
Exploiting CLIP-based Multi-modal Approach
for Artwork Classification and Retrieval

Alberto Baldrati1,2, Marco Bertini1, Tiberio Uricchio1, and
Alberto Del Bimbo1
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Abstract. Given the recent advances in multimodal image pretraining
where visual models trained with semantically dense textual supervision
tend to have better generalization capabilities than those trained using
categorical attributes or through unsupervised techniques, in this work
we investigate how recent CLIP model can be applied in several tasks
in artwork domain. We perform exhaustive experiments on the NoisyArt
dataset which is a dataset of artwork images crawled from public re-
sources on the web. On such dataset CLIP achieves impressive results
on (zero-shot) classification and promising results in both artwork-to-
artwork and description-to-artwork domain.
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1 Introduction

Image Classification and Content-Based Image Retrieval (CBIR) are fundamen-
tal tasks for many domains, and have been thoroughly studied by the multimedia
and computer vision communities. In the cultural heritage domain, these tasks
allow us to simplify the management of large collections of images, allowing us
to annotate, search and explore them more easily and with lower costs.

In the latest years neural networks have proved to outperform engineered
features in both tasks. These networks are typically used in an unimodal fashion,
i.e. only one media is used to train and use a network. This may limit the types
of application that can be developed and may also reduce the performance of the
networks. Several recent works are showing how using multi-modal approaches
may improve the performance in several tasks related to visual information.
In [17] it has been shown that CLIP, a model trained using an image-caption
objective alignment on a giant dataset consisting of over 400 million (image,
text) pairs, obtains impressive results on several downstream tasks. The authors
pointed out that, using only textual supervision, the CLIP model is able to carry
out a broad set of tasks including geo-localization, action recognition, OCR and
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many others. This task learning can be exploited via natural language prompting
enabling zero-shot transfer capabilities over many existing dataset.

In this work we try to exploit the zero-shot capabilities of CLIP in the art-
works domain, in particular we focus on the NoisyArt [2] dataset which is origi-
nally designed to support research on webly-supervised recognition of artworks
and Zero-Shot Learning (ZSL). Webly-supervised learning is interesting since it
allows to greatly reduce annotation costs required to train deep neural networks,
thus allowing cultural institutions to train and develop deep learning methods
while keeping their budgets for the curation of their collections rather than the
curation of training datasets. In Zero-Shot Learning approaches visual classes
are learned without any training examples, leveraging the alignment of seman-
tic and visual information learned on some training dataset. ZSL in artwork
recognition is a problem of instance recognition, unlike the other common ZSL
problems that address class recognition. Zero-shot recognition is particularly ap-
pealing for cultural heritage and artwork recognition, although it is an extremely
challenging problem, since it can be reasonably expected that museums have a
set of curated descriptions paired with artworks in their collections.

To get a better idea of how CLIP behaves in the artworks domain we started
with a classification task using a shallow classifier and CLIP as the backbone.
Subsequently, thanks to the descriptions of the artworks in the dataset, we per-
formed experiments in the field of zero-shot classification where CLIP was able
to demonstrate its abilities in this task. Finally, we performed experiments on
the tasks of artwork-to-artwork and description-to-artwork retrieval obtaining
very promising results and superior performance to a ResNet-50 pre-trained on
ImageNet [19]

2 Related Works

Regarding CBIR, after the successful introduction of BOW (Bag-of-Visual Words)
in [23] that use engineered visual features such as SIFT points, several works have
strengthened the performance tackling various aspects such as improving local
features aggregation [15, 9, 4], learning improved codebooks [14], approximating
local descriptors [8]. In recent years, after the successful use of Convolutional
Neural Networks (CNN) to address the image classification problem [12], CNN-
based features have started to be used also for image retrieval tasks. A complete
survey that compares CNN-based and SIFT-based methods for instance-based
image retrieval is presented in [28]. Commonly used backbone networks are VGG
[22] and ResNet [7], typically pretrained on ImageNet and then fine tuned for a
specific domain. CNN features have been pooled using techniques like Regional
maximum activation of convolutions (R-MAC) [25]. R-MAC considers a set of
fixed squared patches at different resolutions, collecting the peak response in ev-
ery channel and then sum-pooling them to generate the final R-MAC descriptor.
More recent works follow an end-to-end approach: in [1] a layer called NetVLAD
was proposed, it is embeddable into any CNN architecture and trainable via
back-propagation, which allows to train a network end-to-end using an aggrega-
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tion of VGG16 convolutional activations. Multi-scale pooling of CNN features
followed by NetVLAD has been proposed in [26], obtaining state-of-the-art re-
sults using VGG16. In [16] a trainable pooling layer named Generalized-Mean
(GeM), along with learning whitening, has been proposed for short representa-
tions. In this work a dual-stream Siamese network is trained using contrastive
loss. The authors employ up to five image resolutions in the feature extraction
stage.

In [17] is presented CLIP (Contrastive Language-Image Pre-training): it is
a visual model trained by natural language supervision with the simple task of
predicting which caption is associated with which image, using a contrastive loss.
With such a multimodal model, the authors attempt to close the gap between
weakly-supervised methods where annotations are low quality but large in scale
[13, 11], and current methods that attempt to learn visual representations using
natural language supervision with a fairly restricted dataset [5, 20, 27]

Fig. 1 displays how the CLIP model is trained and how it can be easily used
for zero-shot prediction.
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Fig. 1. Summary of CLIP approach. CLIP jointly trains an image and a text encoder
to predict the correct pairings in a batch of (image, text) training examples. At test
time the learned text encoder synthesizes a zero-shot linear classifier by embedding the
names or descriptions of the target dataset’s classes. Figure and caption taken from
[17]

3 Dataset

NoisyArt [2] is a dataset of artwork images gathered using structured queries
to metadata repositories and web-based image search engines. According to the
creators, the goal of NoisyArt is to support research on webly-supervised artwork
recognition for cultural heritage applications.

In Table 1 the characteristics of the NoisyArt dataset are summarized
NoisyArt is a complex dataset which can be used for a large range of au-

tomated recognition problems. The dataset is particularly tailored to webly su-
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(webly images) (verified images)
classes training validation test

2,920 65,759 17,368 0
200 4,715 1,253 1,355

totals 3,120 70,474 18,621 1,355
Table 1. Characteristics of the NoisyArt dataset

pervised instance recognition. In the dataset, for testing purposes, a subset of
classes with manually verified test images is provided (i.e. the test set images
does not contain label noise).

The NoisyArt dataset is collected from numerous public resources available
on the web. These resources are DBpedia (where also the metadata are re-
trieved), Google Images and Flickr. Fig. 2 shows some examples of artworks
with their respective sources.

From these sources the authors collected over 89K images divided into over
3K classes. Each class contains a minimum of 20 images and a maximum of 33.
To be sure of having a reliable test set the authors decided to create a supervised
test set using a small subset of the original classes: 200 classes containing more
than 1,300 images taken from the web or from personal photos. This test set is
not balanced: for some classes we have 2/3 images while for some others over ten.
The different method of collecting training and test sets also raises the issue of a
strong domain shift between these images and those in the training set. Finally,
each artwork has a description and metadata retrieved from DBpedia, from
which a single textual document was created for each class. These descriptions
are included in the dataset to support research on zero-shot learning and other
multi-modal approaches to learning over weakly supervised data.

3.1 GradCAM visualization

In order to have a better idea of the portions of the image that CLIP con-
siders most important when it associates a text with an image, before moving
on to the quantitative experiments, we carried out some qualitative tests using
the well-know visualization technique gradCAM [21]. The technique we used
is a generalization of gradCAM, where, instead of computing gradients with re-
spect to an output class, gradients are computed with respect to textual features
computed with CLIP’s text encoder from the description. This approach makes
each heat-map calculated by gradCAM dependent on the individual description,
showing us the portions of the image that CLIP most closely associates with it.
As a common practice the saliency layer used is the last convolutional layer of
CLIP’s visual encoder.

Fig. 3 shows four examples of gradCAM visualization. We can see how, using
the descriptions in the dataset, CLIP places attention to the most significant
portions of the image. This fact made us confident that CLIP would work very
well in the domain of artwork.
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Fig. 2. Sample classes and training images from the NoisyArt dataset. For each art-
work/artist pair we show the seed image obtained from DBpedia, the first two Google
Image search results, and first two Flickr searches. Image taken from [2]

4 Experiments

4.1 Webly-supervised Classification

To test the performance of CLIP in the art domain, following the experimental
setup followed by the authors of the dataset, we performed a webly-supervised
classification on the 200 classes that are also available in the test set.

Experimental Setup Given an input image x, we extract a feature vector
using only the CLIP image encoder and then we pass it through a shallow clas-
sifier, consisting of a single hidden layer and an output layer that estimates class
probabilities p(c | x). The hidden layer is followed by an L2-normalization layer
which, as noted in [3], helps to create similar representations for images with
different visual characteristics because the magnitude of features is ignored by
the final classification layer. Such normalization is therefore useful to alleviate
the effects of the domain shift between training and test set.
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Fig. 3. Examples of gradCAM visualization on NoisyArt computing the gradients with
respect to the description CLIP text features

The structure of the shallow classifier is basically the same of [2, 10]. This
choice was made intentionally to analyze the effects of using the CLIP image
encoder instead of a convolutional backbone trained on ImageNet. For mitigating
and identifying label noise during training in [2] several techniques like Labelflip
noise, entropy scaling for Outlier Mitigation and Gradual Bootstrapping are
used. In our experiments however, following [3], we only use the L2-normalization
layer after the hidden layer.

We trained such a shallow classifier for 300 epochs with a batch size of 64,
the learning rate used was 1e − 4. We used the CLIP model which has as a
convolutional backbone a slightly modified version of the ResNet-50. The hidden
layer has an input dimension of 1024 (CLIP output dimension) and an output
dimension of 4096.
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test validation
Model acc mAP acc mAP

RN50 BL [2] 64.80 51.69 76.14 63.08

RN50 BS [2] 68.27 57.44 75.98 62.83

RN50 α = 0.4 [3] 74.89 62.86 77.14 63.71

CLIP RN50 86.63 77.88 83.56 72.23

Table 2. Recognition accuracy (acc) and mean Average Precision (mAP) on NoisyArt
dataset

Experimental Results Table 2 summarizes the experimental results we ob-
tained in this classification setting. In the table BL refers to the baseline network
[2] without any sort of label mitigating approach, BS refers to the noisy miti-
gating approach of [2] and RN50 α = 0.4 refers to the normalization approach
of [3] where the L2-normalization is scaled by α.

From the table it is immediately evident that with the use of CLIP as a
backbone it is possible to obtain very significant improvements both on the
test and the validation set. It is very interesting to see that [2, 3] have better
results on validation than on the test set. In our case, however, the situation is
reversed by having comparable and slightly better results on the test set. This
demonstrates how CLIP is quite robust to domain shift being able to extract
the semantic of an image regardless of its raw content.

4.2 Zero-shot Classification

The availability of descriptions associated with artwork made it possible to per-
form experiments in the area of zero-shot classification by exploiting CLIP’s
ability to assign a similarity score between text and images.

Experimental Results We are going to compare our results with the following
baselines:

– DEVISE [6]: it learns a linear mapping between image and semantic space
using a ranking loss.

– EsZSL RN50 [18]: it uses a square loss to learn the bilinear compatibility
and regularizes the objective w.r.t the Frobenius norm.

– COS+NLL+L2 RN50 [3]: zero shot technique which integrates a non-
linear extension of CMT [24] with an additional negative log-likelihood loss
and an L2 normalization step

Table 3 shows the immense potential in the zero-shot classification domain
of CLIP. As a matter of fact, comparing the results with those found in the
literature, we notice that by using CLIP, improvements of over 20% can be
achieved. It is also worth noting that the results we have compared ours with have
been achieved through a training process that uses a three-fold cross validation
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Model acc mAP

DEVISE RN50 [6] 24.79 31.90

EsZSL RN50 [18] 25.63 29.89

COS+NLL+L2 RN50 [3] 34.93 45.53

CLIP RN50 60.27 69.23

Table 3. Zero-shot recognition accuracy (acc) and mean Average Precision (mAP) on
NoisyArt dataset

where the 200 verified classes are divided into 150 for training/validation and 50
for zero-shot test classes. On our side we used CLIP out-of-the-box without any
training on NoisyArt dataset.

In order to make a complete argument, it is also necessary to mention that
since the data on which CLIP was actually trained is not public, we do not know
if any images from this dataset were used in its training process. If so we would
have some sort of leak of information that would make the comparison less fair.

4.3 Image Retrieval

Seeing the excellent behavior of CLIP in the (zero-shot) classification of artwork,
we decided to perform some experiments in image retrieval.

In all the experiments that we are going to present, the images contained in
the validation set (1253 images belonging to the 200 verified classes) were used
as queries, while those of the test set (1379 images of the same 200 classes) were
used as index images.

Experimental Setup We have conducted numerous experiments to make sure
that we have a complete idea of how CLIP performs in this task on the NoisyArt
dataset. As in classification experiments the CLIP model which has as visual
backbone a modified version of the ResNet-50 is used.

The most natural way to use CLIP in retrieval is obviously to use the output
of the visual encoder as a global descriptor comparing only the visual features,
that is exactly what we did initially as a first experiment.

To take advantage of the CLIP textual encoder and of its goodness in zero-
shot classification, we then reinterpreted the image-to-image retrieval task as
zero-shot classification followed by text-to-image retrieval. This reinterpretation
was made possible by the description and the metadata associated with each
class. Thus given a query, zero-shot classification of that image was performed
as the first phase, by exploiting CLIP’s ability to link images and texts. We
therefore used CLIP to assign a similarity score to each possible (query image,
artwork description) pair using the description with the highest score in the
second phase.
The second phase consists in comparing the description chosen at the end of
the first one with all the images in the dataset, assigning a similarity score to
each possible (query description, index image). For a complete comparison in the
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results we have also reported an experiment where the first part of classification is
bypassed and the correct monument is always used in the text-to-image retrieval
phase.

Another setup we experimented with consists in adding to the zero-shot clas-
sification followed by text-to-image retrieval experiment as a re-ranking phase
where the first 100 retrieved images are re-ordered using the similarity of the
visual features.

Finally, the CLIP network was fine-tuned for adapting to this task. The fine-
tuning process was done by inserting a shallow classifier composed of two linear
layers at the output of the visual encoder. The learning rate was set to 1e−7 for
the CLIP encoder (keeping the normalization layers frozen) and 1e − 4 for the
shallow classifier. For ease of use, a classification loss (categorical cross-entropy)
was used during this fine-tuning process. We fine-tuned the model for 30 epochs
using the 2,920 classes not included in the test set.

Experimental Results Before commenting on the results obtained we sum-
marize the experimental setups:

– RN50 image features: We compare the image features extracted with a
ResNet-50 pretrained on ImageNet

– CLIP image features: We compare the image features extracted with the
CLIP image encoder

– CLIP class + text-to-image: We perform a zero-shot classification of
the query followed by a text-to-image retrieval using CLIP text and visual
encoder

– CLIP class + text-to-image + visual re-ranking: We perform a visual
re-ranking of the first 100 retrieved results after CLIP zero-shot classification
and text-to-image retrieval

– Oracle + CLIP text-to-image: We perform only the text-to-image re-
trieval using the ground-truth class for the description

– CLIP fine-tuned image features: We compare the image features ex-
tracted with the CLIP image encoder after fine-tuning

Experimental Setup mAP

RN50 image features 36.32

CLIP image features 46.40

CLIP class + text-to-image 40.54

CLIP class + text-to-image + visual re-ranking 47.41

Oracle + CLIP text-to-image 54.21

CLIP fine-tuned image features 69.60
Table 4. Retrieval results on NoisyArt dataset using as queries the validation set and
as index images the test set.
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Table 4 summarizes the results of the experiments performed in the image
retrieval setting previously described. It can be seen that CLIP visual features
perform better than features extracted with a ResNet-50 pre-trained on Ima-
geNet. It is interesting to note that the re-ranking process makes the retrieval
process performed by a zero-shot classification followed by a text-to-image re-
trieval operation more performing than the approach which uses only the visual
features pre fine-tuning. This fact is obviously made possible by CLIP’s good
results in zero-shot classification illustrated in previous section. It is also worth
mentioning that using the ground-truth class and performing the text-to-image
retrieval operation yields surprisingly good results: this confirms the goodness of
CLIP in the text-to-image retrieval task. These results are even greater, by a sig-
nificant margin, than those obtained using only visual features pre fine-tuning.
This is probably due to the domain shift between validation and test set the
visual features are more subject to. Finally, we can see that CLIP fine-tuning
was very successful, bringing a very significant performance boost and achieving
better results than all other approaches.

5 Conclusions

In this paper we propose to use the zero-shot capabilities of CLIP in the artworks
domain, showing how this approach can greatly improve over competing state-
of-the-art approaches in the challenging NoisyArt dataset. Experiments show
that in addition to zero-shot classification, the proposed approach can be used
for content-based image retrieval, again outperforming by a large margin other
competing approaches. A benefit of using the proposed method is that it can
be trained using very small datasets, thanks to the extensive pretraining of
CLIP, and thus the method can be deployed also to be used on relatively small
collections like those of small and medium-sized museums.
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