHN2. In addition, 
it contains a classification of the point cloud. For the AHN2 and AHN3 
point clouds, it is specified that an object of 2 × 2 m can be mapped with 
an accuracy of at least 50 cm. The height accuracy is 10 cm. We use the 
classes “building” and “ground points” to determine building heights 
respectively heights at ground level. The fourth version of AHN will be-
come available in the next two years. AHN4 will have a point density of 
about 10–14 points per square meter, and in some locations even higher.

LoD2.2
Our reconstruction method improves upon our earlier research as 
described in Dukai, Ledoux, and Stoter (2019) Dukai et al. (2020), and 
Stoter et al. (2020). The main improvement in this work is the addition 
of LoD2.2 output.

Our method uses footprints and height points that are well aligned 
as input and consists of two steps. In the first part the input footprint is 
partitioned into roof parts. And in the second part this 2D roof partition 
is extruded into a 3D model.

Footprint Partitioning
In this first step, the input footprint is partitioned by breaklines de-
tected in roof planes (see Figure 2).

 These roof planes are detected if sufficient points can be found 
for that plane using a region-growing algorithm (see Figure 2.2). For 
the AHN that we use, with a point density of ~8 points/m2, we set the 
minimum number of points to 15, which is equal to a roof element of 
about 2 square meters. Points that are on a wall plane (facade), or not 
part of any plane are removed.

We derive two types of lines from the planes: boundary lines 
and intersection lines (see Figure 2.3). The boundary lines of roof 
planes are detected using the α-shape of each detected roof plane. The 
intersection lines are generated at the location where adjacent planes 
intersect, e.g., on top of a gable roof.

Before the boundary and intersection lines are used to subdivide 
the footprint, they are regularized and duplicate lines are removed. 
For example, the line on top of the gable roof in Figure 2.3 is detected 
three times: once as an intersection line and twice as a boundary line, 
i.e., once for each incident roof plane.

The remaining lines are used to subdivide the footprint into an 
initial planar partition (Figure 2.4). This is referred to as the initial roof 
partition. The initial roof partition may still have a high complexity, 
i.e., it may contain many small faces. To further reduce the complex-
ity of the roof-partition, an optimization step is performed using a 

graph-cut optimization (Zebedin, 2008). In this step, a roof plane is 
assigned to each face in the roof-partition (see Figure 2.5). This is 
done in such a way that the total error with the input point cloud is 
minimized and the total length of the edges between faces of a differ-
ent roof plane is minimized. The latter assures a minimum number of 
edges and vertices, i.e., a low model complexity. After this step, the 
edges for which the two incident faces are assigned to the same roof 
plane are removed from the partition. The faces in the resulting final 
roof partition are referred to as roof parts.

Extrusion
In the LoD2.2 reconstruction, the identified roof parts are extruded from 
ground level to a 3D mesh (Figure 2.6). The mesh consists of three types 
of surfaces: the ground plane, the roof surfaces, and the wall surfaces. 
The height of the ground plane is based on the lowest point around the 
building and is calculated as the fifth percentile of all ground points that 
are within a 4 m buffer of the building. An intersection curve of the ter-
rain could also be used for this. The construction is done in such a way 
that no internal walls are created and the mesh is topologically correct.

LoD1.3
The LoD1.3 reconstruction uses the same footprint partitioning as is 
generated for the LoD2.2 reconstruction. But for LoD1.3, the footprint 
partitions are further simplified by merging neighboring parts that have 
no significant height difference. We use 3 m as a threshold in this pro-
cess, which is more or less equal to a floor-height, no matter the area. 
As the height reference we use the 70th percentile height for each roof 
part. The merging starts with merging from small to large height gaps 
and is an iterative process, i.e., if merging two roof parts leads to an 
elevation difference of <3 m with another part, they are merged again. 
The iteration stops when there are no more height differences smaller 
than 3 m between adjacent roof parts.

In the next step, reference heights are calculated for each remaining 
part and used to extrude the part.

As explained in the section “LoD in Relation to Reconstruction 
Method”, these reference heights can represent different extrusion 
heights for one building, i.e., the roof edge, the ridge height, or the 
maximum height (like a chimney). Furthermore, the underlying statis-
tical calculations used to calculate the extrusion height can differ, e.g., 
average, median, or maximum.

To standardize possible extrusion variations and to let the user 
choose which one to use, our method calculates four different reference 
heights from the points that fall on a roof part (excluding the points on 
walls) and assigns these to the 2D roof parts, i.e., minimum, maximum, 
50th percentile, and 70th percentile.

The LoD1.3 models are provided in two representations: as 2D 
roof-parts with the different reference heights as attributes, and as 
reconstructed (i.e., extruded) 3D models based on the 70th percentile 
of the roof points the specific part contains. The 2D roof parts also 

Figure 2. The main steps in the reconstruction process: (1) Building-
polygon + AHN surface points. (2) Roof plane detection. (3) Line 
detection. (4) Lines are projected into initial partition. (5) Final 
partition after assigning roof planes to polygon (compare with (2)). 
(6) LoD2.2 3D mesh.
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contain the identification of the original building to link the individual 
roof parts to the original building. The 3D models are reconstructed in 
such a way that there are no inner walls.

The reconstructed 3D models are represented as solids since rules 
for solids are stricter than for MultiSurfaces, e.g., using the solid ge-
ometry enforces a 2-manifold (i.e., watertight) 3D object.

For the ground surface, the same height is used as for the LoD2.2 
models, i.e., fifth percentile of all surface points that fall within 4 m 
radius of footprint.

LoD1.2
For the LoD1.2 models, we calculate the same four reference heights 
for the extrusion as we do for LoD1.3 and assign these to the original 
footprints. Also for LoD1.2, our method both reconstructs the 3D block 
models (based on the 70th percentile of height points that fall on all roof 
parts of the building) and assigns the four reference heights to the origi-
nal 2D footprints. The same surface height is used as for the other LoDs.

Implementation
Implementation of the Reconstruction Process
The implementation of the whole process as described above is visual-
ized in Figure 3. The input data is tiled to make the reconstruction and 
dissemination of the data more manageable. After reconstruction, the 
building models are stored in a PostgreSQL database from which the 
data is exported or directly consumed in various formats.

There are two considerations for optimally tiling the building 
footprints. First, the objective is to limit the number of buildings in 
each tile so that the workload is as balanced as possible between the 
processes. Second, the buildings should be spatially clustered so that 
the corresponding point cloud can be read efficiently. To meet both 
conditions, we use a quadtree with a maximum cell size of 3500 for 
subdividing the buildings (see Figure 4).

Thus, the building tiles are the leaves of the quadtree, where each 
tile contains a maximum of 3500 buildings. This assures that the 
reconstruction-time per tile is more or less the same and that the tiles 
available for download are similar in file size. The reconstruction of all 
ten million buildings in the Netherlands takes about 40 hours, with 30 
concurrent processes on a single machine (two Xeon E5-2650 Central 
Processing Units, 128 GB RAM). The computation cost scales linearly 
with the number of buildings, since each building is processed indepen-
dently. The reconstruction process is highly automated, which allows 
us to quickly run a new iteration in case of improvements in an algo-
rithm or in case new input data becomes available. Figure 5 shows an 
example of reconstructed 3D models at different LoDs for one building.

 

Visualization and Dissemination
To view and query as well as to download the reconstructed build-
ing models, we built a website with a 3D viewer (Figure 6). The 3D 
viewer was developed with two main goals: network performance (i.e., 
fast fetching of the data) and client performance, i.e., to minimize the 
resource needed on the device being used (including mobile devices). 
We developed our own solution since we could not find a suitable off-
the-shelf solution.

 To satisfy the network and client performance, we use a web 
graphics-friendly format with minimal size requirements, i.e., 3D 
Tiles1.  This is based on the glTF format2.  We export the data set to 
3D Tiles using the same tiling scheme as for the reconstruction of the 
buildings, which ensures that tiles have a relatively equal distribu-
tion of objects. We use 3DTilesRendererJS3 to render these tiles in 
the viewer. Our solution to make the user interface easy for users and 
mobile friendly uses VueJS4 for the website’s logic and Bulma5 for the 
styling of the user interface elements.

The viewer provides several functionalities that enable users to 
investigate the whole data set, as well as share it with others. A user 
lands at an initial point and can move around the country. A simple flat 
terrain using Web Map Tile Service (WMTS)6 is used to provide proper 
orientation context to the user. Each location in the viewer corresponds 
to a unique address so that the user can bookmark or share the current 

1. https://github.com/CesiumGS/3d-tiles
2. https://www.khronos.org/gltf/
3. https://github.com/NASA-AMMOS/3DTilesRendererJS/
4. https://vuejs.org/
5. https://bulma.io/
6. http://opengeospatial.github.io/e-learning/wmts/text/index.html

Figure 3. Overview of the multiple levels of detail (LoDs) 
reconstruction process. (BAG is Building and Address register of the 
Netherlands; AHN is the national height model of the Netherlands; 
GPKG is GeoPackage; CityJSON is a JSON-based encoding for a 
subset of the CityGML data model; OBJ is the Wavefront object file; 
WFS is Web Feature Service.)

Figure 4. Quadtree-based tiling scheme for data processing and 
dissemination.

Figure 5. Faculty building of Electrical Engineering, Mathematics 
and Computer Science at Delft University of Technology (TU Delft) 
campus. AHN3 point cloud and reconstructions at LoD1.2, LoD1.3, 
and LoD2.2. At LoD1.3, only height jumps >3 m are kept, and 
therefore it contains fewer roof structures than LoD2.2.
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view with others. Finally, the user can click on a building and get 
its information, as well as some derived properties: the height of the 
building at the specified point, and the slope of the surface that the user 
clicked on.

Through the website www.3DBAG.nl, the data is downloadable in 
different formats: GeoPackage, PostGIS backup, Wavefront OBJ, and 
CityJSON. The viewer also contains a function to report errors by us-
ers to help us improve our process, which can concern any part of the 
process, i.e., from preprocessing input data to reconstruction, viewing, 
and use.

Quality Information
Quality information regarding the resulting models is needed to iden-
tify a badly reconstructed model or an exceptional situation for which 
the 3D reconstruction process had not yet accounted for. With this 
information, the reconstruction process can be improved. In addition, it 
provides the user with information on how good a specific model is so 
that the user can act upon this.

We calculate two types of quality parameters and assign these as 
attributes to the individual models. First, we calculate parameters that 
assess the quality of the source data for the specific building. For ex-
ample, the number of points that were available for the 3D reconstruc-
tion, the no-data area, and the timeliness of the source data. Second, 
we calculate parameters that measure the success of the automatic 
reconstruction, e.g., the root-mean-square error (RMSE) between the 
reconstructed model and the input points, the maximum error between 
reconstructed mesh and the point clouds and eventual invalidity codes 
both in 2D (which means the input data contained an error) and in 3D 
(which means that the reconstruction failed). For the LoD2.2 building 
models of the Netherlands, the RMSE is less than 31 cm for 95% of the 
models and less than 9 cm for 75% of the models (see Figure 7). A 
more extensive evaluation is in progress. This evaluation is based on 
the quality parameters that we calculate in order to identify opportuni-
ties to further improve our workflow (Dukai et al. 2021).

Conclusions
In this paper, we describe the process that we have developed to auto-
matically reconstruct LoD1.2, LoD1.3, and LoD2.2 building models 
(supporting different reference heights for the block models) for large 
areas in one reconstruction process and based on the same source data. 
This provides the user with consistent 3D data of the same area meet-
ing the data-needs of different applications. We monitor quality infor-
mation throughout the entire process in order to continuously improve 
the process from input data, preprocessing, and 3D reconstruction to 
download and use the data in urban applications. In addition, the user 
can use the quality information to decide on the fit-for-purpose of the 
data for their own application.

The 3D data that we generate has been a good source to experiment 
and test all kinds of urban applications that need 3D data, and it is 
being used in, for example, noise simulations (Stoter et al. 2020), wind 
flow simulations (García-Sánchez et al. 2021), and energy consump-
tion calculations (Wang et al. 2020; León-Sánchez et al. 2021).

Based on experiences and users’ feedback, we will improve the pro-
cess and optimize for different users and applications. These improve-
ments may be generic such as filling the no_data areas in the point 
cloud with artificial intelligence; better alignment to specific data needs 
of urban applications, like optimizing the level of detail for specific 
applications (in relation to processing time); and enriching the data 
with relevant information, for example distinguish between external 
and internal walls and their areas for energy-related applications or 
the estimation of the number of floors per building. In addition, the 
availability of the next version of AHN (to be expected next year) will 
provide more reconstruction possibilities, as can be seen in Figure 8. In 
future research, we will also study more fundamental issues, i.e., how 
to maintain and manage different temporal and geometric versions of 
the 3D data and how to better align the different parts in the process to 
obtain even better results.
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Figure 6. Screenshot of the developed 3D viewer available at 
www.3dbag.nl.

Figure 7. The root-mean-square error (RMSE) between the input point 
cloud and the LoD2 reconstruction result (Dukai et al. 2021).

Figure 8. The palace in Amsterdam. AHN3 and AHN4 point 
clouds and the resulting LoD2.2 reconstruction. More details are 
reconstructed from the AHN4 point cloud because it has a higher 
resolution.
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