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Abstract—This contribution seeks to compare the efficiency
of several soft-sensor design methods using the datasets from
three different case studies, including two industrial examples.
The selected set of design methods compared considers different
principles to design soft sensors, consisting of three consequent
stages: (a) data preprocessing with input domain analysis, (b)
input structure selection, and (c) model training. The input
domain analysis explores the potential of various nonlinear
structures within the input dataset. The results obtained indicate
that multivariate feature selection approaches have the highest
efficiency. Moreover, the nonlinear soft sensors achieve higher
accuracy compared to linear ones.

Index Terms—feature selection, industrial processes, model
training, soft sensors

I. INTRODUCTION

The monitoring of the process variables is a crucial aspect
of sustainable operation. In fact, the key process variables
(e.g., product quality) may directly affect the decisions of the
operators or the advanced process controller in the industry.
Monitoring the key process variables can be provided by soft
(or inferential) sensors [1]–[4]. The principle of such a sensor
is to estimate the desired variable according to the available
measurements of other variables involved in the process. From
a practical point of view, soft sensors find application in
many industrial fields, such as petrochemical [3], pharmaceu-
tical [4]–[8], or energy [9] industries.

Data-driven design of soft sensors is highly related to the
quality of the available dataset. The raw industrial dataset
usually involves outliers originating from abnormal operating
conditions (e.g., plant shutdowns). Therefore, it is necessary to
appropriately analyze and preprocess the data before they are
used for the soft-sensor design. Recent research [10] showed
an effective way of combining nonlinear soft sensors with
outlier detection. In addition to the data treatment, the infor-
mation capacity of the dataset can be significantly increased
by exploring the potential of various nonlinear transformations
of the input variables. The effective way of identifying these
nonlinear transformations ensures the Automated Learning of
Algebraic Models for Optimization (ALAMO) [11] approach.

The abilities of ALAMO are explored by a new framework
for the development of data-driven soft sensors [12].

The essential phase of the data-driven soft-sensor design
is selecting the appropriate input structure. The best subset
of input variables is selected to reduce the computational
effort of the subsequent soft-sensor design while retaining
the information content of the original dataset. The current
research focus in this field indicates an increasing interest in
feature selection (FS) approaches [13]. These approaches are
well-suited to indicate the best subset of input variables based
on specific objectives, such as classification [14] or cross-
validation [15]. The least absolute shrinkage and selection
operator (LASSO) [16] can also be used for variable selec-
tion. It can be combined with Principal Component Analysis
(PCA) [17], [18]. The resulting approach not only allows for
input variable selection but also for effective dimensionality
reduction of the input dataset [19].

Once the input variables are selected, one designs the data-
driven soft sensor by fitting the model parameters. According
to the structure of the soft sensor, we distinguish between the
approaches suitable for linear [3] and nonlinear [20] model
structures. Recently, an adaptive soft sensor [21] based on the
Gaussian process (GP) model, was designed for the debu-
tanizer distillation column. Moreover, the advanced partial
least square (PLS) algorithm has been developed to design
soft sensors for industrial units [22].

This paper examines the performance of various approaches
in variable selection and model training stages of soft-sensor
design. Combinations of these approaches are applied to
design soft sensors for three case studies, including two
real industrial applications. The analysis of the soft-sensor
performance includes consideration of both input structure
complexity and prediction accuracy.

The structure of this paper is organized as follows. At
first, the problem definition is introduced. Subsequently, the
selected soft-sensor design methods are reviewed. Next, the
description of the results is stated. Finally, the main findings
and conclusions are summarized.



Fig. 1. The diagram of the soft-sensor development.

II. PROBLEM DEFINITION

The procedure of the data-driven soft-sensor design is
illustrated in Figure 1. It can be divided into three stages:

1) Data Pre-processing: The available (industrial) dataset
is subjected to the data treatment analysis [10] to indi-
cate systematic errors and outliers. Moreover, the input
domain analysis [11], [12], focused on exploring the
potential of nonlinear transformations, can be performed.

2) Input Structure Selection: The best subset of the input
variables is selected to minimize the computation load
of subsequent calculations while maintaining the infor-
mation content of the dataset from data pre-processing.

3) Model Training: The model parameters are calculated
to minimize the discrepancy between measured and
estimated values within the training dataset.

The procedure for developing a soft sensor, as shown
in Fig. 1, has its limitations. One such limitation is the
non-transparent effect of data pre-processing (1st block) and
subsequent input structure selection (2nd block) on the model
training (3rd block) outcome. In this paper, we aim to address
this drawback by comparing the performance of soft sensors
while considering various approaches at different stages of the
design procedure shown in Fig. 1.

Performance of the soft sensor is highly related to the
quality of the design methodology. We briefly describe a
few well-known data-driven approaches capable of solving
particular challenges of soft-sensor design.

A. Input Domain Analysis
The input dataset for the soft-sensor design consists of the

particular number of input variables (nv) and measurements
(n). The original input dataset X ∈ Rn×nv should involve
only the input variables directly measured by other sensors.
The purpose of this phase of soft-sensor design is to enhance
the original input dataset with new variables that can increase
the potential of the input dataset to explain the output variable.

The straightforward way to enrich the input domain is to
calculate additional input variables from the original variables
using simple nonlinear functions (transformations) as follows:

Xad =
(
x2i , x

3
i , xixj , . . .

)
, ∀i, j = {1, . . . , nv}, i > j, (1)

where x is a particular input variable, Xad ∈ Rn×nad is a
dataset with additional variables and nad is a number of addi-
tional variables. The nonlinear transformations in (1) represent
just a sample of the all possible configurations.

The nonlinear character of the additional variables should
avoid the occurrence of linear dependencies within the joint
dataset (original dataset with additional variables). The pur-
pose of considering the nonlinear transformations is to lin-
earize the possible nonlinear behavior of the estimated (output)
variable. From a practical point of view, this can increase
the predictive potential of the linear soft sensors, if nonlinear
behavior is involved with the occurring phenomena [3]. The
advantage of linear soft sensors is their transparent (sim-
ple) structure and low computational demands compared to
nonlinear soft sensors. The similar principle of incorporating
non-linear transformations of the independent variables is
considered by the ALAMO approach [11].

It is reasonable to compare the performance of the soft-
sensor designed according to the original dataset and the joint
dataset (original dataset with additional variables) in order to
properly indicate the contribution of the additional variables.

B. Input Structure Selection

The purpose of the input structure selection is to effectively
reduce the complexity (dimensionality) of the input datasets
from the input domain analysis (see in Section II-A). The input
dataset may contain variables with low informative content
or redundant (linearly dependent) variables, which reduce the
overall applicability of the dataset. Therefore, it is necessary to
eliminate these variables or derive new informative variables
before the dataset is used for the training of the soft sensors.

The popular and frequently used unsupervised learning
method for reducing the dimensionality of datasets is the prin-
cipal component analysis (PCA) [3]. This approach transforms
the data into a new coordinate (principal component) space,
allowing the explanation of most of the variance in the original
space by a few variables from the principal component space.
Depending on the selection of the principal components in the
soft-sensor design, we can distinguish between the following
representative approaches:

• PCA-1PC: Only the principal component, explaining the
most variance, is selected for the soft-sensor design.

• PCA-Elb: The selection of the principal components is
based on applying the Elbow method in the scree plot.

Another way of the input structure selection represents the
family of the feature selection (FS) approaches [13]. These
supervised learning approaches search for the best subset of
variables regarding the pre-specified objectives. The popular
FS approaches are Univariate Feature Selection (UFS) [23],
Recursive Feature Elimination (RFE) [24] and Sequential
Feature Selection (SFS) [23].

The use of an unsupervised-learning approach, such as
PCA, is beneficial when the output variable is measured less
frequently than the input variables. This is often the case in
industrial soft-sensor design, where measuring the output (de-
sired) variable is expensive and rare. In contrast, supervised-
learning approaches like UFS, RFE, or SFS, incorporate output
variable measurements when searching for the optimal input
structure. This can be particularly advantageous when the
output variable exhibits a complex, nonlinear nature.



C. Model Training

The final step of soft-sensor development is the calcula-
tion of the model parameters given the training dataset. The
computational load of this step is given by the quality (i.e.,
noise significance or linear dependencies) and complexity (i.e.,
number of variables and measurements) of the input dataset.

The design of industrial soft sensors is usually limited to
structures linear in parameters. In this case, the following
methods represent a reasonable choice:

• Ordinary Least Squares (OLS) minimizes the sum of
squared errors between measured and estimated values.

• Partial Least Squares (PLS) [25], [26] reduces the set
of input variables with a smaller set of uncorrelated
components and performs OLS on these components.

• LASSO [27], [28] extends the objective function of OLS
about l1-penalization part reducing the model complexity.

The aforementioned methods can only learn the linear
relationship between the input and output variables. To be
able to learn nonlinear models, more advanced techniques are
required. One of these techniques is Artificial Neural Networks
(ANN) [29], [30]. The ANN structure consists of an input
layer, hidden layers, and an output layer. Each layer has a
specific number of neurons and one type of activation function.
The activation function is the source of the nonlinearity within
ANN. The disadvantage of using ANN for regression over
linear approaches (OLS, PLS, and LASSO) is that it requires
more data and reduces the transparency of the model structure.

Another way of designing models represents Gaussian Pro-
cess (GP) [21], [31]. Unlike the previous methods, GP is a
non-parametric approach, and therefore, it does not require
the specification of any parameters to make the prediction.
Non-parametric approaches should be used to provide a more
accurate solution at a significantly higher computational load
than parametric approaches. The main advantage of GP com-
pared to other nonlinear structures (e.g., ANN) is the ability
to provide uncertainty estimates.

III. CASE STUDIES

A. Implementation Details

The presented design methods are implemented in Python
3.10.0. The approaches for input structure selection (see
in Section II-B) are provided by scikit-learn and mlxtend
libraries. The base for the model training approaches (see
in Section II-C) are scikit-learn (OLS, PLS, LASSO), keras
(ANN), and GPy (GP) libraries.

The design of the soft sensors is executed on the training
dataset, while the testing (unseen) dataset is used for the
subsequent comparison of the designed soft sensors. The
training and testing datasets are assumed to be of equal size.

The number of available measurements from the studied
industrial case studies limits the input domain analysis (see
in Section II-A). To ensure a fair comparison, the following
nonlinear transformations are considered in each case study:

Xad = (x2i , x
3
i , ln(xi)), ∀i = {1, 2, . . . , nv}. (2)

The studied ANN for the design of soft sensors in the
following case studies consists of two layers, where the first
layer involves a rectified linear unit activation function with
20 neurons and the second layer includes hyperbolic tangent
activation functions with 20 neurons. The structure of the
studied GP involves a squared-exponential kernel.

The complexity of the input dataset and the accuracy of the
estimates determine the efficiency of the studied soft sensors.
The representative criterion of the input dataset complexity is
the number of input variables (nv) selected by the concerned
approaches (i.e., PCA-1PC, PCA-Elb, UFS, RFE, and SFS).
Note that the number of input variables (nv) stands for the
number of principal components in the case of PCA-1PC and
PCA-Elb. The accuracy of studied soft sensors is evaluated by
the root mean squared error (RMSE) criterion.

B. Soft-sensor Design for Pressure Compensated Temperature

The pressure compensated temperature (PCT ) is a phe-
nomenological variable frequently used in low-pressure distil-
lation columns [3], [32]. It can be derived as a combination
of the Antoine and Clausius-Clapeyron equations [1]:

1

PCT
=

R

Hv
ln

(
P

Pref

)
+

1

T
, (3)

where Hv is the heat of vaporization, R is the universal gas
constant, Pref is the reference pressure, P is the absolute
pressure, and T is the absolute temperature.

The parameters in the PCT model are taken from [32].
The output variable to be estimated is PCT , while the input
variables are P and T . We consider the presence of noise in
PCT with σ2

noise = 1. Subsequently, we generate 200 data
points from the PCT model, with 100 points drawn from
N ([10, 545], diag([1, 5])) and the remaining points drawn from
N ([3, 545], diag([1, 5])). We consider two different operating
regimes for PCT to incorporate more of its nonlinear behavior
into the soft-sensor design. The data points are randomly
divided into training and testing sets.

The results in Table I indicate the number of input variables
nv and accuracy (RMSE) of designed soft sensors on the orig-
inal PCT dataset without nonlinear transformations. Table I
provides the comparison of studied input structure selection
approaches (i.e., PCA-1PC, PCA-Elb, UFS, RFE, and SFS)
in combination with the model training approaches (i.e., OLS,
PLS, LASSO, ANN and GP). The results presented in Table I
are divided into training and testing datasets. The accuracy of
both datasets indicates that the input dataset provided by PCA-
1PC is insufficiently informative. The main cause of the low
performance of PCA-1PC is that the first principal component
explains only 76.6 % of the original dataset variance. This is
expected since the variables within the input dataset are not
linearly dependent. The input datasets provided by PCA-Elb,
UFS, RFE, and SFS seem to be the same. The performance
of these approaches is limited due to the simple input dataset
(only two input variables) in this case study.

The accuracy on the testing dataset (see in Table I) indicates
that the nonlinear soft sensors (ANN and GP) are more



TABLE I
COMPARISON OF THE COMPLEXITY (nV ) AND ACCURACY (RMSE) OF

THE SOFT SENSORS DESIGNED ON THE PCT DATASET.

Input
Structure nv

RMSE
OLS PLS LASSO ANN GP

Training (Testing) Dataset

PCA-1PC 1 0.056 0.056 0.056 0.032 0.031
(0.084) (0.084) (0.084) (0.048) (0.044)

PCA-Elb 2 0.048 0.048 0.048 0.004 0.003
(0.077) (0.077) (0.077) (0.02) (0.014)

UFS,
RFE, SFS 2 0.048 0.048 0.048 0.004 0.003

(0.077) (0.077) (0.077) (0.018) (0.014)

TABLE II
COMPARISON OF THE COMPLEXITY (nV ) AND ACCURACY (RMSE) OF

THE SOFT SENSORS DESIGNED ON THE EXTENDED PCT DATASET.

Input
Structure nv

RMSE
OLS PLS LASSO ANN GP

Training (Testing) Dataset

PCA-1PC 1 0.064 0.064 0.064 0.033 0.034
(0.094) (0.094) (0.094) (0.048) (0.046)

PCA-Elb 3 0.014 0.014 0.014 0.003 0.003
(0.027) (0.027) (0.027) (0.009) (0.006)

UFS 8 0.005 0.011 0.005 0.003 0.003
(0.009) (0.021) (0.009) (0.009) (0.005)

RFE 7 0.005 0.008 0.005 0.003 0.003
(0.009) (0.015) (0.009) (0.01) (0.005)

SFS 4 0.005 0.008 0.005 0.003 0.003
(0.008) (0.015) (0.008) (0.014) (0.005)

accurate compared to the linear ones (OLS, PLS, and LASSO).
This is due to the nonlinear character of the estimated variable.
On the other hand, the accuracy of ANN and GP with any input
structure selection approach (except PCA-1PC) on the training
dataset (Table I) suggests the overfitting of these approaches.
This observation is confirmed by the increased discrepancy
between the accuracy of these approaches on the training
and testing datasets. Furthermore, the complexity of the ANN
and GP models (Section III-A) increases the likelihood of
overfitting. We can conclude that the combination of GP with
any input structure selection approach (except PCA-1PC) is
the best option for the soft sensor design on the PCT dataset,
considering the accuracy of the soft sensors.

Subsequently, we extend the original dataset with the non-
linear transformations from (2). The results using this dataset
are shown in Table II. The low accuracy of the soft sensors
designed according to PCA-1PC confirms that the provided
input dataset is not sufficiently informative. The first principal
component explains 71.3 % of the extended dataset variance.
The explained variance is decreased compared to the original
dataset, which is caused by extra variance from the nonlinear
transformations. According to Table II, it seems that the rest of
the designed soft sensors achieved higher accuracy compared
to the results in Table I. We can see that the highest accuracy
is achieved by GP in combination with any of the feature

selection approaches. However, the nonlinear soft sensors
(ANN and GP) seem to be more overfitted compared to the
linear soft sensors (OLS, PLS, and LASSO). We can indicate
this by comparing the accuracy of the soft sensors on the
training dataset (Table II). The increased tendency of ANN
and GP to overfit the models is caused by the complexity
(see in Section III-A) of designed structures. The linear soft
sensors (OLS and LASSO) achieve nine times better accuracy
compared to the original dataset (Table I), which can compete
with the accuracy of the nonlinear soft sensors (ANN, GP).
The accuracy of PLS-designed soft sensors (Table II) is lower
than that of OLS and LASSO. It appears that PLS further
reduces the complexity of the input dataset provided by UFS,
RFE, and SFS at the expense of accuracy.

The comparison of the results from the original PCT
dataset (Table I) and the extended PCT dataset (Table II)
leads us to conclude that the consideration of the nonlinear
transformations can be beneficial for the soft-sensor design,
especially for the linear soft sensors. The higher accuracy
of the nonlinear soft sensors is supported by the generated
dataset from the nonlinear PCT model. Moreover, the dataset
involves Gaussian noise with a small variance, which increases
the potential of the complex models. It appears that the
performance of the soft sensors, especially the nonlinear ones,
is highly related to the quality of the available dataset. In order
to validate the achieved conclusions and findings, we design
soft sensors for two different (non-ideal) industrial datasets.

C. Soft-sensor Design for Depropanizer Column

The depropanizer is a distillation column that separates the
feed mixture of nine hydrocarbons C3–C5 into C3-fraction-
rich distillate and C4/C5-fraction-rich bottom product [3]. This
column is a part of the Fluid Catalytic Cracking unit in
Slovnaft, a.s. in Bratislava, Slovakia.

The available industrial dataset involves measurements from
December 2016 to October 2018 (22 months). The output
variable (concentration of the main impurity in the bottom
product) is measured only once every four days, and therefore,
there are 165 measurements available for the soft-sensor
design. The original input dataset consists of 18 variables, of
which 16 are directly measured by online sensors and two
are derived as ratios (nonlinear transformation) of two input
variables. The available measurements are chronologically
distributed among the training and testing datasets.

The complexity (nv) and accuracy (RMSE) of designed
inferential sensors on the depropanizer dataset are compared
in Table III. The accuracy of the designed soft sensors by
PCA-1PC is decreased on the testing dataset compared to
other soft sensors (except RFE with OLS). This suggests
that the provided input dataset by PCA-1PC is not enough
informative as we could see in the previous case study (see in
Table I). Moreover, the first principal component explains only
49.5 % of the original dataset variance. The accuracy of the
soft sensors designed by PCA-Elb is improved compared to
PCA-1PC. We can see that the combinations of PCA-Elb with
OLS, PLS, and LASSO outperform the other approaches on



TABLE III
COMPARISON OF THE COMPLEXITY (nV ) AND ACCURACY (RMSE) OF

THE SOFT SENSORS DESIGNED ON THE DEPROPANIZER DATASET.

Input
Structure nv

RMSE
OLS PLS LASSO ANN GP

Training (Testing) Dataset

PCA-1PC 1 0.162 0.162 0.162 0.155 0.158
(0.222) (0.222) (0.222) (0.212) (0.218)

PCA-Elb 3 0.142 0.142 0.142 0.132 0.141
(0.168) (0.168) (0.168) (0.182) (0.17)

UFS 14 0.112 0.113 0.12 0.104 0.115
(0.12) (0.117) (0.143) (0.135) (0.137)

RFE 9 0.113 0.117 0.116 0.112 0.118
(0.245) (0.128) (0.127) (0.152) (0.135)

SFS 3 0.118 0.118 0.118 0.116 0.118
(0.111) (0.111) (0.111) (0.111) (0.111)

the testing dataset (Table III). The performance of soft sensors
designed by UFS and RFE is comparable (except for RFE with
OLS) on the testing dataset. These similarities come from the
complex input structure suggested by these approaches. The
highest accuracy of the soft sensors is achieved with the input
structure provided by SFS. Moreover, SFS determines a less
complex input structure than UFS and RFE.

According to the results in Table III, the combination of
SFS with any of the approaches for model training (i.e., PCA-
1PC, PCA-Elb, UFS, RFE, and SFS) is the best option for the
depropanizer column. Note that the RMSE values of SFS on
the testing dataset (Table III) are not the same. This effect
is caused by rounding the RMSE values to three decimal
places, but the most accurate approach is GP. Nevertheless,
the soft sensors designed by OLS, PLS, and LASSO possess
a linear structure that is less complex and more transparent
compared to ANN and GP. This leads us to conclude that
SFS with OLS, PLS, or LASSO is the most efficient for
the depropanizer dataset. Moreover, this proves the conclusion
from Section III-B that the nonlinear transformations within
the input dataset can increase the efficacy of the linear soft
sensors. On the other hand, the performance of the nonlinear
soft sensors is significantly decreased compared to the PCT
dataset (Section III-B) resulting from the non-ideal character
(e.g., non-Gaussian noise) of the depropanizer dataset.

D. Soft-sensor Design for Vacuum Gasoil Hydrogenation Unit

The Vacuum Gasoil Hydrogenation (VGH) unit is an essen-
tial part of the Slovnaft, a.s. refinery, which consists of high-
pressure reaction and low-pressure fractionation sections [3].
The desired soft sensor should estimate the concentration of
the particular product from the product fractionator (distilla-
tion column) located in the low-pressure fractionation.

The industrial dataset available spans from January 2018
through December 2019 (24 months). The output variable is
measured approximately once per day, resulting in 621 mea-
surements available for soft-sensor design. The input dataset
comprises 35 variables, 33 of which are measured by online
sensors from both sections of the VGH unit. Two variables

TABLE IV
COMPARISON OF THE COMPLEXITY (nV ) AND ACCURACY (RMSE) OF

THE SOFT SENSORS DESIGNED ON THE VGH DATASET.

Input
Structure nv

RMSE
OLS PLS LASSO ANN GP

Training (Testing) Dataset

PCA-1PC 1 0.114 0.114 0.114 0.094 0.086
(0.168) (0.168) (0.168) (0.192) (0.235)

PCA-Elb 6 0.089 0.089 0.089 0.078 0.064
(0.152) (0.152) (0.152) (0.15) (0.17)

UFS 4 0.08 0.08 0.08 0.079 0.056
(0.126) (0.126) (0.122) (0.124) (0.154)

RFE 4 0.107 0.115 0.107 0.114 0.073
(0.205) (0.184) (0.205) (0.186) (0.268)

SFS 3 0.079 0.079 0.079 0.08 0.063
(0.104) (0.104) (0.104) (0.102) (0.123)

represent nonlinear transformations of the input variables,
which are two PCT s (as seen in Section III-B) derived
for the product fractionator. The available measurements are
chronologically assigned to the training and testing datasets.

The results in Table IV compare the performance of the
studied variable selection approaches (i.e., PCA-1PC, PCA-
Elb, UFS, RFE, and SFS). We can see that the PCA-1PC
approach does not provide a sufficiently informative input
dataset, which causes the low accuracy of all designed soft sen-
sors on the testing dataset. Moreover, the first principal com-
ponent explains only 38.6 % of the original dataset variance.
The input structure of PCA-Elb involves five extra principal
components compared to PCA-1PC. The accuracy of designed
soft sensors is increased on the training dataset but relatively
low on the testing dataset. Therefore, it appears that PCA-Elb
provided too complex input structure, causing the overfitting
of the designed soft sensors. It appears that RFE selected the
same number of input variables as UFS. Nevertheless, the
soft sensors designed by RFE are less accurate compared to
the UFS ones. This suggests that RFE indicated inappropriate
input variables. The results in Table IV show that the SFS
approach provided a less complex yet more efficient input
structure compared to UFS and RFE.

The comparison of the studied model training approaches
(i.e., OLS, PLS, LASSO, ANN, and GP) is presented in
Table IV. The results show that the most accurate combination
is SFS with ANN, but the accuracy of linear soft sensors (OLS,
PLS, and LASSO) can also compete with ANN. Therefore,
selecting the best soft sensor for the VGH unit requires a
compromise between complexity and accuracy. The similar
accuracy of the linear and nonlinear soft sensors confirms
that nonlinear transformations within the input dataset can
increase the performance of linear soft sensors. However, the
performance of nonlinear soft sensors is decreased compared
to those designed on the PCT dataset (Section III-B). This
suggests that the quality of the data from VGH is lower
compared to PCT . The accuracy of soft sensors designed by
GP indicates overfitting, as they achieve high accuracy on the



training dataset but lower accuracy on the testing dataset.

IV. CONCLUSIONS

The contribution investigated the effectiveness of combin-
ing various approaches in the soft-sensor development pro-
cedure. Several soft sensors were designed and compared
using datasets from petrochemical case studies. The increasing
complexity of the considered case studies established the
validity and applicability of the findings. In general, nonlinear
soft sensors achieved higher accuracy on the testing dataset
compared to linear ones. Linear soft sensors could compete
with nonlinear ones if nonlinear transformations of the origi-
nal input variables were incorporated into the input dataset.
Additionally, the performance of nonlinear approaches was
significantly affected by the presence of noise, especially in
real industrial case studies. The input structure selection analy-
sis indicates that unsupervised learning approaches provided a
less effective input structure compared to supervised learning
approaches. This was caused by the nonlinear nature of the
output variables in the considered petrochemical case studies.
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