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Abstract—We aim to incorporate data analytics into industrial
process control by utilizing machine learning (ML) algorithms
to classify the real-time data of online analyzers. Real-time
visualization of results onto a front-end system (i.e., refinery
control room) provides an extensive view of the production pro-
cess, increasing efficiency of production. Selected ML classifiers
are assessed according to the performance metrics based on
individual scores. These parameters, along with the complexity
of implementation, provide an adequate pointer for selecting a
suitable classifier model to serve as a decision-making tool. In
our use case, accurate categorization of measurements provides a
cheap validation guideline that would otherwise be not possible.
Computed metrics indicate a difficulty to classify the cases when
the slight deviations (drifts) occur from real values. Based on
the true positivity rate, linear SVM separation is desirable for
data drift prediction (64 %), while k-Means is more successful
in detecting outliers (65 %) and normal operation (99 %).

Index Terms—Machine Learning, Data Classification, Alkyla-
tion Process, Analytics, Industry 4.0

I. INTRODUCTION

Systematic technological advancements constantly incite the
development in digitalization, automation, and optimization of
industrial processes. Industrial complexes, such as refineries,
are at the forefront of technology to meet the ever-growing
needs of operational demands (equipped with advanced sen-
sors and regulated in real time), coining the term — the fourth
industrial revolution; or Industry 4.0. However, certain parts of
plant operation progress quite slowly as the industry is capital-
intensive and the integrity of production is crucial [1], [2]. A
refinery is a network of closely related unit processes that
communicate with each other (material flows, data lines, etc.)
to transform raw materials into more valuable products [3].
Incorporating computer science and artificial intelligence (i.e.,
machine learning algorithms) into the industrial sphere results
in efficient utilization of available information and to its
correct interpretation wherever needed. This paper reflects this
modern-day trend by proposing a machine-assisted indication
based on real-time industrial measurement classification.

The aim of this paper is to leverage stored (unused) data
and provide more meaningful information about the process
to the control room. Constant monitoring allows for timely
actions and ensures steady production, as multiple sensors
and process analyzers provide useful real-time measurements

TABLE I
COMMONLY USED ML ALGORITHMS.

Algorithm Principle Ref

k-Means partitioning (centroid–based) [6]
DBSCAN density–based [7]

Decision Tree logic–based [8]
k-Nearest Neighbours (KNN) distance–based [9]

Support Vector Machine (SVM) statistical learning [10]
Neural Network deep learning [6]

to indicate the current values of process variables (operat-
ing point). Implementation of advanced technologies ensures
more sustainable operation with fewer required external in-
terventions, and achieves higher yields and earnings. Data
analytics provides an opportunity to uncover hidden patterns
(i.e., parameter correlations); (i) providing more information
to human operators in the plant control room for monitoring,
(ii) enabling autonomous plant management via data-driven
decision-making [4]. In this paper, we utilize well estab-
lished and well understood classification algorithms to train
a decision-making tool that classifies real-time data points.

Machine learning (ML) is a method of choice for data
analytics as it does not require any complex specification of
the production process to extract relevant data [5]. Since the
efficacy of an ML algorithm depends not only on the type
of a problem, but also on the quality of available data, it is
often reasonable to train multiple models and verify whether
they achieve satisfactory results. Also, we opt for an algorithm
seamlessly implementable onto an industrial hardware that
would be transparent for the plant operators.

Table I lists selected ML algorithms. k-Means is a well
known clustering algorithm (unsupervised learning) which
partitions data points into clusters based on the distance from
the nearest cluster center [6]. DBSCAN is also a widely
used clustering algorithm that classifies data based on den-
sity [7]. Decision Tree resembles a branching tree comprised
of conditions and rules (nodes), based on which a dataset is
classified with appropriate labels [8]. KNN uses k neighbours
of each data point to assign the label based on the largest
group of equally classified neighbors [9]. The SVM model
can provide a simple linear classification (hyperplane decision



boundary), which presents a preferable solution for a real-
time measurement verification — easily implementable in
industry [10]. Neural Networks refer to layers of neurons,
where one neuron comprises a weight, a bias, and an activation
function to process the input (input layer), and outputs the
computed output (output layer) [6].

We implement three selected ML algorithms for a specific
data-based problem in an industrial refinery — the industrial
partner, Slovnaft, a.s. — for real-time classification of mea-
surements. Collected data represents measured weight con-
centration (% w/w) via three online analyzers, which exhibit
(real-time) unidentifiable fluctuations. Analyzers are installed
on isobutane material streams of an akylation unit within the
refinery. Collected data points are targeted for Advanced Pro-
cess Control (APC) as disturbance variables (DVs). Currently,
the automatic control approach (reliable on laboratory values)
is not usable in the intended way, and it is necessary to propose
a method of real-time classification for all measurements. This
concept would not only verify data points for APC, but also
bring important information to the alkylation control room and
serve as an early indication method.

II. PROCESS DESCRIPTION

Alkylation, or alkylate production, is based on the com-
bination of reactive C3–C4 olefins with i-C4 isobutane to
form more desirable high-octane (> 87) branched C7–C9

isoparaffins (alkylate) with superior blending properties — a
key component for clean gasoline [3], [11], [12]. According to
the simplified diagram (Fig. 1), a mixture of reactants (olefins
and isobutane) is cooled down and fed into a reactor (three
parallel units). For efficient production, it is crucial to maintain
an optimal ratio of the reactants — online analyzers mounted
on one i-C4 storage stream and two i-C4 recycle streams.

To eliminate the formation of unwanted by-products, con-
tactors are refrigerated by a cooling cycle to control the
temperature of the reaction mixture at a constant value of 5 –
10 ◦C — as alkylation is an exothermic reaction. An expansion
valve reduces the pressure of the refrigerant (cooling by
expansion) which results in overall reduction in temperature.
This type of a cooling cycle enables to use the product stream
from contactors to serve as a refrigerant. The right-hand side
of the diagram describes the compression of vapours taken
from the separator for further utilization of liquid isobutane,
as well as additional processing of low purity isobutane in
the fractionator. Material stream of i-C4 is recycled and final
products are collected (including the alkylate). Undoubtedly,
the amount of mixed i-C4 is directly related to the amount of i-
C4 that is recycled which increases the demand of downstream
(separation) units and reduces the profitability of the process.

The efficacy of industrial production is paramount as the
quantity and composition of products depends on it. Among
other parameters (temperature in the contactors, feed com-
position, etc.), alkylation reactions depend on the supply of
isobutane in excess — i-C4 is less soluble in the acid phase
than olefins. Since the online analyzers show erratic behavior
and do not provide reliable measurements (% w/w of i-C4

recycles), operators have to double-check them regularly —
meaning the APC deployment is delayed/ineffective.

To achieve a noticeable improvement in production, it is
necessary to eliminate this issue, as mixing ratio directly
affects the qualitative characteristics (octane number) of the
alkylate product. Currently, the implemented control strategy
relies on a Robust Multivariable Predictive Control (Profit
Controller or RMPCT). The optimal ratio of isobutane to
olefins in the feed mixture is the setpoint for control. The
recycle flow of i-C4 is the manipulated variable (MV) to keep
the % w/w value within the optimal limit [3].

III. PROBLEM DEFINITION

As current real-time measurements cannot be used for auto-
matic control (anomaly in % w/w could result in undesirably
shifting the mixing ratio), the control strategy is amended
to a simple single-input and single-output (SISO) system.
As a temporary solution, process operators require laboratory
sampling to be more frequent than usual (% w/w value is
frozen when an anomaly is detected) to manually calibrate the
analyzers for more accurate ratio control. The concentration
of olefins presents the same problem and is evaluated in the
laboratory. All the aforementioned issues result in unnecessary
action that leads to complications and most importantly leads
to unnecessary expenses for frequent laboratory tests.

We propose a machine-assisted method of decision-making
based on data classification (Fig. 2) that would allow us
to classify real-time process measurements and inform the
operator whether they are suitable for process control, or
faulty and should be omitted — repeated faulty measurements
require calibration of the online analyzers.

As shown in Figure 3, the comparison of laboratory samples
(referred to as ground truth — red cross) with the online
analyzer measurements (blue), we differentiate between two
types of anomalies in the industrial dataset: outliers and drifts.
We consider a data point as an outlier when a sudden steep
jump from the current value of concentration is indicated.
A drift is observable when the measured % w/w gradually
deviates from the actual value (approximated with blue dashed
line) over time. Based on these observations, calculating the
difference in values of consecutive measurements should serve
as a valid method for distinguishing between all cases. If a
long-term deviation from the normal value is detected, the
analyzer is manually calibrated to the most recent laboratory
sample or a new sample is requested at the lab.

To develop a reliable decision-making tool that would
serve as an early indicator for plant operators, we choose
from a number of already existing classification algorithms
to train a model that achieves the best performance in real-
time measurement classification and at the same time is not
difficult to implement on industrial hardware.

With three defined possible labels, we annotate the pre-
processed dataset to make sure we compare the predicted
indicator labels (Ŷ ) with correctly labeled data points (Y ).
We opt for the DBSCAN algorithm [7]. DBSCAN is designed
to separate distant points (noise) from more densely arranged
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Fig. 3. Measured isobutane % w/w compared to laboratory samples
(anonymized values).

data, based on two input parameters; eps regards the neigh-
bourhood radius around a data point, and minPts defines the
minimum number of points inside this radius. Dense regions
are then identified based on the defined search radius (eps)
within the dataset. With proper tuning, this method allows to
reliably annotate all data points of the process based on the
distance of individual clusters from the origin into the three
pre-defined classes (visualized in Fig. 4).
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Fig. 4. Ground truth labels based on the DBSCAN algorithm.

IV. DATA PRE-PROCESSING

The industrial dataset represents minutely weight concentra-
tion measurements from the past year of alkylate production.
The total size exceeds 5 × 105 data points. Since the data tags
are not annotated in any way (we have no information about
possible shutdowns or other changes in operating conditions),
we first transform raw data into workable format, while
maintaining the overall integrity [13], [14]:

Data cleaning. Initially, it is necessary to filter out any



discrepancies from the raw dataset. Our primary focus is
on evident missing or corrupted data points that must be
filled/estimated or removed. Although removing a complete
data point due to one missing value is not optimal, the
percentage of missing data is not substantial to affect the
features/trends of the dataset in any way.

Data transformation. We standardize the data as:

xi,stand =
1

σx,i
(xi − x̄i), (1)

where σx represents the standard deviation vector of the
dataset x with the mean value x̄. This transformation is also
used for plotting in this work to seal the data confidentiality.

Data reduction. An important part of data pre-processing
is also the effort to minimize the time (computational com-
plexity) when training the classification model — “indicator”.
Since we work with a higher number of data points, we use a
fifteen-minute moving average — effectively reducing the data
15:1 (some information from the dataset could be suppressed).

Finally, we divide the standardised industrial data (three i-
C4 material streams) into a training set consisting of 80 %
of the total data points and a testing set consisting of the
remaining 20 % data points (based on random indexing). By
doing so, we prevent possible over-training of the machine
learning classifier by testing its efficacy on a different dataset.

V. DATA CLUSTERING

When it comes to clustering, there is no one-size-fits-all
algorithm. For example, if the data points are not linearly
separable, DBSCAN may not be able to accurately cluster the
data — this could lead to complications when implementing
methods such as linear SVM. In such cases, the use of
alternative clustering algorithms should be considered; based
on a careful analysis of the dataset and the properties of
the data points. We employ the k-Means algorithm from
MATLAB “kmeans” routine to partition the data into clusters.
Each data point is assigned into a cluster based on the distance
to the (current) nearest centroid (center of a cluster). We pre-
determine the optimal number of clusters by incorporating
the elbow method (plotting the sum of the squared distance
between points in a cluster and the cluster centroid) [15]. This
approach indicates a suitable division of data points into four
clusters (according to the breakpoint of the curve in Fig. 5),
however, recent studies suggest to use alternative methods to
choose the number of clusters [16].

Additionally, we compute a Silhouette score (s) for each
cluster (i), to verify the distribution of data points as:

si =
(bi − ai)

max (ai, bi)
, (2)

where a represents the average distance between each point
within a cluster; and b stands for the average inter-cluster
distance, i.e., the average distance between all clusters.

The silhouette plot in Fig. 6 shows that the data is split
into varying number of clusters (y-axis); each with its own
si score. The width of each cluster in the four plots (y-axis)
represents the total amount of data points within these clusters;

Fig. 5. Within-cluster squared distances function of the number of clusters.

TABLE II
AVERAGE SILHOUETTE SCORES CORRESPONDING TO THE CHOSEN

NUMBER OF CLUSTERS.

No. of clusters two three four five
Average silhouette score 0.8350 0.7958 0.8198 0.3772

the corresponding silhouette coefficient refers to the distance to
other clusters. When choosing the optimal number of clusters
from the Silhouette plot, it is not sufficient to select the largest
number from comparing the average scores from Table II; a
verification of the following conditions is required:

1. all the clusters should have a Silhouette score greater than
the average score of the dataset (red dashed line).

2. large fluctuations in cluster size should not be present.
For our application, the second rule does not apply, since the

data points during normal operation significantly exceed the
disturbances and drifts of the alkylation unit combined. From
within these plots, we look for the largest, and at the same time
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Fig. 6. A silhouette plot from the clustered training data.



comparable silhouette coefficients (preferably 0.8 or greater).
The bottom left plot (four clusters) has the highest score, yet
the first rule is not met; increased number of clusters results
either in the distribution of outliers into multiple clusters, or
results with data very close to the decision boundary. The
top right plot (three clusters) appears acceptably close to
the average silhouette score and shows smaller fluctuation in
comparison; indicating proper cluster separation [15].

Upon evaluation, we conclude that the optimal number of
clusters is three. Compared to results obtained by DBSCAN,
the centroid for the normal cluster is correctly located around
the mean value and the centroid for outliers is amid the ex-
treme values. The drift cluster centroid appears, however, sub-
optimal as it involves some outliers from the third analyzer.

VI. DATA CLASSIFICATION

We train four different kinds of classification models us-
ing three well-understood machine-learning methods. Labeled
data points (representing different clusters) from a clustering
algorithm are used to train a classification model. To determine
the quality of a trained classifier, an unknown dataset (testing
data) is classified. To find a sutiable classification model,
we calculate its performance metrics — recall, precision,
specificity, accuracy, and F1-score [17]; as well as a confusion
matrix. This provides a benchmark (criterion for selection) for
a trained classifier and enables to evaluate its effectiveness.

1) k-Means & SVM: This model combines k-Means clus-
tering and an SVM classifier. Linear SVM classifier is used
as the resulting separation hyperplanes provide a transparent
way of assessing classifier performance by industrial operators.
The SVM model calculates parameters of a linear decision
boundary (a hyperplane in a 3D space), that differentiates
between two clusters. Based on the calculated parameters of
the hyperplane, we classify a measurement into the defined
clusters and label them by predefined categories (Fig. 7). To
compute the SVM classifier, we solve the following optimiza-
tion problem:

min
w,b,ξ≥0

1

N

N∑
i=1

ξi + λwTw (3a)

s.t. yi
(
wTxi − b

)
≥ 1− ξi, ∀i ∈ {1, 2, . . . , N}, (3b)

where N defines the number of training data points, λ is a
tunable parameter to obtain soft/hard-margin classifier with an
offset b, yi defines the label for each data point (commonly
yi ∈ {−1, 1}), and w defines the normal vector to the
hyperplane. The dataset is not linearly separable, therefore
we introduce slack variables ξi into the objective function and
relax the linear separability constraint [18]. We train two SVM
separators to distinguish between the three classes.

2) k-Means & KNN: The initial step is to supply the
positions of centroids (k-Means algorithm) to train the model.
Complexity-wise, this model requires to store the training
dataset for prediction, which is not desirable for industrial
application. On the other hand, it should provide clear results
for the uneven distribution of data points into clusters.
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Fig. 7. Dataset divided into clusters (k-Means), then separated by hyperplanes
(SVM).

3) k-Means: We use the k-Means algorithm for classifica-
tion by itself. We base the prediction on the Euclidean distance
between each data point (testing dataset) and the centroid point
of each of the k clusters (MATLAB “pdist2” routine).

4) k-Means & SVM + diff: We re-use the k-Means & SVM
approach, yet we include the backward differences between
consecutive time points among the dataset. This approach aims
to improve the classification performance of the drift data as
they exhibit an outstanding slope patterns (see Fig. 3).

VII. ACHIEVED RESULTS

For classification evaluation, there are four cases of predic-
tion success. E.g., for evaluation of the normal label — true
positivity (TP) corresponds to the values correctly predicted as
normal; false positivity (FP) corresponds to normal data point
being mispredicted as either drift or outlier; false negativity
(FN) corresponds to either drift or outlier being mispredicted
as normal; true negativity (TN) corresponds to the remaining
predictions (drift and outlier being correctly predicted). Ana-
logical assignments can be made for drift and outlier.

There is a variety of possible performance metrics to choose
from, and there is no general rule to prioritize one over others;
the same model can excel in one metric but underperform in
a different one [17], [19], [20]. Recall (TP rate) represents
correctly predicted positives w.r.t. all positives; TP/(TP+FN).
Specificity (TN rate) represents correctly predicted negatives
w.r.t. all negatives; TN/(TN+FP). Precision reveals the rate
of truly positive predictions from those predicted as positive;
TP/(TP+FP). Accuracy represents the correctly classified mea-
surements; (TP+TN)/(TP+FP+FN+TN). F1 score provides a
more explicit performance representation as it is calculated as
a harmonic average of Recall and Precision.

Numerical results listed in Table III represent the perfor-
mance metrics (rows) for each classified label (n = normal,
d = drift, o = outlier), and each model (columns). In our
case study, specificity (n) and Recall (d and o) are used for
evaluating the efficacy of trained classifiers. Overall, it is less



TABLE III
PERFORMANCE METRICS OF TRAINED CLASSIFIERS.

SVM k-NN k-Means SVM + diff
Accuracy 0.9629 0.9628 0.9532 0.9525 n

0.9538 0.9534 0.9315 0.9431 d
0.9656 0.9653 0.9693 0.9656 o
0.9827 0.9828 0.9997 0.9709 n

Recall 0.6296 0.6260 0.3527 0.6426 d
0.6465 0.6364 0.6566 0.5253 o
0.9755 0.9752 0.9498 0.9752 n

Precision 0.9048 0.9043 1.0000 0.7813 d
0.2105 0.2072 0.2355 0.1857 o
0.8157 0.8136 0.6059 0.8157 n

Specificity 0.9922 0.9922 1.0000 0.9787 d
0.9696 0.9694 0.9732 0.9711 o
0.9791 0.9790 0.9741 0.9730 n

F1-score 0.7425 0.7399 0.5214 0.7052 d
0.3176 0.3127 0.3467 0.2744 o

cumbersome for the plant operators, when the normal label is
classified as an outlier (the setpoint is set to the last correct
value), opposed to the classification of an outlier as normal
(the process diverges and the operator is not notified).

Specificity of k-Means (0.6059) for normal cases states
that the classifier failed to predict drifts and outliers, and
misclassified 60 % of total TN measurements as normal values.
The SVM + diff model achieved the best drift detection,
while the k-Means classifier is more effective in predicting
outliers, based on recall (d and o). While comparing the
models among themselves, KNN did not dominate in any
metric but gave consistent results towards the higher end of
overall performance, and never underperformed. SVM model
with differences was expected to outperform the regular SVM
classifier, however, we can see the opposite in every metric
other than drift detection. This result could be theoretically
improved by optimizing the clustering method to better reflect
the ground truth. It is, therefore, inconclusive whether any of
the proposed classifiers is suitable for this particular dataset
just yet. APC variables need to be classified correctly, one
possibility could involve a voting strategy between the least
complex models. Other possibility involves treating the ana-
lyzers values separately, which would increase the automated
validation complexity moderately.

Lasly, we test whether the initial clustering of training data
by DBSCAN instead of k-Means can increase the indicators
performance. Expectedly, a significant improvement can be
achieved in detecting both anomalies — Specificity (TN rate);
96 % (SVM + diff model). The Recall metric (TP rate) re-
mained around 60 %. These results point to inappropriateness
of the linear SVM classifier, despite general industrial pref-
erence for linear models. A resolution might lie in involving
further process variables among the classification features.

VIII. CONCLUSIONS

In this paper, the aim was to utilize historical industrial
data, and unveil any hidden information to the alkylation unit
operators. We studied multiple ML algorithms and selected
four, based on the method of clustering, to be comprehensive.
This paper should create a firm starting point in data analytics

and provide room for further optimization of used methods,
and to follow up on the achieved results with searching
for more effective methods. Results indicate the difficulty
to correctly predict drifts from the normal operation. Based
on the TP rate, SVM model with differences predicts 64 %
of all drifts correctly, while the k-Means classifier predicts
outliers (65 %) and normal operation (99 %) most reliably. The
prediction of both anomalies combined is 82 % performed by
both SVM models.
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