
Artifact Abstract: ASanity: On Bug Shadowing by
Early ASan Exits

Vincent Ulitzsch
Technische Universität Berlin - SECT

Berlin, Germany
vincent@sect.tu-berlin.de

Deniz Scholz
Technische Universität Berlin - SECT

Berlin, Germany
notdenizscholz@gmail.com

Dominik Maier
Technische Universität Berlin - SECT

Berlin, Germany
dmaier@sect.tu-berlin.de

I. ARTIFACT EVALUATION – GOALS

The goal of the artifact evaluation for ASanity: On Bug
Shadowing by Early ASan Exits is two-fold:

• To confirm that the data analysis was correct
• To confirm that the data collected was correct, namely the

scraping of OSS-Fuzz issues and re-running them without
the -fsanitize=recover flag.

The artifact folder contains the dataset used for evaluation
(artifact_evaluation_new.zip) as well as a VM
.ova file, reproduction_ubuntu.ova), that can be used
to run the scripts. The artifact inside the VM is divided into
two parts.

• data_collection All scripts necessary for the data
collection

• data_analysis The scripts used to analyze the col-
lected data

To start the evaluation, import and the launch the Ubuntu-VM
and follow the steps below.

1) Launch the VM, log in to user test with password
test.

2) Open a terminal and change to root user via su, the
password is again test.

3) Change into the artifact evaluation directory

1cd / home / t e s t / a r t i f a c t e v a l u a t i o n /
2

We will now walk you through each evaluation step.

II. ARTIFACT EVALUATION – ANALYZING THE DATA

Our dataset compromises the following elements:
• data collection/monorail-scraper/scraped issues — Mul-

tiple json files, containing a list of objects, each describ-
ing one issue scraped from oss-fuzz.

• data collection/filtered issues — Multiple json files, con-
taining a list of objects, each describing one issue scraped
from oss-fuzz. We only retain issues that were reported
as heap OOB-R, however.

• data analysis/dataset — A collection of ASAN error
logs for each issue that we attempted to reproduce,
i.e., each issue from scraped_issues. The structure
of the directory as follows. We store the logs for an
issue in dataset/project-name/issue/. The file

old.txt is the ASAN error log produced by running the
target on the crashing testcase, without disabling ASAN
early exits and using a prebuilt binary, downloaded from
cloud. The file new.txt is the ASAN error log with
disabled ASAN early exits, running on a re-compiled
binary.

To assemble the statistics that we present in the paper, simply
run our script analyse_errors.py. The script will iterate
through all ASAN error logs and parse them. We track the
issue in our statistics if the ASAN error log of the run with
enabled early-exists reports an OOB-R, but the error log of the
run with disabled early-exists additionally reports an OOB-W
or use-after-free, . The script outputs a table in latex format
and summarizes a few statistics.

1[roo t@5f91d5a19cc f /] # cd d a t a a n a l y s i s
2[roo t@5f91d5a19cc f /] # py thon3 a n a l y s e e r r o r s . py
3[. . .]
4\ b e g i n { t a b u l a r }{ l r r r }
5\ t o p r u l e
6P r o j e c t s & oobr & oobw & u a f \\
7\m i d r u l e
8l i b d w a r f & 1 & 1 & 0 \\
9[. . .]
10\ b o t t o m r u l e
11\end{ t a b u l a r }
1238 o u t o f 750 out −of −bounds r e a d a l s o t r i g g e r e d an

out −of −bounds w r i t e o r use − a f t e r − f r e e
139 o u t o f 750 out −of −bounds r e a d a l s o t r i g g e r e d an

use − a f t e r − f r e e
1430 o u t o f 750 out −of −bounds r e a d a l s o t r i g g e r e d an

out −of −bounds w r i t e

This should match the numbers reported in the paper.

III. ARTIFACT EVALUATION – COLLECTING THE DATASET

The aim of this artifact evaluation step is confirm that the
data was collected in a correct way. Recall that for the ASanity
paper, we perform the following steps:

1) Scraped the issue list from OSS-Fuzz
2) Filtered issues for out of bounds read issues
3) Reran the pre-compiled targets against the respective

testcases
4) Recompiled the targets at the vulnerable commit with

-fsanitize=recover option disabled
5) Parsed the ASAN error logs to see which OOB-R turned

out to be OOB-Writes or use-after-free issues as well.

A. Issue Scraping OSS-Fuzz

The OSS-Fuzz Project offers an extensive collection of bugs
from open-source projects. This collection is publicly visible
and can be found at OSS-Fuzz Monorail [1]. The OSS-Fuzz
Monorail scraper includes a large table of reported issues.
The table columns include a unique internal ID, the type
of the bug, a component, the status, the project, the date
of the report, the owner, and a summary with labels. We
build on top of the Monorail Scraper. The scraper can be
started by running the python3 scrape oss fuzz issue range
.py [−h] −s START −e END command in a command line
interface. By setting the START and END values, we can
specify the range of ids of the projects which will be scraped.
For example, the python3 scrape oss fuzz issue range .py
−s 10000 −e 20000 will scrape all issues with ID’s between
10000 and 20000. The results will be structured in the JSON
format, written to the standard output, and printed in the
command line interface. We can pipe the output from stdout to
a file by adding > filename. json to the end of the command,
which results in the following command:

1[roo t@5f91d5a19cc f]# cd d a t a c o l l e c t i o n / monora i l −
s c r a p e r

2[roo t@5f91d5a19cc f monora i l − s c r a p e r]# py thon3
s c r a p e o s s f u z z i s s u e r a n g e . py −s START −e END >
START END . j s o n

For our paper, we executed the command multiple times
with smaller ranges, resulting in multiple JSON files. Each
JSON file contains a list of objects representing an is-
sue. Find the results of our run in data_collection/
monorail-scraper/scraped_issues.

B. Filtering Issues For OOB-R

Next, we want to filter to scraped issues to only retain issues
that are OOB-R. To this end, we can call

1[roo t@5f91d5a19cc f monora i l − s c r a p e r]# py thon3 f i l t e r
. py

This will store the remaining issues in the directory
filtered_issues.

C. Reproducing the Issue and Rerunning

As a last step, we run the script main.py
1[roo t@5f91d5a19cc f d a t a c o l l e c t i o n]# py thon3 main . py

As a pre-requisite, you might have to run gcloud init, so
that gcloud cli can fetch binaries. This, iterates through each
issue in filtered issues and:

1) Downloads the pre-compiled binary of the project from
gcloud.

2) Reruns the binary with the crashing testcase to collect
an ASan log. ASanity prints and records the ASAN
output in data_analysis/dataset/<project>
/<issue-id>/old.txt.

3) Pulls the project at the commit that is specified in the
issue description.

4) Recompiled the project with -fsanitize=recover
flag enabled.

5) Reruns the binary with the crashing testcase to collect
an ASan log of the relaxed ASan run. The output of
this ASAN run is printed and recorded in
data_analysis/dataset/<project>
/<issue-id>/new.txt.

IV. BUILDING YOUR OWN VM

To launch your own VM, the following steps are needed:
1) Install the package dependencies via apt

1$ ap t − g e t u p d a t e −y && apt − g e t i n s t a l l −y
python3 p i p gcc python3 −dev sudo c u r l wget

2$ ap t − g e t −y i n s t a l l ap t − t r a n s p o r t − h t t p s \
3ca − c e r t i f i c a t e s \
4c u r l \
5gnupg2 \
6s o f t w a r e − p r o p e r t i e s −common
7

2) Install the Python dependencies as listed in the
requirements file in artifact_evaluation/
requirements.txt

$ p ip3 i n s t a l l − r r e q u i r e m e n t s . t x t

3) Install google chrome version 95.06, as provided with
the artifact evaluation directory:

1$ dpkg − i d a t a c o l l e c t i o n / monora i l − s c r a p e r /
google −chrome − s t a b l e 9 5 . 0 . 4 6 3 8 . 6 9 − 1 amd64 .
deb ; ap t − g e t −y − f i n s t a l l

4) Install google-cloud-sdk and docker, as described
in https://cloud.google.com/sdk/docs/install and https://
docs.docker.com/engine/install/

5) Init google cloud with an auth token

gc lo ud i n i t

6) Add the monorail-scaper to your path
1$ e x p o r t PATH=$PATH : (r e a l p a t h d a t a c o l l e c t i o n /

monora i l − s c r a p e r)

Your VM is now prepared to reproduce the artifact evaluation
as described above.

2

