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Abstract 18 

Soil moisture has a profound influence on life on Earth, and this vital water resource varies 19 

across space and time. Here, we explored soil moisture variations in boreal forest and tundra 20 

environments, where comprehensive soil moisture datasets are scarce. We installed soil moisture 21 

sensors up to 14 cm depth at 503 measurement sites within seven study areas across northern 22 

Europe. We recorded 6 138 528 measurements to capture soil moisture variations of the 23 

snowless season from April to September 2020. We described the spatio-temporal patterns of 24 

soil moisture, and test how these patterns are linked to topography and how these links vary in 25 

space and time. We found large spatial variation and often less pronounced temporal variation in 26 

soil moisture across the measurement sites within all study areas. We found that throughout the 27 

measurement periods both univariate and multivariate models with topographic predictors 28 

showed great temporal variation in their performance and in the relative influence of the 29 

predictors within and across the areas. We found that the soil moisture-topography relationships 30 

are site-specific, as the topography-based models often performed poorly when transferred from 31 

one area to another. There was no general solution that would work well in all the study areas 32 

when modelling soil moisture variation with topography. This should be carefully considered 33 

before applying topographic proxies for soil moisture. Overall, these data and results highlight 34 

the strong spatio-temporal heterogeneity of soil moisture conditions in boreal forest and tundra 35 

environments. 36 

Plain language summary 37 

Water is fundamental for all life on Earth. Here, we investigated soil moisture of northern 38 

environments, which is an important component in the global carbon cycle. We found large 39 

spatial and temporal variations in soil moisture across the measurement sites within the seven 40 
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study areas. We found that the predictive power of the statistical soil moisture models varied 41 

from site to site and week to week, which highlights the complexity of modelling soil moisture in 42 

boreal forest and tundra environments. 43 

1 Introduction 44 

Soil moisture is a key component of the global water, energy, and biogeochemical cycles 45 

(Koster et al., 2004; McColl et al., 2017; Oki et al., 2004; Seneviratne et al., 2010; Tuttle & 46 

Salvucci, 2016). Across biomes, spatio-temporal soil moisture patterns are crucial for many 47 

ecosystem functions and structures, such as primary production and decomposition (Green et al., 48 

2019; Hawkes et al., 2017; Hiltbrunner et al., 2012; Humphrey et al., 2021). In boreal forests, 49 

soil moisture is strongly linked to photosynthesis, tree growth and survival, and forest fires 50 

(Bartsch et al., 2009; D’Orangeville et al., 2016; Reich et al., 2018), and in the tundra, to 51 

biodiversity, shrubification, and overall climate change impacts on ecosystem functions 52 

(Ackerman et al., 2017; Bjorkman et al., 2018; le Roux et al., 2013). Overall, soil moisture is 53 

crucial for plants and other soil dwelling organisms, as many species and their specific traits are 54 

specialised for certain hydrological conditions (Lowry et al. 2011; Silvertown et al. 2015; 55 

Kemppinen & Niittynen 2022). Pronounced spatial heterogeneity in soil moisture can thus be an 56 

important agent in providing versatile habitats, and consequently, promoting biodiversity 57 

(McLaughlin et al., 2017). Furthermore, temporal variation in soil moisture greatly affects 58 

ecosystems, for instance, some species communities require more stable moisture levels than 59 

others (Kemppinen et al. 2019). Therefore, data and analyses of soil moisture variations are 60 

greatly needed to understand spatial and temporal variation in biological processes. Not least in 61 

the context of climate change and biodiversity loss, this knowledge will help to identify efficient 62 
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strategies to adapt management and planning to reach important societal goals, such as 63 

improving carbon sequestration, forestry practices, and biodiversity conservation and restoration. 64 

The lack of soil moisture data poses a great uncertainty in estimating climate change 65 

impacts on the global carbon cycle, to which boreal forest and tundra environments contribute 66 

substantially (Chapin et al., 2000; Reich et al., 2018; Zona et al. 2022). Yet, field-quantified soil 67 

moisture data from these environments are scarce (Dorigo et al. 2021). Anthropogenic climate 68 

change shapes rapidly and drastically these northern environments (Post et al., 2019; Rantanen et 69 

al. 2022). Along with the increasing air temperatures, precipitation variability and evaporation 70 

are projected to increase, and the earlier onset of snowmelt can lead to summer and autumn time 71 

drought (Bintanja et al., 2020; Rasmijn et al., 2018; Samaniego et al., 2018). Consequently, soil 72 

moisture patterns are facing major changes across the northern hemisphere because water enters 73 

the soil via precipitation (including snowfall), and is removed by runoff, infiltration, evaporation, 74 

and transpiration (Western et al. 2002). These locally varying physical processes ultimately 75 

shape the spatio-temporal variation of soil moisture, and are controlled by environmental factors, 76 

such as topography, climate, soil, and vegetation (Albertson & Montaldo, 2003; Teuling, 2005; 77 

Wilson et al., 2004). This means that the processes can increase and decrease soil moisture 78 

variation from metre to metre and from day to day. 79 

Topography is a static factor. Thus, relating it directly to such a dynamic phenomenon as 80 

soil moisture can be problematic, and yet this is often done (Kopecký et al. 2021; Riihimäki et al. 81 

2021), for instance, in ecological and biogeographical modelling (see e.g., Niittynen et al. 2018). 82 

Topography-based variables, such as the Topographic wetness index (TWI), are commonly used 83 

proxies for soil moisture (Western et al. 1999; Sorensen & Seibert 2007; Ågren et al. 2014; 84 

Kopecký et al. 2021). Topography-based indices show temporal variation in their performance as 85 
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proxies for soil moisture; they perform better in wetter seasons (Western et al. 1999; Ali et al. 86 

2013; Riihimäki et al. 2021). Topography is most strongly related to runoff (Beven & Kirkby, 87 

1979), and to some extent, topography also influences the local spatial variation in infiltration 88 

(via e.g., its effects on soil formation), evaporation (via microclimate), and transpiration (via 89 

vegetation). All these processes vary greatly also in time. However, topography-based indices do 90 

not contain any temporal information relevant for soil moisture, e.g., snow melt, precipitation, 91 

evaporation, or transpiration (Crave & Gascuel-Odoux 1997; Western et al. 1999; Wilson et al. 92 

2004). Overall, it is insufficiently understood how the soil moisture-topography relationship 93 

varies in different environmental contexts and points in time. 94 

Here, we explore surface soil moisture across and within boreal forest and tundra 95 

environments. We use temporally continuous soil moisture sensor data (up to 14 cm depth) from 96 

503 measurement sites within seven study areas. The data range from April to September, which 97 

is the snowless season in the study areas. The objectives of this work are to 1) describe the 98 

spatio-temporal patterns of soil moisture across and within boreal forest and tundra 99 

environments, and 2) test how these patterns are linked to topography and how these links vary 100 

in space and time.  Our aim is to describe the variability of soil moisture and its relationship with 101 

topography across time and space. 102 

2 Materials and Methods 103 

2.1 Study areas 104 

The seven study areas extended from southern Finland to northern Norway (Table 1, 105 

Figure 1). The areas covered distinct Fennoscandian environments, that is, tundra, mires, and 106 

forests, including hemi-, southern, middle, and northern boreal forests as well as sub-Arctic and 107 
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alpine tundra. The areas were located mainly in protected nature reserves with low anthropogenic 108 

influence (Table S1). 109 

Table 1. Study area description. Each measurement site was equipped with a soil 110 

moisture sensor. Climate data was derived for years 1981-2010 from the nearest meteorological 111 

stations (Table S1). 112 

Study area Geography Climate Topography 

Name Size (km  

x km) 

Sites (n) Location 

(N, E) 

Environment Mean annual 

air 

temperature 

(℃) 

Annual 

precipitation 

sum (mm) 

Elevation (m) 

Rásttigáisá 2x3 43 69.987, 

26.345 

Tundra -1.3 433 400-763 

Kilpisjärvi 15x15 227 69.062, 

20.822 

Tundra, 

northern 

boreal 

-1.9 487 473-953 

Värriö 5x5 46 67.736, 

29.596 

Tundra, 

northern 

boreal 

-0.5 601 261-475 

Tiilikka 4x5 49 63.646, 

28.312 

Middle 

boreal 

2.3 591 169-231 

Pisa 3x4 48 63.218, 

28.328 

Southern 

boreal 

2.0 670 96-272 

Hyytiälä 7x7 47 61.831, 

24.196 

Southern 

boreal 

3.5 711 148-218 

Karkali 9x6 43 60.248, 

23.830 

Hemiboreal 5.5 723 30-101 

Rásttigáisá study area is entirely above the treeline and has a mountainous and 113 

heterogeneous relief. Kilpisjärvi is mainly heterogenous mountain tundra but the lowest valleys 114 

dip into the mountain birch forests. Värriö is mainly boreal forest with open wetlands along 115 

gently sloping landscapes but the highest peaks ascend above the treeline. Tiilikka is dominated 116 

by peat bogs and the relief is relatively flat. Pisa is remarkably hilly and dominated by Norway 117 

spruce forests at lower elevations and Scots pine forests at hill tops. Hyytiälä is a mix of boreal 118 
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forests and open wetlands and has relatively flat terrain. Karkali is a mix of broad-leaf forests 119 

(with temperate elements) and boreal needle-leaf forests in a relatively hilly terrain. 120 

 121 
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Figure 1. Spatial variation of soil moisture. Black points represent the seven study areas 122 

across northern Europe. Coloured points represent the measurement sites and their mean soil 123 

moisture values as volumetric water content (VWC%). The white polygons represent water 124 

bodies. The precipitation data are based on the atmospheric reanalysis ERA5-Land by the 125 

European Center for Medium-Range Weather Forecasts. Data sources for the terrain maps are 126 

described in the Methods. 127 

2.2 Measurement sites within the study areas 128 

We conducted a random stratification to pre-select a suite of candidate measurement sites 129 

to maximally cover the main environmental gradients within the seven study areas (Aalto et al. 130 

2022). This was conducted separately for each study area, except for Rásttigáisá study area and 131 

part of the Kilpisjärvi study area (see details below). The environmental variables that were used 132 

to stratify the environmental space vary from study area to another based on the area-specific 133 

characteristics but included variables such as total canopy cover, deciduous canopy cover, 134 

distance to forest edge, altitude, potential incoming solar radiation, and a topographic wetness 135 

index (SAGA wetness index) (Conrad et al., 2015). 136 

In the random stratified site sampling methodology, first we masked the areas outside the 137 

study areas and other unsuitable areas such as lakes and extracted the remaining pixel 138 

information into a data frame. Next, we took a random subset of half of the remaining points 139 

(i.e., pixels) and used this data to reduce the multidimensional environmental space into its first 140 

three principal components with eSample function from iSDM R package (Hattab et al., 2017; 141 

Hattab and Lenoir 2017). Then we took a sample of 100 points that maximally and 142 

systematically covered the shrunk environmental space. Because these 100 points may be located 143 

just next to each other, we repeated these procedures 100 times. Next, we pooled all the samples 144 
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and used the frequency of selection for each point as the weight in the final random selection of 145 

points where we also kept a minimum distance of 100 m between the points. The final selection 146 

of the points, that is the measurement sites, was visually inspected from the histograms of the 147 

environmental variables. The final decision of each preselected measurement site was done in the 148 

field, for instance, by skipping sites that were logistically challenging or were too similar with 149 

other sites.  150 

Selecting the measurement sites was carried out as described above, except for two study 151 

areas; Rásttigáisá study area and part of the Kilpisjärvi study area. All measurement sites in 152 

Rásttigáisá were based on a systematic study design (see additional material attached: manuscript 153 

appendix from Rissanen et al. In preparation), in which the sites were chosen using a stratified 154 

sampling based on elevation, potential incoming solar radiation, a topographic wetness index 155 

(SAGA wetness index) (Conrad et al., 2015), snow cover duration, and soil quality to represent 156 

main environmental gradients within the area. Some of the measurement sites (50/227 sites) in 157 

Kilpisjärvi were based on a systematic study design (Kemppinen et al., 2018; Tyystjärvi et al., 158 

2021), which was complemented with sites in extreme soil moisture regimes (meltwater channels 159 

and ridge tops), snow conditions (short and long snow cover duration), and elevations (near 160 

mountain tops).  161 

2.3 Soil moisture data 162 

We measured soil moisture between 1.4.2020 and 30.9.2020 at all 503 measurement sites 163 

located within the seven study areas (Figure 1). We used soil moisture sensors (TMS-4 164 

dataloggers; TOMST Ltd., Prague, Czech Republic), which measure soil moisture to a depth of 165 

c. 14 cm (Wild et al., 2019). We set the loggers to measure with a 15-minute interval. The time-166 

domain transmission method is used in the sensors to measure soil moisture (see Wild et al., 167 
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2019 for a detailed description of the sensor and the measurement technique). In short, the 168 

method is based on counting the number of electromagnetic pulses that travel within the counting 169 

unit within a unit time, and this number informs about the moisture content of the soil (high soil 170 

moisture decreases the number of pulses, low soil moisture increases them). The sensors produce 171 

raw time-domain transmission data, which we converted into volumetric water content (VWC%) 172 

using a conversion function adopted from Kopecký et al. (2021). We also tested conversion 173 

functions presented in Wild et al. (2019), which are specific to different soil types. For this 174 

purpose, we did a rough soil type classification in the field, where we assessed particle size of 175 

the mineral soil and measured the depth of the organic soil layer. However, we noticed that these 176 

soil type specific conversion functions resulted in highly unphysical VWC% values (e.g., < 0% 177 

and > 100%), especially in peatlands. Thus, we concluded that the conversion functions in Wild 178 

et al. (2019) are not applicable for the soil types present in our study areas, specifically, the 179 

organic soils in boreal peatlands. We tested the correlation of median July soil moisture across 180 

measurement sites between values calculated either with 1) the ‘universal’ conversion functions 181 

or 2) the soil type specific conversion functions, and we found that the Spearman correlation 182 

coefficient was as high as 0.98. The difference between these two conversion approaches is in 183 

the absolute VWC% values. However, as the conversion did not greatly affect the relative order 184 

across the measurement sites, we decided to use the ‘universal’ conversion function for all sites 185 

because it produces a much more plausible range of VWC% values. 186 

Prior to the conversion, we removed all data where the raw soil moisture count was < 187 

200, as these counts are far outside the range and indicate that either the given sensor or its 188 

installation did not function properly (e.g., sensor was damaged or installed for instance into 189 

soils with air pockets). Next, we plotted all individual soil moisture time series month by month 190 
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and inspected them visually. We identified all days when the data was clearly erroneous (e.g., 191 

times when the sensor was not in the soil or knocked down, for instance, by animals) and 192 

removed these days from the rest of the analyses. We also filtered out all soil moisture 193 

measurements of periods when the local soil temperature was below 1℃ (measured with the 194 

same logger at the depth of 6.5 cm), because soil moisture values from frozen soils are invalid 195 

(Wild et al., 2019). In addition, we considered and tested additional quality checks, e.g., to 196 

identify sudden but soon reversed drops in soil moisture, but after a careful inspection we 197 

concluded that the previous check-ups had already removed all suspicious data. For the analyses, 198 

we included only sensors with at least 90 % temporal coverage (after the data cleaning explained 199 

above) during the measurement period calculated from the melting date (which varies from site 200 

to site; Figure 2) until the end of September. 201 

2.4 Topographic data 202 

We used seven topography variables to explain the soil moisture patterns. These variables 203 

were calculated from a high-resolution digital elevation model (DEM). Geographic coordinates 204 

were recorded in the field using a high-accuracy Global Navigation Satellite System 205 

(GeoExplorer GeoXH 6000 Series; Trimble Inc., Sunnyvale, CA, USA) that provides 206 

centimetre-scale positioning accuracy under sufficient (clear-sky) conditions. The high accuracy 207 

of the measurement site locations enabled us to relate the soil moisture data with the DEM and 208 

its derivatives. The DEM was provided by the National Land Survey of Finland at 2-m resolution 209 

(see terrain maps in Figure 1) and was based on Light Detection and Ranging (LiDAR) data 210 

covering entire Finland. A similar DEM product and its derivatives were not available for 211 

Rásttigáisá study area located in Norway, thus, we decided to exclude Rásttigáisá from the 212 

topographic analyses to ensure full comparability of the models. 213 
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We calculated a topographic wetness index (SAGA wetness index; hereafter SWI) 214 

(Conrad et al., 2015) using the Saga Wetness Index tool in the SAGA GIS software (version 215 

7.6.2). SWI is a multiple-flow-direction algorithm, which performs well as a proxy for soil 216 

moisture compared to other topographic wetness indices (Kopecký et al. 2021; Riihimäki et al. 217 

2021). We used the DEM at its finest resolution of 2 m, which performs well when calculating 218 

topographical wetness indices (Riihimäki et al. 2021, however, see also Sorensen & Seibert 219 

2007; Ågren et al. 2014). We used a filled DEM (following Wang & Liu 2006), and 10 as the 220 

suction parameter (t) in calculating SWI. 221 

We used a readily-available TWI product at 16-m resolution provided by the Natural 222 

Resources Institute Finland (Salmivaara 2016). This TWI product is based on the algorithm by 223 

Beven and Kirkby (1979) and includes several improving pre-processing steps, such as the 224 

removal of the effect of roads blocking waterflow in the TWI calculations. The flow direction 225 

and flow accumulation rasters were calculated with the D∞ method (Tarboton 1997). 226 

We used a readily-available Cartographic depth-to-water index (DTW; Murphy et al. 227 

2009; Ågren et al. 2014) product at 2-m resolution provided by the Natural Resources Institute of 228 

Finland (Salmivaara 2020). This DTW product was based on the same DEM that we used in the 229 

SWI calculations. DTW was available with stream networks created based on various thresholds 230 

from 0.5 to 10 ha. After preliminary tests with the soil moisture data, we decided to use the DTW 231 

based on 0.5 ha threshold. 232 

We calculated topographic position indices (TPI) in SAGA-GIS software with two radii: 233 

20 m and 500 m (hereafter, TPI20 and TPI500). TPI is the relative elevational difference 234 

between the focal cell and the mean of its neighbours with a selected radius. Therefore, negative 235 
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TPI values indicate a hollow and positive a hill or a ridge. Values close zero indicate even terrain 236 

or smooth slope. 237 

We calculated the potential incoming solar radiation (hereafter, solar radiation) for the 238 

summer months (June, July, and August) to reflect the potential energy differences in surface 239 

energy balance between different locations. We used the same DEM as in previous calculations 240 

and conducted the calculations with the Potential Incoming Solar Radiation tool (Hengl & Reuter 241 

2008) in SAGA-GIS software. Solar radiation was first calculated monthly for the midmost days 242 

of each month with one-hour intervals, and then, the three summer months were summed 243 

together. In the SAGA-GIS software, the algorithm takes into account the shadowing effect of 244 

the surrounding terrain as we calculated the visible sky (i.e., sky view factor) using a 10-km 245 

search radius and eight looking sectors and included this as an input in the solar radiation 246 

function alongside the DEM. 247 

Lastly, we calculated a slope-penalized distance to the nearest waterbody index 248 

(hereafter, distance to water). Here, we utilized all water features present in the Topographic 249 

database of Finland and the DEM provided by National Land Survey of Finland. We calculated 250 

the horizontal distance to the nearest water feature with the Accumulated Cost tool in SAGA-251 

GIS software, and we set the slope as the cost surface in the calculations. We considered that the 252 

effect of the waterbody reaches further when the slope is even and decreases rapidly when slope 253 

is steep. We also considered that the effect of surface waters on soil moisture decreases rather 254 

rapidly as the distance increases between a water body and a measurement site. Consequently, 255 

we set all cost distance values > 100 to 100. Then, we reversed the index so that index value 100 256 

was given to 1) pixels which touch a water body and 2) pixels with zero slope and which are 257 
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close to a water body. Conversely, index value 0 was given to pixels further away from water 258 

bodies over slopy terrain. 259 

2.5 Soil data 260 

At each measurement point (n = 503), we measured organic layer depth and determined 261 

soil texture in the field. We determined the main soil type visually and by examining the soil 262 

between our fingers, and roughly classified the soils into five soil type categories, namely, clay, 263 

silt, sand, gravel, and organic soil (peat). We measured the depth using a thin metal rod (max. 80 264 

cm). With the rod, we measured layers 0-10 cm to the nearest centimetre, and for layers > 10 cm, 265 

we rounded the measurements to the nearest 5 cm.  266 

2.6 Summary statistics of soil moisture variation 267 

First, we characterised soil moisture and its variation in each study area by calculating 268 

mean soil moisture over all measurement sites and over the measurement period. We calculated 269 

average standard deviation both in time (over time within sensors in a given area) and space 270 

(over sensors in a given area). Furthermore, we explored how stable the spatial pattern of soil 271 

moisture was in the seven study areas by calculating Pearson correlation coefficient between all 272 

possible pairs of dates within the measurement period (Kachanoski & de Jong 1988). All 273 

statistics were calculated on daily-aggregated (daily medians) soil moisture values. 274 

Next, we explored how soil moisture mean was related to soil moisture variation 275 

following the methods in Brocca et al. (2012). Here, we calculated soil moisture mean over the 276 

measurement sites separately for each measurement date. Respectively, we calculated standard 277 

deviation (SD) and coefficient of variation (CV) over measurement sites in each date. We did 278 

this for all study areas together and separately for each study area. Then, we inspected 1) how the 279 
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mean and SD are related (hereafter, mean-SD relationship), and 2) how the mean and CV are 280 

related (mean-CV relationship), and here, we applied univariate linear regression models with 281 

either linear or quadratic terms. We tested the strength of the nonlinearity in the relationships by 282 

comparing the fits of the linear and polynomial models with the ANOVA. If the resulting p-value 283 

from ANOVA was sufficiently low (≤ 0.05) for the polynomial predictor, we deemed the 284 

relationship as nonlinear. 285 

2.7 Statistical models 286 

We comprised three sets of models to analyse the influence of topography on spatial soil 287 

moisture patterns and its variability in time and across the study areas. We aggregated the soil 288 

moisture values into weekly averages for the modelling. We considered only weeks when at least 289 

66% of the study sites within a study area had full coverage of soil moisture data (i.e., excluding 290 

early spring when majority of the sites in a given area are still under snow). 291 

Firstly, we tested how the SWI, TWI, and DTW predicted the weekly mean soil moisture 292 

values in univariate linear models (Equations 1-3, Supplementary Figure S1-S3). We chose these 293 

three predictors as the focus of the univariate analyses, as they are commonly used proxies for 294 

soil moisture (Ågren et al. 2014; Kopecký et al. 2021; Riihimäki et al. 2021). We fitted the linear 295 

models in R (version 4.2.1; R Core Team 2022) separately for each study area and week. We 296 

treated the weekly mean soil moisture as a response variable, and each of the three topography 297 

variables as an explanatory variable one at a time. We tested the predictive accuracy of the 298 

models with leave-one-out cross validation (LOOCV), in which each of the measurement sites 299 

were one by one removed from the data, rest of the sites used to fit the model. Finally, this model 300 

was used to predict soil moisture for the removed measurement sites. After all the measurement 301 
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sites were predicted ones, these values were compared with the observed values by calculating a 302 

squared Spearman correlation coefficient (R2).  303 

Equation 1. 304 

𝑆𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 ~ 𝑆𝐴𝐺𝐴 𝑤𝑒𝑡𝑛𝑒𝑠𝑠 𝑖𝑛𝑑𝑒𝑥  305 

Equation 2. 306 

𝑆𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 ~ 𝑇𝑜𝑝𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝑤𝑒𝑡𝑛𝑒𝑠𝑠 𝑖𝑛𝑑𝑒𝑥  307 

Equation 3. 308 

𝑆𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 ~ 𝐷𝑒𝑝𝑡ℎ 𝑡𝑜 𝑤𝑎𝑡𝑒𝑟  309 

Secondly, we fitted linear models (LM) and generalized additive models (GAM) with six 310 

topography variables as predictors, namely, TWI, DTW, solar radiation, TPI20, TPI500, and 311 

distance to water, and one soil variable, namely, soil type as a categorical predictor (Equation 4; 312 

Supplementary Table S2). The number of observations within soil types was highly unbalanced 313 

(e.g., very few measurement sites with clay as the main soil type). Thus, we aggregated the soil 314 

types into three categories, namely fine soil (including silt and clay), coarse soil (sand and 315 

gravel), and organic soil (peat). The soil type predictor represents the effect of soil structure on 316 

for instance water infiltration, but it may also the predicted soil moisture levels via controlling 317 

for the potential effect of the conversion from raw sensor data into VWC% values. Unlike LM, 318 

GAM allows non-linearity in responses. We fitted the GAMs with the restricted maximum 319 

likelihood estimation (REML), and to avoid overfitting, we set the maximum dimension of the 320 

basis used to represent the smooth term as three. GAMs were fitted with the mgcv R package 321 

(Wood 2011). Here, we tested how the influence of these predictors on weekly mean soil 322 

moisture patterns vary during the measurement period and across the study areas. SWI was 323 
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excluded from these multiple regressions due to the high correlation between SWI and TWI. 324 

Compared to the SWI algorithm, the TWI algorithm is more commonly used, and the ready TWI 325 

product is openly available for entire Finland. The predictive accuracy of the models was tested 326 

with LOOCV R2 and root mean squared error (RMSE). We calculated a permutation-based 327 

variable importance metric with the  vi_permute function from vip package (Greenwell & 328 

Boehmke 2020) to evaluate the relative importance of the predictors. To calculate the variable 329 

importance score, we compared the model fit (R2) of a model fitted with the original dataset to a 330 

model in which, one at the time, each predictor was randomly permuted; if the permuted 331 

predictor is important, the R2 will decrease greatly leading into a high importance value. The 332 

variable importance was calculated with 10 permutation rounds per predictor and study area. The 333 

method is model agnostic, and thus, can be compared across different modelling methods 334 

(Greenwell & Boehmke 2020). 335 

Equation 4. 336 

𝑆𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 ~ 𝑇𝑜𝑝𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝑤𝑒𝑡𝑛𝑒𝑠𝑠 𝑖𝑛𝑑𝑒𝑥 + 𝐷𝑒𝑝𝑡ℎ 𝑡𝑜 𝑤𝑎𝑡𝑒𝑟337 

+ 𝑇𝑜𝑝𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 (500 𝑚 𝑟𝑎𝑑𝑖𝑢𝑠)338 

+ 𝑇𝑜𝑝𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 (20 𝑚 𝑟𝑎𝑑𝑖𝑢𝑠) + 𝑆𝑜𝑖𝑙 𝑡𝑦𝑝𝑒 339 

+  𝐷𝑖𝑠𝑡𝑎𝑐𝑒 𝑡𝑜 𝑤𝑎𝑡𝑒𝑟  +  𝑆𝑜𝑙𝑎𝑟 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 340 

Thirdly, we tested if the predictive performance of the multiple regression models was 341 

related to the overall wetness of the study areas. Here, we calculated the Pearson correlation 342 

coefficient between the weekly mean soil moisture and the R2 value of the corresponding weekly 343 

models. We did this separately for each study area and modelling method. Next, we combined all 344 

these information into a single linear mixed effect model where we explained the R2 value of the 345 

models by the weekly mean soil moisture. In the model, we included the modelling method (i.e., 346 
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LM, GAM) as a categorical predictor and study area as random intercept (Equation 5). We fitted 347 

the model by using lme function from nlme R package (Pinheiro et al. 2022). We evaluated the 348 

significance of the relationships by using the F-test from anova function. 349 

Equation 5. 350 

𝑅2 ~ 𝑀𝑒𝑎𝑛 𝑠𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 + 𝑀𝑜𝑑𝑒𝑙𝑙𝑖𝑛𝑔 𝑚𝑒𝑡ℎ𝑜𝑑 + (1|𝑆𝑡𝑢𝑑𝑦 𝑎𝑟𝑒𝑎) 351 

Finally, we tested how well the LM and GAM models fitted with the data from one study 352 

area predicted the soil moisture values of other study areas. Again, we used R2 as a measure of 353 

predictive power. Here too, we used the mean weekly soil moisture as a predictive variable and 354 

the six topography variables as explanatory variables, but tested the model transferability only on 355 

weeks, in which the data from both the model fitting and prediction areas had at least 66% soil 356 

moisture data coverage. We tested the model transferability only across the study areas, and not 357 

in time (i.e., we did not test how model fitted for data from May performed when predicted to 358 

data from August, for example). 359 

3 Results 360 

Soil moisture showed large spatial variation but often less pronounced temporal 361 

variations across the measurement sites within the seven study areas (Figure 1, Figure 2, Figure 362 

3, Table 2). Measurement sites close to each other did not necessarily have similar mean soil 363 

moisture values (Figure 1). The soil moisture varied c. 0-60 VWC% at all study areas (Figure 1 364 

& 2E). There were both slight drying and wetting trends in the study areas during the study 365 

period (Figure 2A & 2C). However, the spatial pattern remained relatively stable thorough the 366 

measurement period as the study areas showed high temporal stability (Table 2). 367 
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On average, there was more spatial variation within the study areas (10.9 - 16.7, standard 368 

deviation across measurement sites) than temporal variation (2.9 - 6.4, standard deviation within 369 

measurement sites) in soil moisture (Table 2). If the study areas were arranged by the average 370 

temporal variation within the areas, the study areas were nearly in their latitudinal order: 371 

northernmost site, Rásttigáisá (tundra), had on average the least amount of temporal variation, 372 

whereas the southernmost site, Karkali (hemiboreal), had the most (Table 2). The amount of 373 

spatial variation in soil moisture within the study areas remained relatively stable during the 374 

measurement period. 375 

Table 2. Soil moisture at the study areas. 376 

Study area Mean soil moisture 

(VWC%) 

Average temporal 

variation 

(Standard deviation) 

Average spatial 

heterogeneity 

(Standard deviation) 

Temporal stability 

(mean [min, max] 

spatial correlation) 

Rásttigáisá 23.6 2.90 10.9 0.95 [0.71, 1.00] 

Kilpisjärvi 30.7 4.67 13.0 0.85 [0.62, 1.00] 

Värriö 30.0 4.21 16.7 0.94 [0.72, 1.00] 

Tiilikka 41.1 4.74 14.7 0.95 [0.68, 1.00] 

Pisa 24.9 5.10 13.7 0.93 [0.75, 1.00] 

Hyytiälä 26.9 6.32 13.8 0.90 [0.73, 1.00] 

Karkali 26.8 6.35 13.5 0.86 [0.47, 1.00] 

 377 

The spatial soil moisture mean-SD soil relationships varied considerably across study 378 

areas (Figure 3A). We found little evidence for a unimodal mean-SD relation relationship since 379 

only one study area (Tiilikka) showed a significant unimodal relationship. However, when 380 

forcing the intercept of the models to zero (as in Brocca et al. 2012), the unimodal relationship 381 
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was present. The mean-CV relationships followed the same non-linear relationship in all areas 382 

(except Tiilikka) where a decreasing trend levels out towards a minimum CV. 383 

  384 

Figure 2. Temporal variation in soil moisture. The thin lines represent daily mean soil 385 

moisture at the measurement sites (A). The thick lines represent the mean of the areas (A), and 386 

the lines are also presented in relation to each other in (C). The histograms are overlaid with 387 

density plots (B), and the density plots are also presented in relation to each other in (D). The 388 

boxplots represent temporal variation in soil moisture within each area (E). In the box plots, the 389 
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notches and hinges represent the 25th, 50th, and 75th percentiles, the whiskers represent the 95% 390 

percentile intervals, and the points represent the outliers. VWC%, volumetric water content.  391 

 392 

Figure 3. Soil moisture mean-standard deviation (mean-SD) and mean-coefficient of 393 

variation (mean-CV) relationships. In A), the coloured lines represent the entirely data-driven 394 

quadratic mean-SD relationship, and the black lines represent relationships where the curve is 395 

forced to intersect the y-axis at 0. In B), the coloured lines represent the mean-CV relationship of 396 
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the areas. The grey dots in the background represent the individual data points, i.e., each dot 397 

represent one measurement date. Statistically significant non-linear relationships are marked as 398 

follows: ***, p-value ≤ 0.001; **, p-value ≤ 0.01; ., p-value ≤ 0.1. 399 

 400 

  401 
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 402 

Figure 4. Predictive performance of univariate linear models. The lines represent the 403 

leave-one-out cross-validated (LOOCV) R2 results of linear model fitted separately for each 404 

week and study area. The colours represent different predictors, namely the SAGA wetness 405 

index (SWI), topographic wetness index (TWI), and depth to water (DTW). The thick lines 406 

represent the weekly results and the thin lines the smoothed trends (loess smoothing). Maps of 407 

the three predictors are provided in Supplementary Figures S1-3. 408 
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 409 

Figure 5. Modelling results from generalized additive models (GAM) with six 410 

topography and one soil predictors. The lines represent the predictive performance of the weekly 411 

models as A) the leave-one-out cross-validated (LOOCV) R2, and B) LOOCV root-mean-square-412 

error (RMSE). The thick lines represent the weekly results and the thin line the smoothed trends. 413 

In C), the bars represent stacked variable importance of the predictors in the weekly GAM 414 

models. TPI, topographic position index. DTW, depth to water. TWI, topographic wetness index. 415 

Summary statistics of the predictors are provided in Supplementary Table S2. 416 
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Modelling results showed that the soil moisture-topography relationships vary in time 417 

and across study areas. Weekly linear univariate models (Figure 4) showed that SWI had the 418 

highest overall predictive accuracy (averaged LOOCV R2 over weekly models) in four of the 419 

study areas (Kilpisjärvi, mean R2 = 0.26; Värriö, 0.41; Pisa, 0.39; Karkali, 0.38), TWI performed 420 

best in one area (Tiilikka, 0.43) and DTW in one area (Hyytiälä 0.26). DTW had typically the 421 

lowest predictive performance but the relative order of the three topographic varied and in some 422 

study areas (Pisa and Hyytiälä) in some individual weeks DTW scored the highest predictive 423 

performance. Also, the slope parameter estimates from the models varied greatly across study 424 

areas and also across weeks (Supplementary Figure S4). 425 

Predictive performance of the multiple regression models showed similar pattern in space 426 

and time compared to the best performing univariate LM (GAM results in Figure 5A and 5B, 427 

LM results in Supplementary Figure S5A and S5B). Overall predictive performance was highest 428 

in models for Kilpisjärvi (mean LOOCV R2 over weekly models and modelling methods = 0.42) 429 

followed by Värriö (0.39), Hyytiälä (0.33), Pisa (0.31), Tiilikka (0.30), and Karkali (0.18). The 430 

predictive performance was on average slightly higher for LM (0.31) than GAM (0.30), but the 431 

difference was not significant (paired Wilcoxon signed rank test, p = 0.53). On average, LOOCV 432 

RMSE was 11.8 for LM and 12.2 for GAM, and the difference was significant (p = 0.018). The 433 

variable importance scores also varied across weeks for some areas (e.g., Karkali), while in 434 

others, the scores remained relatively stable (e.g., Pisa) (Figure 5C). On average, the most 435 

important variable for predicting soil moisture was TWI in three of the study areas ( Tiilikka, 436 

Pisa, and Karkali), soil type in two areas (Kilpisjärvi and Hyytiälä) and the slope penalized 437 

distance to waterbodies in one area (Värriö). Variable importance scores for the topographic 438 
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predictors followed similar patterns in GAM (Figure 5C) and LM (Supplementary Figure S5C), 439 

but the scores varied greatly from area to another. 440 

The predictive performance of the multiple regression model was weakly, positively 441 

related to the overall wetness of the soils in the study areas (Supplementary Table S3). 442 

Correlation coefficient was positive in 9 out of 12 occasions (modelling methods × study areas) 443 

but only three positive correlations were significant (p ≤ 0.05) and none of the negative 444 

relationships were significant. The GAM models for Karkali showed the highest correlation 445 

coefficient (0.74, p < 0.001), and the LM models for Kilpisjärvi the lowest (-0.31, p = 0.20). 446 

However, a mixed effect model which combined both modelling methods and all study areas, 447 

indicated a positive and significant (F-test, p > 0.001) relationship between the mean soil 448 

moisture and LOOCV R2. 449 

Lastly, we tested how well the multiple regression models fitted in one study area 450 

performed when predicting soil moisture values of other areas (Supplementary Figure S6 & S7). 451 

LMs had better model transferability on average (LOOCV R2 = 0.23; LOOCV RMSE = 17.2) 452 

than GAMs (0.19; 19.6), and the difference was also significant (p < 0.001 in R2 and p = 0.031 in 453 

RMSE). Models fitted with data from Kilpisjärvi (R2 = 0.33; RMSE = 14.6) and Pisa (0.27; 14.0) 454 

performed best on average when these models were used for predicting soil moisture in other 455 

areas. Whereas models fitted with data from Hyytiälä (0.12; 20.2) and Tiilikka (0.16; 31.2) had 456 

low performance predicting soil moisture in other areas. 457 
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4 Discussion 458 

4.1 Soil moisture in boreal forest and tundra environments 459 

This study design and data recorded over several months revealed the locally 460 

heterogeneous patterns of soil moisture across and within boreal forest and tundra environments. 461 

Our results highlight that wide soil moisture gradients are present at small spatial extents, and 462 

that similar soil moisture gradients (0-60 VWC%) can be found locally from the tundra of 463 

northern Norway to the hemiboreal forests of southern Finland. Here, we also showed that soil 464 

moisture is relatively stable over time in the majority of the measurement sites (n = 503), and 465 

that across these environments, the spatial soil moisture pattern remains similar through the 466 

measurement period (April-September). 467 

We found that there were also some measurement sites where soil moisture varied 468 

considerably in time. Studying these anomalious sites and their environmental conditions and 469 

ecosystem processes in more detail could be one important target for future studies to understand 470 

why and how they are different from the landscape matrices. Furthermore, if the annual 471 

precipitation increases but heat waves intensify in the northern environments due to climate 472 

change, the patterns of soil moisture variation can be very different in the upcoming decades 473 

(Samaniego et al., 2018). Thus, it is important to investigate if the heterogeneous soil moisture 474 

regimes can provide a buffer for ecosystems against increasing temperatures in the boreal forest 475 

and tundra environments. Overall, there is a need for comprehensive study designs that monitor 476 

soil moisture across distinct environments and over large spatial and temporal extents (Dorigo et 477 

al. 2021). 478 
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4.2 General patterns of soil moisture variation 479 

In general, the mean-SD relationship follows a unimodal pattern, in which sites with high 480 

and low mean soil moisture values express less variation compared to sites with intermediate 481 

mean soil moisture values (Pan & Peters-Lidard, 2008; Scaife et al., 2021). However here, we 482 

found only a weak signal of this unimodal mean-SD relationship. This is likely due to the 483 

temporal stability of soil moisture in the seven study areas. Overall, we found less temporal 484 

variation in mean soil moisture of the seven study areas in comparison to other studies (see e.g., 485 

Penna et al. 2009; Brocca et al. 2012; Rosenbaum et al. 2012; Dymond et al. 2021). Lawrence & 486 

Hornberg (2007) concluded that in humid regions, soil moisture variance decreases when mean 487 

soil moisture increases, and that in temperate regions, variance peaks at intermediate soil 488 

moisture contents. During the measurement period from April to September, we did not find 489 

extreme drying or wetting in the study areas. Therefore, the data do not cover situations where 490 

the very high or very low soil moisture values would force the mean-SD relationship into lower 491 

SD values in either ends of the mean soil moisture gradient. Thus, our findings are somewhat 492 

analogous with findings by Martínez-Fernández & Ceballos (2003). They found a monotonously 493 

increasing relationship between mean soil moisture and variance, but they found that mean soil 494 

moisture was always rather low, and thus, it likely covered only part of the whole potential soil 495 

moisture gradient. 496 

We found a similar mean-CV relationship as in previous investigations (see e.g., 497 

Famiglietti et al. 2008; Penna et al. 2009; Brocca et al. 2012): a decreasing trend that eventually 498 

levels. Although, in comparison to previous investigations conducted in different ecosystems, we 499 

found much higher spatial variability across all measurement dates and thus across all mean soil 500 

moisture levels present in our data. Overall, we found that the spatial patterns remained relatively 501 
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stable over time, and thus, these seven study areas are likely less prone to large temporal 502 

variation in standard deviation across measurement sites. This is also in line with previous 503 

investigations, which have shown that in tundra environments, the spatial patterns of soil 504 

moisture are relatively stable during growing season (le Roux et al. 2013; Kemppinen et al. 505 

2018; Tyystjärvi et al. 2021). 506 

4.3 Soil moisture-topography relationships 507 

Soil moisture-topography relationships turned out to be context-dependent. This was 508 

expected, because of the other factors (e.g., vegetation, local temperatures) that control soil 509 

moisture and interact with topography. Thus, no single topography-based variable can manifest 510 

these relationships in all the study areas and conditions. We found that topography-based proxies 511 

cannot predict soil moisture patterns with over the entire measurement period and across seven 512 

distinct study areas. This is important because topography-based proxies are widely used instead 513 

of field-quantified soil moisture in climate change and biodiversity modelling (Kopecký et al. 514 

2021; Riihimäki et al. 2021), although topography is only one of the drivers of soil moisture 515 

patterns (Albertson & Montaldo, 2003; Teuling, 2005; Wilson et al., 2004). Our results 516 

demonstrate why topography-based proxies for soil moisture should not be used without 517 

exhaustive investigations on their capability to characterise soil moisture patterns over space and 518 

time. This is especially important to consider in studies with large spatial extents and where high 519 

model transferability is required. By neglecting these investigations, topography-based proxies 520 

can lead to biased inferences on the importance of soil moisture, for instance, in ecological 521 

models (Kopecký & Čížková 2010). Overall, we encourage careful consideration whenever soil 522 

moisture data are substituted with topography-based proxies (Kopecký et al. 2021; Riihimäki et 523 
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al. 2021) or optical proxies (von Oppen et al. 2021), regardless if soil moisture is modelled with 524 

statistical (Kemppinen et al. 2018) or process-based methods (Tyystjärvi et al. 2021). 525 

Here, we showed that the influence of topography on soil moisture varies from study area 526 

and week to another. This means that, for instance, TWI is likely to perform well in 527 

heterogenous forest terrains (Tiilikka, Pisa) throughout the measurement period. Whereas in 528 

mountain tundra terrains (Kilpisjärvi), TWI tends to perform well only immediately after 529 

snowmelt when the landscape is very wet, and at other times, soil type was the most important 530 

predictor. This is in line with previous research which have reported temporal variation in the 531 

performance of topography as a proxy for field-quantified soil moisture (Western et al. 1999; 532 

Tague et al. 2010; Ali et al. 2014; Riihimäki et al. 2021), and here, we showed this with a 533 

harmonized study design across large geographic distances characterised by various 534 

environmental conditions, and for the entire snowless season of the boreal forest and tundra 535 

environments. 536 

Our analyses did not show particularly clear trends in the strength of the soil moisture-537 

topography relationships during the measurement period shared by all study areas, but there was 538 

a slight tendency that the topographic models had higher predictive accuracy early on the 539 

snowless season (i.e., after snowmelt) than later in the season. In the sub-Arctic tundra, 540 

Riihimäki et al. (2021) also found that various TWI algorithms had stronger links to early season 541 

soil moisture (i.e., after snowmelt) than to the late season soil moisture. In other environments, 542 

the temporal variation of the soil moisture-TWI relationship has been linked to the overall 543 

wetness of the landscape (i.e., precipitation) (Western et al. 1999; Ali et al. 2014), and we too 544 

found that the model performance was slightly higher when the mean soil moisture across 545 

measurement sites was higher. Also, the temporal variation (or temporal instability) of the 546 
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relationship is dependent on soil and vegetation factors (Coleman & Niemann 2013). Our results 547 

together with previous literature imply that in seasonally snow-covered environments, 548 

topography has stronger control on soil moisture shortly after snowmelt, and that the soil 549 

moisture-topography relationship weakens towards the end of the snowless season when other 550 

factors (e.g., evaporation, transpiration) play a greater role in controlling soil moisture patterns. 551 

We found no single topography variable superior to others in predicting soil moisture 552 

patterns across all study areas, as the most influential predictors varied from area to another, and 553 

to some extent, also from week to week. For instance, in Karkali, the most relevant predictor 554 

changed from week after week, whereas in Pisa, one predictor (TWI) remained the most relevant 555 

for most of the measurement period. Furthermore, the transferability of the topographic models 556 

from one area to another varied. The models that were fitted with data from the study areas 557 

mostly covered by peatlands (Hyytiälä and Tiilikka) performed very poorly when they were used 558 

for predicting soil moisture in other areas. This indicates that soil moisture-topography 559 

relationships in wetland areas can be very different from other environments. Overall, our results 560 

highlight the need for detailed exploration and careful consideration of different topography 561 

variables in various environmental settings before applying them as proxies for soil moisture. 562 

4.4 Challenges in measuring soil moisture 563 

Methodological challenges are various in soil moisture research, particularly related to 564 

field measurements (Robinson et al., 2008). Until recently, devices for continuous data have 565 

been expensive, which is impractical for detailed investigations over large spatial and temporal 566 

extents (Wild et al., 2019). Also, there are numerous device types that are based on different 567 

measurement techniques (Dobriyal et al., 2012; Romano, 2014; Yu et al., 2021). Moreover, 568 

different device types based on the same technique can provide significantly different results 569 
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(Lekshmi et al., 2014; Walker et al., 2004), even the same device type can provide different 570 

values (Rosenbaum et al. 2010). In this study, we used only one device type to reduce 571 

uncertainty caused by different instruments (Wild et al., 2019), yet the manufacturer of the 572 

devices reports that error among the devices can be up to 5%. This is due to differences between 573 

the devices and soil types, and it cannot be controlled for, at least at the present moment. Soil 574 

type also influences the conversion of raw moisture measurements into volumetric water content. 575 

Here, we used a single conversion function adopted from Kopecký et al. (2021) as the previous 576 

functions (Wild et al., 2019) were created for different soils in the Czech Republic, and were 577 

considered difficult to apply for these northern study areas (typically high content of organic soil 578 

material) based on our preliminary tests (data not shown). As this specific sensor type is 579 

becoming more common among scientists across different ecosystems and soil types, we identify 580 

this as an important subject for development in the near future. Yet, at the same time, we 581 

consider that the data conversion is not a major issue in our study where the moisture gradient is 582 

wide and differences across measurement sites are considerable. Thus, with these approaches we 583 

managed to tackle critical challenges related to soil moisture measurements (Robinson et al., 584 

2008). 585 

4.5 Future perspectives 586 

One of main challenges remains for better understanding and modelling of spatio-587 

temporal patterns of soil moisture and its effects on ecosystems: How to obtain field-quantified 588 

data on fine-scale patterns of soil moisture and its controlling factors with sufficient accuracy 589 

and extensive spatio-temporal coverage? Here, we found high temporal stability in soil moisture 590 

and its spatial patterns in boreal forests and the tundra of northern Europe, from peatlands to 591 

mountain tops. However, for instance in the tundra, soil moisture often varies greatly from one 592 
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square meter to another (Kemppinen et al. 2019, 2021a). Consequently, further applications, 593 

such as ecological and biogeographical investigations, would require soil moisture data at a 594 

corresponding spatial resolution, and this is challenging regardless of methodology (e.g., 595 

statistical or process-based modelling). Here, we addressed the influence of fine-scale 596 

topography and soil properties on soil moisture, and the next step would be to incorporate the 597 

influence of fine-scale vegetation and local temperatures. Therefore, more data and models are 598 

needed on fine-scale soil moisture and its controlling factors, and particularly, more temporal 599 

data on vegetation and local temperatures. Our soil moisture data covered a single growing 600 

season and thus, it is likely that the data did not capture occasional extreme conditions (drought 601 

and flooding). Therefore, long-term measurements are needed to capture the full potential range 602 

in soil moisture dynamics. Finally, northern Europe is a seasonally snow-covered region, and 603 

thus, investigations on soil moisture-snow relationships are urgently needed for understanding 604 

the future soil moisture in boreal forest and tundra environments that are under rapid climate 605 

change. 606 

5 Conclusions 607 

Here, we present a rare case of intensive soil moisture investigations which cover large 608 

geographical and environmental gradients and the entire snowless season of the boreal forest and 609 

tundra environments in northern Europe. We documented detailed soil moisture patterns at high 610 

temporal resolution in 503 locations within seven study areas from southern Finland to northern 611 

Norway. We found that soil moisture has high spatial variability in all seven study areas, and that 612 

the variability persisted the entire six-month measurement period. We also found that the nature 613 

of soil moisture-topography relationships varied greatly across time and space. Overall, we 614 

highlight that wide soil moisture gradients can be present at small spatial extents, and that similar 615 
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soil moisture gradients can be found locally across northern Europe from hemiboreal forests to 616 

the tundra. 617 
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