
Neural Networks 163 (2023) 97–107

I

a
w
s
i
o
e
a
v
p
A
t

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

An explainable artificial intelligence approach to spatial navigation
based on hippocampal circuitry
Simone Coppolino, Michele Migliore ∗

nstitute of Biophysics, National Research Council, Palermo, Italy

a r t i c l e i n f o

Article history:
Received 19 April 2022
Received in revised form 30 January 2023
Accepted 21 March 2023
Available online 30 March 2023

Keywords:
Robot spatial navigation
Spike-time-dependent plasticity
Hippocampal circuitry
Spiking neurons network

a b s t r a c t

Learning to navigate a complex environment is not a difficult task for a mammal. For example, finding
the correct way to exit a maze following a sequence of cues, does not need a long training session. Just
a single or a few runs through a new environment is, in most cases, sufficient to learn an exit path
starting from anywhere in the maze. This ability is in striking contrast with the well-known difficulty
that any deep learning algorithm has in learning a trajectory through a sequence of objects. Being
able to learn an arbitrarily long sequence of objects to reach a specific place could take, in general,
prohibitively long training sessions. This is a clear indication that current artificial intelligence methods
are essentially unable to capture the way in which a real brain implements a cognitive function. In
previous work, we have proposed a proof-of-principle model demonstrating how, using hippocampal
circuitry, it is possible to learn an arbitrary sequence of known objects in a single trial. We called
this model SLT (Single Learning Trial). In the current work, we extend this model, which we will call
e-STL, to introduce the capability of navigating a classic four-arms maze to learn, in a single trial,
the correct path to reach an exit ignoring dead ends. We show the conditions under which the e-
SLT network, including cells coding for places, head-direction, and objects, can robustly and efficiently
implement a fundamental cognitive function. The results shed light on the possible circuit organization
and operation of the hippocampus and may represent the building block of a new generation of
artificial intelligence algorithms for spatial navigation.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

During the exploration of an unknown environment, such as
building, a museum or, more generally, a maze, we usually
ander around walking from one point to another following a
equence of cues that generated some interest, eventually reach-
ng an exit. This process could take more or less time depending
n several factors such as the size and/or complexity of the
nvironment, orientation ability, special conditions, etc. However,
ll these factors do not influence our ability to reach the exit after
ery few, most often just one, navigation period. The hippocam-
us is the brain region most involved in this cognitive function.
lthough the involved circuits are not completely understood,
here are clear experimental findings, in vitro and in vivo, demon-
strating the existence, in the CA1 region of the hippocampus,
of cells selectively responding to specific locations with respect
to external cues (O’Keefe & Dostrovsky, 1971), to specific head
directions (Leutgeb, Ragozzino, & Mizumori, 2000), or specific ob-
jects (Quiroga, Reddy, Kreiman, Koch, & Fried, 2005). The spatial
navigation function appears to be implemented using these types
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nc-nd/4.0/).
of cells, exquisitely tailored and wired to form microcircuits from
which it naturally emerges. Our ability and efficiency in learning
to navigate a new environment and remember the path to exit,
is currently not achievable by any robot or device using state-of-
the-art artificial intelligent algorithms, such as Long Short-Term
Memory or Bidirectional Recurrent neural networks.

In recent years, a new paradigm is emerging, to build neural
networks able to somewhat replicate human cognitive functions:
the eXplainable Artificial Intelligence approach (XAI, reviewed
in Gunning et al., 2019), a way to implement models in which
the rationale and the steps leading to the emergence of a cog-
nitive function are well defined. This is achieved by using neu-
robiologically plausible network architectures (reviewed in Zeno,
Patel, & Sobh, 2016), which allows a clear characterization of
their strengths and weaknesses and, most importantly, allows to
entirely understand and predict their behavior under different
conditions. Following this approach, robot navigation systems
have been built to create a cognitive spatial map of the envi-
ronment to learn how to reach a target. However, to the best
of our knowledge, in all cases the learning phase still crucially
depends on reinforcement learning schemes based on Q-learning
rules (Arleo & Gerstner, 2000; Sutton & Barto, 2018). A recently
published model, inspired by hippocampal circuitry and casted
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.neunet.2023.03.030
https://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2023.03.030&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:michele.migliore@cnr.it
https://doi.org/10.1016/j.neunet.2023.03.030
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


S. Coppolino and M. Migliore Neural Networks 163 (2023) 97–107

i
r
e
s
r
c

a
l
t
e
e
c
a
n
S
t
s
a
e

p
a
t
n
s
t
l
i
a
t
n
e
t
i
e
n

2

M
i
O
c
m
f
R
P
p
(
v
L
(
t
m
t
(
n
t

2

o
p

n terms of spatial and relational memories, achieved impressive
esults (e.g. Whittington, Warren, & Behrens, 2021; Whittington
t al., 2020). However, the model still relies on long and very
pecific training sessions to learn enough transitions in a graph
epresenting the environment, in such a way to efficiently find a
orrect path to the desired location.
More generally, all current models require the evaluation of

cost function that depends on the actual target’s location, with
earning schemes that systematically rely on algorithms that need
he calculation (and backpropagation) of an error (based on en-
rgy functions, distance from special locations, specific sequences,
tc.) with respect to a ‘‘true’’ configuration. This is in striking
ontrast with what happens in vivo, where the target location
nd the sequence of objects to follow to reach it are unknown. A
otable exception is the eligibility traces approach (e.g. Strösslin,
heynikhovich, Chavarriaga, & Gerstner, 2005), where the sys-
em (implemented as a set of interacting networks composed by
everal hundred neurons) achieves one-shot learning by keeping
non-decaying memory of the complete state–action history at
ach step.
In the current work, we build upon the SLT model, a previously

ublished spiking neuron network based on hippocampal cells
nd circuits (Coppolino, Giacopelli, & Migliore, 2022), to introduce
he e-STL model. Place Cells, Head Direction Cells, and other
euron types are wired together with plastic synapses to form a
elf-organizing network able to learn, in a single learning trial,
he correct sequence of objects to follow toward an exit. The
earning process is controlled by a spike-time-dependent plastic-
ty rule, with excitatory and inhibitory neurons modulating the
ppropriate learning/forgetting process during the exploration of
he environment, without the use any type of cost function. The
ew e-SLT network is able to control the navigation of a robot
xploring a maze, and it makes experimentally testable predic-
ions on the physiological mechanisms underlying this function
n humans and other mammals. The results suggest a new gen-
ration of explainable artificial intelligence algorithms for spatial
avigation.

. Methods

All model and simulation files will be publicly available on
odelDB (http://modeldb.yale.edu/267339). The network was

mplemented in PYNN (Davison et al., 2009), and the Robot
perating System (ROS,www.ros.org) was used to build a basic
losed-loop environment using external inputs to control the
ovement of a virtual robot Several python custom transfer

unctions were also implemented to integrate the PYNN and
OS code with the NeuroRobotics Platform of the Human Brain
roject (HBP-NRP, https://neurorobotics.net/). To compare the
erformance of our network with a Long-Short-Term-Memory
LSTM) recurrent network (Schmidhuber, 2015), we used a pre-
iously published code (Brownlee, 2018). We used the vanilla
STM implemented with Keras (Chollet, 2015) and Tensor Flow
Abadi et al., 2015), with some changes to make it more similar
o the neuronal model, and ensure a fair comparison of the perfor-
ances. The test was focused on the ability of the LSTM network

o remember and forget numerical sequences with different rules
i.e. +1, +2, +3 and +4 sequences rule). In this way, the LSTM
etwork does not need to learn any external features since only
he training sequences are presented to the model.

.1. Network components and connectivity

The network is schematically shown in Fig. 1; it is an extension
f the one used to introduce the basic concepts and a proof of

rinciple of operations (Coppolino et al., 2022). It is composed
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of both excitatory and inhibitory cells, with computational prop-
erties consistent with those observed in the hippocampus and
described below. In adding interneurons, the hyper-parameters
needed to be re-tuned, with respect to the previous version.
It should be noted that, as it can be expected and as it actu-
ally works in real biological systems, thanks to the degener-
acy phenomenon, essentially the same result can be obtained
with many combinations of parameters (e.g. Migliore, Novara,
& Tegolo, 2008). The main mechanism is the appropriate self-
organization of the synapses, which relies on the interplay be-
tween pre- and post-synaptic firing rates. We choose the lat-
ter to be in the theta-gamma frequency range (approximately
4–80 Hz), experimentally observed during cognitive functions. As
long as the various neurons and synaptic parameters are able to
generate firing rates in this range, which will activate synapses’
potentiation and depression as described in the Results Section,
the network will work independently of environment’s shape or
size, with the limitations described in the Discussion Section.

A key point of this new architecture is the inclusion of in-
terneurons, which are a fundamental component of any real brain
region. Excitatory neurons were tuned to selectively firing in the
presence of different objects or different head directions, and
neurons firing persistently in response to a specific input. These
properties were hard coded in the input pathways, in such a way
that each cell would receive only the part of the input consistent
with its tuning, as result of a previous learning process that was
given for granted in this work. No specific assumptions were
made for the tuning of inhibitory neurons. Finally, we used our in-
tuition and experimental suggestions to connect the network, as
described below. We found that a fully functional network can be
implemented using a number of interneurons much smaller that
the excitatory neurons, in agreement with experimental findings.
For the purpose of this paper, we used 46 leaky integrate-and-
fire (LIF) neurons, 35 excitatory and 11 inhibitory, recognizing 5
objects and 12 head directions (30 degrees steps). They represent
the following cell types:

• Object cells (OBJ), which selectively fire when an object with
a specific feature is in the visual field. In our case, the
key feature is a color. The explicit tuning of individual hip-
pocampal neurons to specific objects has been observed ex-
perimentally (Quiroga et al., 2005), and we have previously
shown how this can be implemented using a biophysically
detailed single cell model (Migliore et al., 2008).

• Persistent Firing (PF) neurons, activated as an OBJ neuron
but with a delay. Consistent with experimental findings
(Boran et al., 2019), their firing persists when the relative
object is not present anymore and continues firing until
another PF starts firing. This feature was implemented us-
ing autapses. Although they are not usually investigated in
detail, autapses are very common in the brain. Their pres-
ence has been confirmed in the neocortex (Lübke, Markram,
Frotscher, & Sakmann, 1996; Van der Loos & Glaser, 1972), in
the olfactory bulb (Schoppa & Westbrook, 2002) and in the
hippocampus (Franck, Pokorny, Kunkel, & Schwartzkroin,
1995; Knopp, Kivi, Wozny, Heinemann, & Behr, 2005). As for
OBJ neurons, at any given time only one PF neuron is active

• Head Direction/Place Cells, HD/PC, activated when the ani-
mal/robot’s head is pointing at a specific spatial location
(HD); their coding evolves with experience and, during the
learning phase, some of them may become Place Cells (PC).
They can thus represent not only space but also contextual
information (Gulli et al., 2020). For this reason, we will
alternatively refer to them as HD or PC cells. As for OBJ and
PF neurons, only one HD/PC neuron is active at any given
time. These cells are a hallmark of spatial navigation and
are commonly found in the CA1 hippocampal region (Danjo,
2020).

http://modeldb.yale.edu/267339
http://www.ros.org
https://neurorobotics.net/
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Fig. 1. Schematic representation of the Network. Colored triangles represent excitatory neurons tuned to objects of different colors or different head directions; gray
or purple circles represent interneurons; thick blue lines represent inputs from the robot, carrying contextual information (object color and current Head Direction);
colored squares on the thick blue lines indicate that the relative cell will be activated whenever the corresponding information is present in the input stream; OBJ,
Object cells; PF, Persistent Firing cells; HD/PC, Head Direction/Place Cells; synaptic connections are represented with small circles, following the conventional color
for excitatory (black) or inhibitory (white); excitatory plastic synapses are indicated in yellow; the Perception error is an external signal, activated by a dead-end.
Lines fading or turning dashed in the right part of the scheme represent the network modularity.
• Interneurons, INa-b, making inhibitory connections with OBJ,
HD/PC, and PF neurons. Consistently with a real hippocam-
pal network, their overall number was significantly lower
than the excitatory neurons (Aika, Ren, Kosaka, & Kosaka,
1994; Woodson, Nitecka, & Ben-Ari, 1989).

The network has two input lines (Camera and HD thick blue paths
in Fig. 1): one carrying information on the robot’s head direction,
and one on the visual field. Camera frames and head direction
information are continuously transmitted by the robot and are
analyzed by the ROS/PYNN interface, which extracts information
on the presence of shapes of specific colors and sends this in-
formation to the OBJ and PF neurons. Only the neuron coding
for the specific object will be activated. Analogously, only the HD
neuron coding for the specific head direction will be activated.
The OBJ neurons are connected with HD/PC neurons through
plastic synapses. Any active OBJ neuron will generate a feedback
99
and lateral inhibitory signal through a static synapse, in a logic OR
connection onto interneuron INa. This type of circuit organization
is ubiquitous in the brain, from the olfactory bulb (Yokoi, Mori, &
Nakanishi, 1995) to the hippocampus (e.g. Ferrante, Migliore, &
Ascoli, 2009), and it forms the basis for powerful computational
properties. The PF neurons make synaptic contacts with all OBJ
neurons coding for objects different from their own (e.g. the
blue PF does not have a synapse with the blue OBJ neuron).
Through a logic AND connection, they may activate interneuron
INb. HD/PC neurons receive independent excitatory inputs from
all OBJ neurons, a common inhibitory input from PF neurons, and
their HD input is modulated by an interneuron activated by the
Perception error signal.

For the sake of simplicity, all neurons had the same electro-
physiological properties. Using a typical LIF conductance-based
implementation (Cessac & Viéville, 2008; Nordlie, Tetzlaff, &
Einevoll, 2010), the membrane potential v(t) of a neuron in a
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Fig. 2. Input/Output properties of neurons. Average (n=10) response of a
euron to a random 1 s synaptic activation at different average frequencies
nd peak synaptic weights.

ubthreshold regime (i.e. for v (t) < Vth), is described by

m
dv(t)
dt

= −v (t) + Rm �
[
gEsyn (t)

(
v (t) − EE

syn

)
+ gIsyn (t)

(
v (t) − EI

syn

)] (1)

Where τm = 20 ms is the membrane time constant, Rm =

0 m�/cm2 is the specific membrane resistance, and Vth =

50 mV is the spike threshold. Each time, tk, at which v(t) crosses
th, it is: ∀k : t /∈ (tk, tk + τref] , v (t) = Vreset where, Vreset =

65.0 mV, EE
syn = 0 mV for excitatory input, EI

syn = −70.0 mV
or inhibitory input, and τref = 1.0 ms is the refractory period.
he gsyn (t) indicates the synaptic excitatory or inhibitory inputs.
ynaptic activation times were implemented with Poisson spike
enerators (Brette, Rudolph, Carnevale, et al., 2007; Brunel, 2000).
n the rest of this section, η (ν) indicates a random variable used
o generate spike times according to a Poisson distribution (John-
on, Kemp, & Kotz, 2005), at an average frequency ν. In Fig. 2,
e report the response of a neuron for a series of simulations

n which a random (Poisson) synaptic input was activated for
s at different average frequencies and peak synaptic weights,
ith 10 repetitions. The average output firing frequency covered
he main spectrum of experimentally observed brain rhythms in
ippocampal principal neurons during behavioral tasks, up to the
igh gamma range (∼80 Hz).

.2. Coding of input cues

The number, nobj, of pixels in a given frame arriving from the
obot camera, was used to generate a train of synaptic activa-
ions on the Persistent Firing cells (PF ), Object cells (OBJ) and
ome Interneurons (INT ), with a Poisson process with an average
requency defined as

obj = 25 ·

(
e−

( nobj−µ

σ

)2)
(2)

where µ = {0.055}, and σ = {0.07} for red, blue, black, green, pur-
ple, magenta and cyan input sensor. This formulation allowed us
to consider the feedback inhibition during strong inputs, a feature
present at different levels in the retina circuitry (Diamond, 2017).
Synaptic inputs coding for 18 different Head Directions (HD ,
i
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considering 20 degrees of visual field) were also implemented as
Poisson processes as:

ηHDi =

{
η (νHD) , if state HDi

0, otherwise
(3)

with νHD ∼= 20.0 Hz and weight 0.05 µS. Each PF neuron was
ctivated only by one object, and for each obj we can thus define
he variable:

PF = ηobj

he same for each HD/PC neuron, which was activated only by
ne HDi

PC = ηHDi

he equations describing the dynamics of the membrane poten-
ial for each type of neuron (PF, obj, PC) can be thus written as
ollows. For PF cells, defining dINT ,PF as 1 if INT and PF are such
that ηInt = ηPF and 0 otherwise, is

τm
dVPF (t)

dt
= −VPF (t) + Rm

{(
gηPF ,PF
syn + gPF ,PF ,E

syn

)(
VPF (t) − EsynE

)
+

(∑
Int1

(1−

dInt1,PF )g Int1,PF
syn + gPF ,PF ,I

syn + g Int2,PF
syn

) (
VPF
(
t
)
− EsynI

)}
where

gηPF ,PF
syn (t) = wηPF ,PF

∑
k

δ(t − tk,E)e−
(t−tk,E )

τ ,

gPF ,PF ,E
syn = wηPF ,PF ,E

∑
k

δ(t − tk,E)e−
(t−tk,E )

τ ,

gPF ,PF ,I
syn = wηPF ,PF ,I

∑
k

δ(t − tk,I )e−
(t−tkI )

τ ,

g Int1,PF
syn (t) = wInt1,PF

∑
k

δ(t − tk,I )e−
(t−tk,I )

τ ,

and g Int2,PF
syn (t) = wInt2,PF

∑
k δ(t − tk,I )e−

(t−tk,I )
τ when ηobj = ηpurple

(ηpurple is associated to a purple object that indicates a dead-end)
wx,y is the peak conductance of the synapse connecting neurons
x and y, τ = 5.0 ms and the synaptic activation times tk were
generated according to ηPF . For obj cells, defining dPF ,obj as 1 if PF
and obj are such that ηPF = ηobj and zero otherwise, the equation
is:

τm
dVobj(t)

dt
= −Vobj(t) + Rm

[ (
g

ηobj,obj
syn +

∑
PF

(
1 − dPF ,obj

)
gPF ,obj
syn

)
×

(
Vobj(t) − EsynE

)
+ g Int,obj

syn

(
Vobj(t) − EsynI

) ]
,

ith gPF ,obj
syn (t) = wPF ,obj

∑
k δ(t − tk,E)e−

(t−tk,E )
τ , g Int,obj

syn (t) =

Int,obj
∑

k δ(t− tk,I )e−
(t−tk,I )

τ and the synaptic activation times tk,E
were the spike times of the corresponding PF cell. Moreover,

g
ηobj,obj
syn (t) = wηobj,obj

∑
k

δ
(
t − tk,E

)
e−

(t−tk,E)
τ

where the synaptic activation times tk,E are generated according
to ηobj. For HD/PC neurons,

m
dVPC (t)

dt
= −VPC (t) + Rm

[ (
gηPC ,PC
syn +

∑
gobj,PC
syn

)

obj
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(
VPC
(
t
)
− EsynE

)
+ g Int,PC

syn

(
VPC
(
t
)
−

EsynI
)]

,

where

gobj,PC
syn (t) = wobj,PC

∑
k

δ(t − tk,E)e−
(t−tk,E )

τ ,

with the synaptic activation times tk defined by the spike times
of the OBJ cells, and

gηPC ,PC
syn (t) = wηPC ,PC (

∑
k

δ
(
t − tk,E

)
e−

(t−tk,E)
τ )

here the synaptic activation times tk were generated according
to ηPC .

2.3. Synaptic plasticity rule

During the learning phase, the synaptic weight between any
two neurons, wij, evolved following an asymmetric spike-time-
dependent synaptic plasticity rule (STDP), implemented by con-
sidering experimental findings in the hippocampus (Nishiyama,
Hong, Mikoshiba, Poo, & Kato, 2000) as:

∆wij = 0.2e(−
x
13 ) for x > 0 (4)

∆wij = −0.12e(
x
30 ) for x < 0 (5)

where x = tj–ti, and {ti, tj} were the pre and post synaptic spike
times, respectively.

The initial weights were set to 0.007 µS and were allowed to
reach a peak conductance of 0.04 µS.

.4. Virtual spatial environment

For all simulations we used the same virtual environment,
hown in Fig. 3, created using the EBRAINS Neurorobotics Plat-
orm (https://neurorobotics.net/). We have chosen a four-arms
aze, as this is the most common environment used in ex-
erimental investigations of spatial navigations. Objects were
andomly placed over the entire space, with the exceptions of
hose representing key locations such as an exit (green object),
ead ends (light purple), and the starting point (dark purple).
he results discussed in the next sections did not change using
ighly different object locations and size, and by changes in the
onfiguration of the test maze.

. Results

.1. Network operation during learning

The different steps during a typical learning phase are illus-
rated in Fig. 4, where the portion of the network involved in each
tep is highlighted

(1) The robot starts searching for a known object; eventually it
sees a known object, in this case the blue one; it thus starts
moving toward it, and the blue OBJ neuron starts firing;
during the exploration, the HD input selectively activates
the HD/PCs corresponding to the current robot’s head di-
rection. The circuitry involved in this step is schematically
highlighted in Fig. 4A.

(2) The blue OBJ activity is propagated to: (a) an interneuron,
generating lateral and feedback inhibition onto all OBJs,
a classic contrast enhancement effect (Yokoi et al., 1995)
and, (b) to all the HD/PCs; this latter input, associated with
101
Fig. 3. The virtual environment used for all simulations. Object locations are
random, except for the purple objects on the right and top arms, which represent
dead ends, and the green object on the left arm, which represents an exit. The
rover starts exploring the maze from the dark purple object in the lower arm.

the postsynaptic firing of the only HD/PC neuron activated
by the current HD signal (step 1), will induce long-term
potentiation of the blue OBJ-HD/PC synapse (schematically
represented with a larger light-yellow circle in Fig. 4A).

(3) As the robot approaches the blue object, the corresponding
input increases and eventually enters the desensitization
phase (see Eq. (2)). At this point, the robot begins to look
around for other known objects, it detects the red, yellow
and black objects; it randomly chooses to follow one of
them, excluding those already explored; in this case it
chooses the red one, and it marks it as already explored,
for future reference.

(4) Meanwhile, the blue PF neuron will also begin to generate
spikes, which are propagated to all other OBJs, and to
another interneuron exerting lateral inhibition on all the
other PFs.

(5) The circuitry involved in this step is highlighted in Fig. 4B.
The red OBJ cell increases its firing as the robot approaches
the red object; together with the presynaptic activity gen-
erated by the blue PF neuron this results in the bluePF-
redOBJ synapse being potentiated (larger light-yellow
synapse in Fig. 4B).

(6) Steps (2), (3), and (4) are then repeated until the robot sees
an exit or the network receives a Perception error signal, in
our case coded by a magenta object and corresponding to a
dead end. In the first case, the learning phase is complete;
the appropriate synapses have been potentiated to direct
the movement of the robot through the sequence of objects
leading to the exit.

(7) The Perception error input, lasting until the robot goes back
to the starting point, puts the network into the forgetting
cycle, which has two phases: (1) direct activation of all PFs,
(2) delayed activation of an interneuron that inhibits all PFs
and reduces activation of HD/PCs; the circuitry involved in
the first phase is schematically shown in Fig. 4C; while the
robot reaches the dead end (magenta object), all the PFs
neurons are active at the same time; their activity removes
lateral inhibition from OBJs, which will thus be strongly
activated. The resulting large difference between the pre-
and postsynaptic firing in OBJs creates the conditions for
synaptic depression (post-synaptic spikes in most cases an-
ticipate presynaptic spikes), and the previously potentiated

https://neurorobotics.net/
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PF-OBJ connections will be depressed (dark-orange synapse
in Fig. 4C).

(8) As the robot begins to look for other objects, the interneu-
ron activated by the error signal begins to fire and PFs will
be inhibited. During its backward navigation, the robot will
see all the objects that it has just learned. However, this
time all OBJ cells are firing because feedback and lateral
inhibition is blocked; an OBJ input, and the previously
potentiated OBJ-HD/PC synapse result in these latter neu-
rons to fire at higher frequency; as before, this condition
will set the stage for synaptic depression. Following this
process, the network will forget the association between
a HD/PC and an OBJ neuron. Eventually, the robot reaches
the starting position, the PF error is reset, and the learning
process could restart in another branch; the final weights’
configuration, for this specific maze and object locations, is
shown in Fig. 4D; synaptic weights (dark orange and light
102
yellow in Fig. 4D) reflect the objects and directions that the
robot has followed to reach the exit.

.2. Recallphase

During the learning phase, the network has self-organized its
ynapses during the process of finding an exit path. The end result
as that selected PF-OBJ and OBJ-HD/PC synaptic weights have
een potentiated or depressed, with respect to their initial value.
he consequent HD/PCs firing pattern that will be generated as
he robot enters the same maze at any point, can be used by the
yNN/ROS interface to control the robot’s movement toward the
xit, without any wrong turn. In this phase, the robot’s movement
ill be entirely controlled by the potentiated OBJ-PC synapses,
nd it will directly follow the correct path, as soon as it sees any
bject belonging to the sequence that it has learned.
A movie of the simulation corresponding to the steps de-

cribed above is available as Supplementary Movie 1. To test the
obustness of the process, we repeated three times the learning
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Fig. 5. Robustness of the Learning and Recall process. Red, Green, and Black traces represent the different paths explored by the robot during three different
earning trials. The Purple line represents the recall path after each of them. The white marker represents the robot’s starting position.
Fig. 6. Network dynamics during a typical learning trial. Raster plot of selected OBJ, and HD/PC neurons (top) and OBJ-HD/PC synaptic weight dynamics (bottom)
uring a typical learning/forgetting phase.
hase using the same objects’ configuration in the maze but
ifferent random seeds for the Poisson processes and random
hoices on directions to follow at the maze junction. In Fig. 5 we
how the paths followed by the robot for each case (red, green,
nd black traces in Fig. 5). For all of them, the robot was able
o learn the path to the exit (purple trace in Fig. 5) in a single
xploration trial. The same overall result was obtained using
ifferent objects’ configuration or maze sizes and/or geometries
not shown).

It should be noted that it is not possible to make a direct
omparison with the previous STL model (Coppolino et al., 2022),
hich was implemented to introduce the basic network architec-
ure and demonstrating a proof of principle; in contrast with the
-STL model, it would not be able to successfully navigate a more
ealistic environment such as a 4-arms maze, because during the
earning phase the network would keep potentiating synapses
onnecting sequential objects, independently from being in a
rong path, affecting in most cases the successful completion of
he task.

To compare this performance with a network using a different
rchitecture, we trained a LSTM network to test the capability of
103
the forget gate to self-organize the synaptic weights, by progres-
sively adding one object at the time, up to four sequences, as in
our model. We found (see supplementary Fig.S1) that the network
needed more than 3000 learning epochs to obtain an accurate
result.

In Fig. 6 we show more details on the process underlying the
network self-organization, where we show the spiking activity of
specific neurons and the consequent potentiation or depression
of the activated synapses.

For the sake of simplicity, we will discuss the process for a few
OBJ and HD/PC neurons and their synapses. All others will follow
the same conceptual time course. As discussed in the Learning
Section (step 1), when the robot approaches the blue object, the
corresponding neuron will begin to fire (OBJ Blue raster in Fig. 6,
around t=15 s).

The conjunctive firing with one of the HD/PC neurons (PC
Blue raster in Fig. 6) will selectively potentiate the corresponding
synaptic weight (blue trace in bottom plot of Fig. 6). The same
occurs as soon as the robot sees the red object, around t=40 s
In this case, the association of the OBJ cell coding for the red
object (OBJ Red in Fig. 6) and the cell coding for the current HD
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Fig. 7. Network dynamics during two typical learning trials. (A) Instantaneous firing rates, as a function of simulation time, for all cells in the network during an
ndependent maze explorations. Cells’ order is random. PC, PF, and OBJ neurons involved in the correct exit path are identified on the right. (B) Typical experimental
inding, showing activation of cells with Place and Non-Place-Related activity during a run in a non-familiar (N) environment, from Dong, Madar, and Sheffield (2021).
C) As in A but for a different trial.
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PC Red in Fig. 6) potentiate their synaptic weight (red trace in
ig. 6). Note that red and blue OBJ neurons are different cells,
ut the HD/PC neuron involved in this process may or not be
he same. In any case, the potentiated synapse will be different,
ven if the HD/PC cell is the same neuron that was activated in
he presence of the blue object. This homosynaptic plasticity, a
undamental process of brain self-organization, is ensured by the
utually exclusive activation of an OBJ cell during the learning
hase. As the robot proceeds with its navigation (50<t<100 s in
ig. 6), the weights remain constant
When the robot reaches a dead end, the (external) percep-

ion error signal will activate the purple interneuron (ErrorInt
n Fig. 6). On its way back, the robot sees the red object again.
owever, in this phase (Learning Section step 9) the HD/PC cells
re receiving a much stronger input from the (disinhibited) OBJ
ed cell and the potentiated OBJ Red-PC Red synapse. This results
n the PC Red firing at a rate higher and essentially decorrelated
rom the OBJ Red cell. Under this condition, the corresponding
ynapse will undergo long-term depression (≈t = 170 s in Fig. 6).
The same occurs for the OBJ Blue-PC Blue synapse, as soon

s the robot sees the blue object. The perception error signal is
eset when the robot reaches the starting point (≈t = 220 s in
ig. 6), and the learning process starts again, first with the blue
blue trace in Fig. 6, at t≈250 s) and then with the cyan object
cyan trace in Fig. 6, at t> ≈310 s).

The instantaneous firing rates of all neurons in the network are
hown in Fig. 7 A, during one of the three learning cycles repre-
ented in Fig. 5. Although we presented these cycles as different
ttempts of the virtual robot to find an exit (or a special location),
t should be noted that they can also be considered as the path
hat three independent robots may decide to explore. From this
oint of view, it is then clear that the firing patterns of individual
104
eurons, the time to reach the exit, and the final effective synaptic
onnectivity, will be in general rather different from each other,
lthough they will end up in carrying out the same cognitive
unction: just as it will happen for different individuals exploring
he same environment. In Fig. 7A we included all neurons in the
etwork, randomly listed, and this gives us the possibility not
nly to compare our results with experimental data, but also to
ake experimentally testable predictions. It should be noted that
uring any given learning trial, and even if the environment is
ept the same, each neuron will fire in a rather different way
nd, in general, an obvious sequence is not evident. Unless the
pecific role of a given neuron in the network is known, it will be
ery difficult to understand what is going on. These results are
imilar to the experimental recordings obtained from a random
et of cells while an animal explores an unfamiliar environment,
o learn where a reward is, as shown in Fig. 7B (from Dong et al.,
021). The firing rates for another trial are reported in Fig. 7C.
n general, the firing rates are highly variable, with many cells
xhibiting a substantial amount of bursting behavior, depending
n the specific arm that the animal explored. Note that in both
ig. 7 A and 7C there is a cell, identified as cell #23 (Fig. 7 A) and
41 (Fig. 7C), that exhibits a rather regular and high frequency
iring for a relatively long time (1–2 min). This firing behavior is
ot random, but corresponds to the interneuron that is activated
y the perception error signal; it informs the network that the
obot is in a wrong path. An experimentally testable prediction
f the model is thus that, among the many cells firing irregularly,
here should be a few with a sustained high frequency firing that
ode for a wrong location.
Traditionally, the activity of a group of neurons recorded dur-

ng a typical experiment in which an animal runs down a track
r a maze, is visualized by sorting the neurons based on their
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Fig. 8. Network dynamics after a learning trial. (A) Typical experimental findings, showing activation of cells with Place and Non-Place-Related activity during
hree consecutive runs down a linear track, from Meshulam, Gauthier, Brody, Tank, and Bialek (2016); (B) Instantaneous firing rate of all cells in the network during
wo independent runs in the maze after the learning trials of Fig. 7.
verage activity, as shown for example in Fig. 8 (top graph,
rom Meshulam et al., 2016). Cells with place-modulated activity
xhibit a characteristic sequential activation correlated with the
obot’s location in the environment. If we consider the activity of
he neurons in our network during the recall phase after the two
ndependent learning trials of Fig. 7 and reorganize the order of
he neurons in our network, as shown in the middle and bottom
lots of Fig. 8, we can see how a sequential activity naturally
merges from the learning process. Although the actual firing
ates may be slightly different after different learning trials (Fig. 8,
iddle and bottom graphs), as also observed in the experiments,

he sequence will be fixed, since it depends on the specific order
f objects along the correct path, and their activity will be con-
istent over a scale of minutes, as also observed experimentally
Liu et al., 2022). The model predicts that, although all neurons
nvolved in the sequence are place-modulated, not all of them are
ctual Place Cells, but they may also include other neuron types
105
involved in the cognitive process, such as object and/or Persistent
Firing cells. Also note the activity of cell #31, which is firing
during most of the recall period in both trials, which corresponds
to the interneuron sending lateral inhibition to Object cells. The
model thus also makes the experimentally testable prediction
that neurons firing throughout an entire recall trial in a given
experiment are interneurons. Some experimental evidence for
this type of activity can be identified for cell #41 in the top panel
of Fig. 8.

4. Discussion

In this paper we introduced the e-STL model, a relatively
small spiking neuron network architecture able to navigate a
maze to learn, during a single learning trial, an arbitrary long
series of objects leading to an exit point. It extends the STL
model presented in a previous paper (Coppolino et al., 2022),



S. Coppolino and M. Migliore Neural Networks 163 (2023) 97–107

w
c
t
d
i
d
t
u
i
t
w
T
s
r
m
e
c
e
o
d
T
a
p

w
e
t
b
a
g
f
c
b
a
p
d

f
e
a
f
v
f
e
s
a
t
h
m
t
t
w
c
s
t
o
t

M

a
i
e
h
o
c

l
o
s
w
i
t

w
m
w
p
o
t
a
c

5

m
i
c
i
s
w
m
b
p
t
s
a
c
s
n
f

D

c
t

D

t

A

2
S
W
a
M
(

A

hich suggested the basic neurophysiological mechanisms that
an underlie the fast and efficient process of learning an arbi-
rary sequence of (known) objects. It was a proof of principle,
emonstrated in a simplified environment, and it could not work
n a more complex environment where, in general, there are
ead-ends and/or wrong paths that should be avoided during
he recall phase. A typical case is the four-arms maze widely
sed for in vivo experiments. Here, we demonstrated that adding
nhibitory neurons (not included in the previous version), gives
he network the capacity to find at once a path to reach an exit
hile forgetting any wrong path explored during the navigation.
his ability is crucial to explore complex environments, and we
howed how it can emerge from the interplay between interneu-
ons with principal neurons, through well-known physiological
echanisms such as lateral and feedback inhibition. The network
lements and connectivity are directly inspired by hippocampal
ircuitry and, as such, its inner working and performances are
ntirely explainable from first principles, in contrast with any
ther traditional artificial intelligence implementations, such as
eep learning and Long Short-Term Memory (LSTM) networks.
he ability of the e-STL network to learn in a single learning trial
nd, in doing so, to also explore and eventually forget wrong
athways is especially important.
An LSTM network can use forget gates to explore and dismiss

rong pathways, but the process needs thousands of training
pochs to eventually approach (but it will never reach) the op-
imal result obtained in a single pass by an e-STL network. Other
iological inspired models (Whittington et al., 2021, 2020) can
chieve extremely good results, but the use of deep learning al-
orithm for training prevents single shot learning, independently
rom the feature extraction process (which in our model is hard-
oded in the ROS-PYNN interface). In the e-STL model, this can
e obtained using a biologically plausible synaptic plasticity rule
nd interneurons, which have a fundamental role in switching off
reviously potentiated synapses involved with wrong pathways
uring the navigation, in a transparent and automatic manner.
The main goal of this work was to show how a cognitive

unction like spatial navigation can naturally emerge from an
xtremely fast and optimally efficient self-organization of a rel-
tively simple network based on hippocampal microcircuits. A
ull-fledged autonomous system able to navigate a complex en-
ironment was out of scope, at this stage. The task (navigating a
our-arms maze) was chosen because it is a classic experimental
nvironment, almost universally used in in vivo experiments to
tudy the neural processes underlying spatial navigation. As long
s the problem is to find the correct sequence of objects leading
o an exit, the model performances will be the same, no matter
ow different the environment is; from this point of view, the
odel is fully general, albeit with the limitations described in

he next section. The size of the network was proportionate
o the number of predefined objects. It is a modular network,
hich would linearly grow with the number of objects that it
an recognize. Nevertheless, its performances will not depend on
ize and shape of the environment, or the number of objects in
he sequence, because they are related to the way in which each
bject is progressively linked to the appropriate HD/PCs during
he learning phase.

odel limitations
One limitation is that the set of objects that can be added to
sequence during the learning phase must be predetermined,

.e. unknown objects will be ignored; this issue can be consid-
red as part of the bigger problem of understanding how the
ippocampus is able to generalize and establish new memories
n the fly during navigation, extremely more efficiently than any
urrent AI implementation; we will consider this in a future work.
o

106
Another apparent limitation is that confusion may arise in
earning a sequence containing, for example, multiple instances
f the same object in two or more different places. However, it
hould be noted that this condition can also occur in humans
ho, especially in the absence of sufficient additional contextual

nformation, may find difficult to decide which object is next in
he sequence if there are multiple possibilities.

Finally, another (apparent) limitation is the need for the net-
ork to rely on external signals, such as Perception error or visuo-
otor control. However, one should consider that this is exactly
hat happens in the real brain, where each region, the hippocam-
us in our case, continuously receives and sends signals from/to
ther brain regions specialized in complementary cognitive func-
ions. This approach makes the network ready to be connected
nd be part of a multi-area model network implementing more
omplex behaviors.

. Conclusions

Despite its limitations, it should be clear why an e-STL model
ay form the basis for a new generation of X-AI applications,

n particular for spatial navigation tasks. The network is rather
ompact, does not need a computationally expensive deep learn-
ng algorithm and, in fact, it is always possible to pinpoint and
olve a problem arising under special conditions, or figure out
here and how to improve or extend its functionalities. At a
ore general level, the network can be considered as a building
lock of a larger network including models of other brain regions,
roviding or receiving preprocessed data. Finally, by following
he natural system’s layout and circuity, we were able to make
everal experimentally testable predictions, allowing a deeper
nd more direct understanding of the mechanism underlying
ognitive functions and dysfunctions. Future extensions will con-
ider additional processes, naturally occurring in the hippocampal
etwork, such as continuous learning and recall and the ability to
orm new memories during navigation.
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