
Context Sensitivity without Contexts: A Cut-Shortcut Approach to
Fast and Precise Pointer Analysis (Artifact Document)

1 Introduction
This artifact is provided to reproduce the results of all research questions (RQ1 - RQ3) in Section 5 of our companion
paper, i.e., the data in:

• Table 1

• Table 2

• Table 3

• Figure 12

• The recall experiment in Section 5.1

To thoroughly evaluate the effectiveness and demonstrate the generality of our CUT-SHORTCUT (csc for short) pointer
analysis approach, we implemented it on two totally diverse pointer analysis frameworks: the declarative DOOP (written
in Datalog) and the imperative TAI-E (written in Java). We conducted two sets of experiments on both frameworks, which
may make our evaluation complex. However, for your convenience, we provide easy-to-use scripts with different options
to easily reproduce the data in our paper and to run any analysis that you are particularly interested in. In this document,
we will first introduce how to setup our artifact and run a basic test in Section 2, and then explain how to use the artifact
with different options and reproduce all experimental results in Section 3

2 Getting Start Guide

2.1 Basic Requirements
• Machine. In our paper, all experiments were carried out on a machine with an Intel Xeon 2.2GHz processor and

128GB of memory. Since pointer analysis can be very memory-consuming, using a machine with a smaller
RAM may cause some analyses to be more slower or even to the point of being unscalable. If the user’s
memory resource is limited, we recommend you concentrate on smaller benchmarks (e.g., hsqldb, eclipse, and
findbugs) on framework TAI-E (generally, TAI-E consumes less memory than DOOP), and avoid those heavy
analyses (like 2obj). Also note that the results concerning execution time of analysis may vary in different
running environments.

• Docker. To ease the setup of our artifact and make it cross-platform, we packed it as a Docker image with the
experimental environment completely setup (e.g., JDK 17, Python 3, and Souffle 2.1 have been installed).

2.2 Artifact Package
The artifact package contains the following files:

• csc-artifact.tar.gz: the compressed Docker image.

• README.pdf: this artifact document.

• LICENCE: the license file for our artifact.

1

2.3 Experimental Setup
Firstly, please install Docker on your system (users who have already installed Docker can skip this step). If you are a Mac
or Windows user, please follow the instructions on https://docs.docker.com/get-docker/ to install the Docker Desktop. If
you are a Linux user, we recommend you install the Docker engine by following instructions on https://docs.docker.com/eng-
ine/install/.

With Docker installed, our artifact can be easily setup via following steps:

1. Load the docker image into your system (Note that for Mac or Windows users, you need to first start the Docker
Desktop to enable command docker, and them type the following command in your terminal):

$ docker load --input csc-artifact.tar.gz

This step may take several minutes since the Docker image is large. (Note: if you are using finch rather than
docker, please add the option --all-platforms into the command.)

2. Launch a container from the loaded image, where csc:pldi23 is the image name and csc-artifact is the
container name:

$ docker run --name csc-artifact -it csc:pldi23

After you launched the container, you will enter an interactive shell of the container as shown in Figure 1.

That’s it! Now you can start evaluating our artifact.

Figure 1: Load the Docker image and launch a Docker container.

To exit the interactive shell, use the command exit. If you want to re-enter the container after exiting it, use the
following command to restart and enter the same container again:

$ docker restart csc-artifact
$ docker exec -it csc-artifact bash

2.4 Basic Testing
To test whether the artifact has been successfully set up, please first change your current directory to the artifact folder:

$ cd /home/artifact

Then you can use the following command to run a pointer analysis using Cut-Shortcut approach (csc for short) for
our smallest benchmark hsqldb on framework TAI-E: (Note that running pointer analysis on DOOP is significantly more
time-consuming than TAI-E, and we will introduce how to reproduce the results for DOOP in Section 3).

$ python run.py tai-e csc hsqldb

This command will start TAI-E to perform csc for hsqldb, and should be finished within 1 minute. As shown in
Figure 2, the precision metrics for pointer analysis (#fail-cast, #reach-mtd, #poly-call, #call-edge) will be
printed out, and [Pointer analysis] elapsed time in the output corresponds to the Time(s) column in Table 2 of
our companion paper.

2

https://docs.docker.com/get-docker/
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/

Figure 2: An example for running pointer analysis on TAI-E.

If you get the same results for the 4 metrics and similar result for the analysis time (which varies on different physical
machines), then the artifact should have been successfully setup, and the user should have no technical difficulties with
the rest of the artifact.

In addition, for the users who are interested in the detailed results of each metric (e.g., which casts may fail or
which methods are reachable, etc.), we output them into directory home/artifact/output. Files in this directory are
organized by the framework used, and are named according to the benchmark, the analysis and the metric. For example,
output/tai-e/hsqldb-csc-fail-cast.txt stores the detailed results for the metric fail-cast under analysis csc
for the benchmark hsqldb on framework TAI-E.

3 Step-by-Step Instructions

3.1 Content of Artifact
Once you launched the container and entered the interactive shell, please first use command cd to enter the artifact folder
(/home/artifact/), and then you can view the content of our artifact using ls command.

• benchmarks/: This folder contains the 10 Java programs and the Java library used in our evaluation.

• tai-e/: This folder contains the source code of TAI-E framework (a state-of-the-art imperative static analysis
framework for Java), along with the imperative implementation of our Cut-Shortcut approach. For your conve-
nience, we also provide a pre-built executable JAR file tai-e-all.jar in this folder. For those who would like to
rebuild TAI-E from source code, simply use the following command:

$ cd /home/artifact/tai-e/source
$./gradlew fatJar

A new tai-e-all.jar will be generated by gradle and put into directory /home/artifact/tai-e to replace
the original one.

• doop/: This folder contains the source code of DOOP framework (a state-of-the-art declarative pointer analysis
framework for Java), along with the declarative implementation of Cut-Shortcut approach. There is no need for
users to build DOOP from source code since DOOP will be auto-compiled when executed.

• output/: This folder contains the detailed analysis results for the precision metrics we used in our paper.

3

• recall/: This folder contains all the prepared dynamically-recorded reachable methods and call graph edges for
each benchmark. It also contains the scripts for examining the recall rate of these two metrics for different analyses.

• run.py: a Python script for driving all the provided analyses.

• overlap.py: a Python script for reproducing the results in Table 3.

3.2 Running Experiments
To run the experiments, please run the Python script run.py under the directory /home/artifact/ by using the follow-
ing command (note that | means “or”):

$ python run.py doop|tai-e <ANALYSIS> <BENCHMARK>

The first argument (doop|tai-e) specifies to run pointer analysis on DOOP or TAI-E.

<ANALYSIS> can be one of the following pointer analyses evaluated in our experiments:

ci, 2obj, 2type, zippere, csc

in which ci represents context-insensitivity (CI in our paper), 2obj and 2type represents two traditional context
sensitivity (2-object-sensitive and 2-type-sensitive), zippere represents ZIPPERe guided 2-object-sensitivity (ZIPPERe

is a state-of-the-art selective context sensitive pointer analysis tool which uses 2-object-sensitive by default) and csc
represents our CUT-SHORTCUT approach (CSC in our paper).

<BENCHMARK> can be one of the following Java programs analyzed in our experiments (we will introduce how to
analyze a new program in Section 3.6):

eclipse, gruntspud, freecol, soot, briss, columba, hsqldb, jython, jedit, findbugs

For example, to use ci to analyze eclipse on DOOP, use command:

$ python run.py doop ci eclipse

The analysis output will be printed on the console as shown in Figure 3. Note that analysis execution time
(sec) corresponds to column Time(s) in Table 1 and the results in Figure 12 of our companion paper.

For your convenience, the command argument <ANALYSIS> and <BENCHMARK> can be repeated for multiple times.
For example, to run both zippere and csc for findbugs, jython and soot on TAI-E (2 analyses × 3 benchmarks = 6
analysis executions in total), use command:

$ python run.py tai-e zippere csc findbugs jython soot

Then the 6 analysis executions will be performed in sequence.

Also, for your convenience, we provide two options all-analyses and all-benchmarks to run pointer analysis
collectively. Option all-analyses represents all 5 given analyses and all-benchmarks represents all 10 benchmarks.
For example, to run all given analyses for benchmark eclipse and hsqldb on TAI-E, use command:

$ python run.py tai-e all-analyses eclipse hsqldb

To run zippere and csc for all benchmarks on TAI-E, use command:

$ python run.py tai-e zippere csc all-benchmarks

For saving your time, when option all-analyses or all-benchmarks are used, the analyses executions that run
beyond the time limit in our experiment (i.e., “>2h” in Figure 12, Tables 1 and 2 of our paper) will be skipped. To check
whether an analysis execution will run beyond the time limit on your machine, you can run this analysis individually using
the command we introduced at the beginning of this Section.

4

Figure 3: An example for running pointer analysis on DOOP.

Results of Analysis ZIPPERe Note that for zippere, the pointer analysis contains three parts: (1) a context-insensitive
pointer analysis, (2) the tool ZIPPERe itself, and (3) the ZIPPERe-guided main analysis. The time cost we recorded in
our paper is the sum of execution time of the three parts, and the 4 precision metrics in our paper are the ones
produced by the ZIPPERe-guided main analysis.

Discrepancy of Framework DOOP’s Results DOOP leverages Soot to generate the facts used by pointer analysis.
Due to Soot’s non-deterministic fact generation, some analyses results may also be non-deterministic, which means that
for each time you run the same analysis, you may get slightly different results for the same metric. So some
discrepancies may be observed between the artifact results and the results in Table 1, but the discrepancy is generally
very minor and it does not affect the reliability of analysis results.

Columba Issue on TAI-E. This artifact can reproduce all results for precision metrics of TAI-E for all benchmarks in our
paper except the case for benchmark columba. After investigation, we found that as long as we run TAI-E on physical
machine, TAI-E’s results for columba are consistent with our paper (we ran TAI-E on both Linux and macOS, and obtained
the same results); however, the results are slightly different only when we run it in Docker. Hence, we think the difference
is caused by Docker, and it does not affect the reliability of analysis results in the paper.

5

3.3 Reproducing Table 1 and Table 2
Next we will provide instructions on how to reproducing the data of Table 1 and Table 2 in our paper (As for Figure 12, it
is directly derived by the Time(s) column in Table 1, so it can be easily checked after reproducing Table 1). We provide
a simple command to run all the analyses in Table 1 (i.e., all 5 analyses for all 10 benchmarks on framework DOOP):

$ python run.py table1

Similarly, to get all data of Table 2, simply run:

$ python run.py table2

Also, these two commands will skip those analyses executions that run beyond the time limit to save your time.

3.4 Reproducing Table 3
Table 3 in our paper presents a detailed comparison between ZIPPERe and CUT-SHORTCUT on DOOP (left half) and TAI-E
(right half). Below we explain how to obtain the results of each column in Table 3.

Elapsed Time In Table 3, the column “Total Time” of ZIPPERe and column “Time” of CSC conform to the column
“Time” of ZIPPERe and CSC analyses respectively in Tables 1 and 2. The column “Pre-analysis” of ZIPPERe gives the
sum of elapsed time of the first two parts of ZIPPERe analysis, while the column “Main analysis” gives the elapsed time
for main analysis of ZIPPERe (i.e., ZIPPERe-guided context-sensitive analysis). These results can all be derived directly
from the console outputs of the corresponding analyses.

Selected Methods, Involved Methods, and Overlapped Methods To reproduce the numbers in columns “Selected
methods” (for ZIPPERe), “Involved methods” and “Overlapped methods” (for CSC), we provide a script overlap.py
under /home/artifact/. Note that the action conducted by overlap.py is based on the analysis results of zippere
and csc, so please ensure that these two analyses have already been executed for the benchmark, and then run the
following command under /home/artifact/:

$ python overlap.py doop|tai-e <BENCHMARK>

Figure 4 shows a usage example of overlap.py.

Figure 4: Reproducing “Selected methods”, “Involved methods”, and “Overlapped methods” for hsqldb on DOOP.

3.5 The Recall Experiment
With the options introduced in Sections 3.2– 3.4, you can already reproduce all the tables and figures in the evaluation
(Section 5) of our paper. Additionally, we provided instructions for generating the detailed results of the recall experiment
in Section 5.1 (Soundness (Recall)) of our companion paper. Note that in our companion paper, only the summarized
recall conclusion is given, but for the users who want to thoroughly examine the recall experiment, we offer the
functionalities in our artifact to further investigate the detailed recall results, as introduced in this Section. As we
mentioned in the paper, we ran a recall experiment to validate the soundness of csc by executing the benchmark programs
with their default tests (if available) or running them manually (e.g., click to interact with GUI programs), recording their
reachable methods and call graph edges during dynamic execution, and then examining how many of them can be recalled
by csc and other analyses. Since it is too troublesome for users to executing the benchmarks manually to get the same
dynamic results in our experiment, we provided the dynamically recorded reachable methods and call graph edges we got
for each benchmark in this artifact (in directory /home/artifact/recall/dynamic) and we will explain how to use
them to compute the recall rate for different analyses.

6

Examining Recall Rate for Different Analyses First, you need to run the analysis you want to examine as introduced
in Section 3.2, and then change your working directory to recall folder:

$ cd /home/artifact/recall

In this directory we provided a Python script recall.py which uses the dynamic results in folder dynamic and the
analyses output in /home/artifact/output/tai-e (or /home/artifact/output/doop) to compute the recall rate
of different analyses for different benchmarks. To run this script, use command:

$ python recall.py doop|tai-e <BENCHMARK>|all

For example, if you have run csc, ci and 2type for hsqldb on DOOP with this artifact (so that the metrics of these
analyses are output into directory /home/artifact/output/doop), to get the recall rate of these analyses, type:

$ python recall.py doop hsqldb

then the recall rate of reachable methods and call graph edges for these three analyses on hsqldb will be printed on the
screen as shown in Figure 5. In addition, the missed reachable methods (and call edges) for different analyses compared
with the dynamically recorded results are output into directory home/artifact/recall/results/doop (For TAI-E,
the usage is the same, and just replace doop by tai-e).

Figure 5: Recall rate of different analyses for hsqldb on DOOP.

Examining Detailed Recall Results To examine the soundness of csc, for each benchmark, we compute the recall rate
of csc and other scalable analyses. The detailed recall results are shown in Table 3.5.1 (Note that this table is not given
in our companion paper; the recall results in the table are only summarized in Section 5.1 (Soundness (Recall)) of
our companion paper).

As shown in Table 3.5.1, the recall rate of csc is no lower than that of 2obj, 2type or zippere for most benchmark
programs. For the other cases (e.g., call-edge of jython), the recall rate of csc is slightly lower than all the compared
analyses. For them, we further provide a script diff.py under directory /home/artifact/recall/results to com-
pute the reachable methods and call graph edges that are missed by csc (compared with the dynamically recorded results)
but are not missed by the compared analyses. (Note that those reachable methods and call edges which are missed by both
csc and any of the compared analyses are out of interest since it means that the unsoundness are not introduced by csc).
To use diff.py, first change to results directory and then run the script:

7

$ cd /home/artifact/recall/results
$ python diff.py doop|tai-e <BENCHMARK>|all

For example, Figure 6 shows the result for benchmark jython on DOOP. Also, the argument <BENCHMARK> can be
repeated multiple times and the user can simply use all to examining all benchmarks. In addition, By running diff.py,
the de-duplicated (since different benchmarks may miss the same items) missed reachable methods and call graph edges
for csc are output into directory /home/artifact/recall/results/csc-missed/.

Figure 6: Reachable methods and call graph edges missed by csc compared with other analyses for jython on DOOP.

For your convenience, we have prepared all missing items for all benchmarks in the same directory (/home/artifact/
recall/results/csc-missed/) in advance. The resulting files are named by <FRAMEWORK>-csc-missed-<METRIC>
-provided.txt (e.g., doop-csc-missed-call-edge-provided.txt for all call graph edges missed by csc in all
benchmarks on DOOP). To reproduce the same resulting files, you should first run all analyses for all benchmarks on
DOOP (using script run.py) and output the detailed recall results for them (using script recall.py), then simply use the
following command (For TAI-E, the usage is the same, and just replace doop by tai-e):

$ python diff.py doop all

In total, compared with other analyses, csc missed 20 call graph edges on DOOP, and 11 call graph edges on TAI-
E. We manually inspected all these missing items, and found that they are not true and are incorrectly recorded by the
instrumentation tool. (The number is a bit different from what we mentioned in our paper (10 edges for DOOP and 12
edges for TAI-E) as when preparing this artifact, we found that we made a counting mistake in our submission paper,
which will be corrected in the final version. But this does not change our conclusion that csc is sound because all the
missing items, including the miscounted ones, are found not true.)

3.6 Analyzing A New Program
Our artifact also supports users to analyze a new program, beyond the benchmarks analyzed in the evaluation of our paper.
To analyze a new program, please first pack the program you want to analyze into JAR file(s), including the application
itself and its dependent libraries. Suppose that your new program is packed into 2 application JARs newapp1.jar and
newapp2.jar, with 2 library JARs newapplib1.jar and newapplib2.jar. Then please organize the JAR files into a
folder following the structure shown in Figure 7 (if your program does not depend on third-party library, then just ignore
the lib directory):

Then, please copy this folder into the benchmarks/ directory in our Docker container using command:

$ docker cp newapp csc-artifact:/home/artifact/benchmarks/newapp

Next, please add the information of the new program in /home/artifact/benchmarks/app-info.yml from which
our scripts read program information. For the example described above, just add the content in Figure 8 to the end of
app-info.yml.

Now, you can analyze the new program with our run.py script. Please first enter the Docker container, change
working directory to /home/artifact/, and then simply run the following command:

$ python run.py doop|tai-e <ANALYSIS> <PROGRAM-ID>

where <PROGRAM-ID> is the program ID configured by the users in app-info.yml, e.g., newapp in the above example.

8

Table 3.5.1: Detailed Recall Results.

Program

Dynamic DOOP TAI-E

#reach #call
Analysis

#reach-mtd #call-edge
Analysis

#reach-mtd #call-edge

-mtd -edge Recall Rate Recall Rate Recall Rate Recall Rate

eclipse 8,093 20,916

CI 6,935 85.69% 17,473 83.54% CI 7,080 87.48% 18,050 86.30%
2obj – – – – 2obj 7,078 87.46% 18,037 86.24%
2type 6,920 85.51% 17,425 83.31% 2type 7,078 87.46% 18,038 86.24%

ZIPPERe 6,933 85.67% 17,465 83.50% ZIPPERe 7,078 87.46% 18,040 86.25%
CSC 6,933 85.67% 17,460 83.48% CSC 7,078 87.46% 18,038 86.24%

freecol 19,387 57,455

CI 18,585 95.86% 54,566 94.97% CI 19,119 98.62% 56,593 98.50%
2obj – – – – 2obj – – – –
2type – – – – 2type – – – –

ZIPPERe 18,573 95.80% 54,513 94.88% ZIPPERe 19,117 98.61% 56,586 98.49%
CSC 18,579 95.83% 54,550 94.94% CSC 19,119 98.62% 56,585 98.49%

briss 14,244 39,575

CI 14,016 98.40% 38,782 98.00% CI 14,010 98.36% 38,743 97.90%
2obj – – – – 2obj – – – –
2type – – – – 2type – – – –

ZIPPERe 14,005 98.32% 38,733 97.87% ZIPPERe 14,002 98.30% 38,699 97.79%
CSC 14,008 98.34% 38,735 97.88% CSC 14,002 98.30% 38,696 97.78%

hsqldb 2,733 6,295

CI 2,485 90.93% 5,572 88.51% CI 2,608 95.43% 5,856 93.03%
2obj – – – – 2obj – – – –
2type 2,485 90.93% 5,564 88.39% 2type 2,607 95.39% 5,846 92.87%

ZIPPERe 2,485 90.93% 5,566 88.42% ZIPPERe 2,607 95.39% 5,846 92.87%
CSC 2,484 90.89% 5,564 88.39% CSC 2,607 95.39% 5,850 92.93%

jedit 6,028 13,203

CI 5,866 97.31% 12,732 96.43% CI 5,859 97.20% 12,707 96.24%
2obj – – – – 2obj 5,853 97.10% 12,688 96.10%
2type 5,855 97.13% 12,704 96.22% 2type 5,853 97.10% 12,688 96.10%

ZIPPERe 5,856 97.15% 12,708 96.25% ZIPPERe 5,853 97.10% 12,688 96.10%
CSC 5,859 97.20% 12,712 96.28% CSC 5,853 97.10% 12,688 96.10%

gruntspud 14,543 42,099

CI 14,340 98.60% 41,419 98.38% CI 14,360 98.74% 41,426 98.40%
2obj – – – – 2obj – – – –
2type – – – – 2type – – – –

ZIPPERe 14,337 98.58% 41,403 98.35% ZIPPERe 14,359 98.73% 41,414 98.37%
CSC 14,339 98.60% 41,410 98.36% CSC 14,359 98.73% 41,414 98.37%

soot 4,372 16,452

CI 4,285 98.01% 16,222 98.60% CI 4,288 98.08% 16,233 98.67%
2obj – – – – 2obj – – – –
2type – – – – 2type – – – –

ZIPPERe – – – – ZIPPERe 4,287 98.06% 16,230 98.65%
CSC 4,284 97.99% 16,219 98.58% CSC 4,287 98.06% 16,230 98.65%

columba 6,757 14,689

CI 6,681 98.88% 14,401 98.04% CI 6,673 98.76% 14,368 97.81%
2obj – – – – 2obj – – – –
2type – – – – 2type – – – –

ZIPPERe – – – – ZIPPERe 6,673 98.76% 14,368 97.81%
CSC 6,681 98.88% 14,393 97.98% CSC 6,673 98.76% 14,368 97.81%

jython 4,835 35,970

CI 4,055 83.87% 10,857 30.18% CI 4,242 87.74% 11,639 32.36%
2obj – – – – 2obj – – – –
2type – – – – 2type – – – –

ZIPPERe 4,053 83.83% 10,851 30.17% ZIPPERe 4,240 87.69% 11,633 32.34%
CSC 4,055 83.87% 10,850 30.16% CSC 4,240 87.69% 11,626 32.32%

findbugs 5,857 14,075

CI 5,662 96.67% 13,319 96.63% CI 5,808 99.16% 13,899 98.75%
2obj – – – – 2obj 5,808 99.16% 13,898 98.74%
2type 5,662 96.67% 13,318 96.62% 2type 5,808 99.16% 13,898 98.74%

ZIPPERe 5,662 96.67% 13,319 96.63% ZIPPERe 5,808 99.16% 13,899 98.74%
CSC 5,662 96.67% 13,318 96.62% CSC 5,808 99.16% 11,898 98.74%

9

newapp/
|–-app/
| |–-newapp1.jar
| |–-newapp2.jar
|–-lib/

|–-newapplib1.jar
|–-newapplib2.jar

Figure 7: Structure of the newapp folder.

newapp: # id of the program
jdk: 6 # analyzed JDK version
main: my.program.Main # main class of the program
apps:

- newapp/app # path of the application JAR directory
relative to /home/artifact/benchmarks/

libs:
- newapp/lib # path of the library JAR directory

relative to /home/artifact/benchmarks/

Figure 8: Configuration in app-info.yml for newapp.

3.7 Potential Issue
When running DOOP, if it exits with an exception as shown in Figure 9, it means that the memory of your machine is too
small to execute the analysis:

Figure 9: Exception on DOOP if memory is too small to scale the analysis.

10

	Introduction
	Getting Start Guide
	Basic Requirements
	Artifact Package
	Experimental Setup
	Basic Testing

	Step-by-Step Instructions
	Content of Artifact
	Running Experiments
	Reproducing Table 1 and Table 2
	Reproducing Table 3
	The Recall Experiment
	Analyzing A New Program
	Potential Issue

