
MPC-Mimicking Neural Network Based on
Homomorphic Encryption

Martin Kalúz, Roman Kohút, and Diana Dzurková
Faculty of Chemical and Food Technology

Slovak University of Technology in Bratislava
Bratislava, Slovak Republic

{martin.kaluz, roman.kohut, diana.dzurkova}@stuba.sk

Abstract—This paper showcases the use of homomorphic
encryption (HE) scheme for securing process data during the
controller evaluation in a simulated untrusted cloud environment.
The controller implemented in this work is a neural network
(NN) that mimics a model predictive controller (MPC) designed
for disturbance rejection. Firstly, an MPC was designed for a
process of biochemical reactor. From obtained MPC control data,
a neural network (NN-MPC) with fully connected layers was
trained. Multiple HE-friendly activation functions were tested
during the NN training and testing, and based on the results,
a polynomial approximation of hyperbolic tangent was used.
Subsequently, the NN-MPC controller was implemented in en-
crypted control scenario. The measured states of the biochemical
reactor were encrypted on the side of the process and sent for
the homomorphic evaluation to the simulated cloud (NN-MPC).

Index Terms—Model Predictive Control, Neural Network,
Approximation, Biochemical Reactor, Process Control, Homo-
morphic Encryption, Data Privacy, CKKS

I. INTRODUCTION

With control algorithms’ growing computational complexity
and processing data size, the demand for cloud-based services
has become more relevant in recent years. Computing on
the cloud can be very beneficial for the data owner since it
takes away the computational and data storage demands and
outsources them to other parties. However, these benefits come
with risks regarding the security and privacy of the data. Most
encryption standards, such as the AES and RSA, focus on
data security during the transfer. These data are decrypted
on the cloud computer before they are processed, raising the
concern of data privacy violations. One plausible solution is
to use homomorphic encryption (HE), allowing the outsourced
algorithms to process the data in encrypted form.

The literature provides numerous examples of HE-enabled
control setups [1] with many open challenges [2]. HE is
being implemented in various control applications, using poly-
nomial controllers [3], linear feedback [4], and non-linear
controllers [5]. Some more advanced control scenarios, like
implicit and explicit MPC, were showcased in [6], [7].

In the past decade, several new cryptosystems emerged,
primarily based on the ring version of the Learning with Errors
(LWE/RLWE) problem [8]. In this paper, we use one of them,
the CKKS cryptosystem.

With the security and data-privacy benefits of HE schemes
also come some drawbacks. In HE, only a limited set of opera-
tions is usually available (mainly addition and multiplication).

Also, the computational complexity and memory demands
are much higher than for unencrypted applications. These
facts pose a significant challenge in implementing complex
controllers like MPC, requiring optimization over encrypted
data. These problems can be tackled by approximating control
law with more HE-friendly constructs such as neural networks
(NN). In [9], a linear MPC was implemented as a non-
polynomial max-out neural network with a single hidden layer.

This paper presents a NN approximation of linear MPC
(NN-MPC) designed for state disturbance rejection to control
the biochemical reactor model with input constraints. Used
NN-MPC consists of 3 fully connected hidden layers (50
neurons each) and an output layer. The inference of NN-
MPC is performed over encrypted state measurements of the
process, yielding an encrypted control action.

II. CKKS CRYPTOSYSTEM

CKKS (Cheon-Kim-Kim-Song) cryptosystem is an RLWE-
based scheme that operates with approximated fixed-point
arithmetic, originally published under the name “Homomor-
phic Encryption for Arithmetic of Approximate Numbers”
(HEAAN) [10]. CKKS is one of the most implemented
schemes in modern HE, included in libraries and frameworks
such as OpenFHE1, Palisade2, HElib3, Lattigo4, and Microsoft
SEAL5. It classifies as leveled HE scheme, meaning that
additions and multiplication between two encrypted messages
are possible, but the number of consecutive multiplications is
limited. This limitation comes from a noise (additive error)
incorporated into encrypted messages to make them crypto-
graphically secure, which is the main idea behind the hardness
assumption of RLWE [8].

In the following sections II-A–II-D, we describe the basic
principles of the CKKS cryptosystem. Detailed inner workings
of the mathematics behind the scheme can be found in [10],
[11].

A. Notation for Message, Plaintext and Ciphertext Spaces
In this paper, we use the following notation and terms. The

CKKS operates over polynomial ring Rq = Zq[X]/(XN +1),

1https://github.com/openfheorg/openfhe-development
2https://palisade-crypto.org
3https://github.com/homenc/HElib
4https://github.com/tuneinsight/lattigo
5https://www.microsoft.com/en-us/research/project/microsoft-seal/

where q is a coefficient modulus, and (XN +1), for N being
a power of two, represents irreducible cyclotomic polynomial
(basically the equivalent of modulus in polynomial space). N
being a polynomial modulus degree defines a maximum size
of polynomials in the ring Rq to be (N − 1).

The raw input message m ∈ CN
2 is a vector of N

2 complex
numbers, of which usually only real parts are used in practical
applications. Plaintext m′ ∈ Rq is a polynomial with N

coefficients, obtained by encoding procedure E : m ∈ CN
2 →

m′ ∈ Rq (Sec. II-B). The ciphertext c = (c1, c2) ∈ R2
q is

a tuple of two polynomials obtained by encryption procedure
E : m′ ∈ Rq → c ∈ R2

q , described in section II-C.

B. Encoding and Decoding
In the CKKS, the encoding function E(·) is defined as

m′ = E(m,∆) =
[
∆ · π−1(m)

]
, (1)

where a complex canonical embedding function π(·) maps the
coefficients of polynomial m′ into the elements of m. Sym-
bol ∆ represents a scaling factor that multiplies polynomial
coefficients to move the bits of encoded message to the left,
creating a space for addition of cryptographic noise during the
encryption without the significant loss of numerical precision.
The mathematical details of embedding and encoding are
provided in [10, section 2.2 and 3.2]. The decoding procedure
D : m′ ∈ Rq → m ∈ CN

2 is just an inverse of (1), defined as

m = D(m′,∆) = π

(
1

∆
·m′

)
. (2)

It is clear from (1) that rounding function [·] will re-
sult in only approximated decoding of original message
D (E(m,∆),∆) ≈ m, hence the name of the scheme “Homo-
morphic Encryption for Arithmetic of Approximate Numbers”.

C. Key Generation, Encryption and Decryption
CKKS is an asymmetric scheme. One party generates a

secret key and a set of public keys for distribution. A secret
polynomial s ∈ R with signed binary coefficients {−1, 0, 1}
is sampled from a distribution HWT (h) described in [10,
section 3.4]. In practical implementation, the secret key is a
tuple sk = (1, s). The public key pk = (pk1, pk2) is a tuple
of two polynomials

pk1 = [−a · sk + e]q, (3)
pk2 = a (4)

where polynomial a is uniformly sampled from Rq and
e←↩ X is an error polynomial with coefficients sampled from
discrete Gaussian distribution X (see [10, section 2.3]).

The encryption of plaintext m′ is done by using a public
key pk and forming a ciphertext c = (c1, c2) ∈ R2

q such that

c1 = [pk1 · u+ e1 +m′]q, (5)
c2 = [pk2 · u+ e2]q, (6)

where u ∈ Rq is a random polynomial and e1, e2 are
error polynomials from X . Decryption of c is performed by
evaluating a ciphertext over secret polynomial s

m̃′ = [c1 + c2 · s]q (7)

to obtain a plaintext with approximation m̃′ of originally
encrypted m′.

D. Homomorphic Operations
CKKS allows operations to be carried out between two

ciphertext or between plaintext and ciphertext. In fact, the
operations are just a standard polynomial algebra over the
ring Rq . Considering two ciphertexts ca = (ca,1, ca,2) and
cb = (cb,1, cb,2) with the same value of the modulus q, we
can calculate the product of their homomorphic addition cadd
as

cadd,1 = [ca,1 + ca,2]q, (8)
cadd,2 = [cb,1 + cb,2]q. (9)

The homomorphic multiplication between ciphertext c and
plaintext k′ gives a new ciphertext

cpmul = k′ · c = ([k′ · c1]q, [k′ · c2]q), (10)

and for two ciphertexts, multiplication between ca and cb is
performed as

ccmul = ca · cb = (ccmul1, ccmul2, ccmul3), (11)
ccmul1 = [ca1 · cb1]q , (12)

ccmul2 = [ca1 · cb2 + cb1 · ca2]q , (13)

ccmul3 = [ca2 · cb2]q . (14)

It is clear that by multiplying two ciphertext, the result ccmul
will grow in size. Therefore, it is necessary to perform a re-
linearization

c′cmul = (c′cmul1, c
′
cmul2)

= (ccmul1, ccmul2) + [p−1 · ccmul3 · rk],
(15)

where rk is a re-linearization key and p is a big integer.
One of the main features of CKKS is message batching,

which allows inclusion of multiple message elements into the
slots of single plaintext or ciphertext. For polynomial modulus
degree N (usually in thousands), N/2 individual numbers
can be included in one plaintext/ciphertext. All the slots are
evaluated simultaneously during one homomorphic operation,
bringing the considerable potential for applications where
parallelism is desired. Additionally, CKKS implementations
in HE frameworks also provide a vector rotation technique.
During this procedure, plaintext/ciphertext slots are shifted and
wrapped around (either to the left or right). This technique
is used to implement homomorphic multiplication between
plaintext matrices and ciphertext vectors, which is especially
useful in evaluating layers in NNs. The main drawback of HE
vector rotation is that it requires a set of cryptographic keys
(Gallois keys) that are large.

III. NN-MPC DISTURBANCE REJECTION CONTROL OF
BIOCHEMICAL REACTOR OVER ENCRYPTED DATA

A. Process Description

We consider a biochemical reactor with an alcoholic fermen-
tation process. During the reactor operation, microorganisms
convert saccharides such as fructose or glucose into ethanol
and carbon dioxide. This complex biochemical transformation
creates many by-products. However, the overall reaction can
be summarized as follows:

C6H12O6(s) −→ 2C2H5OH(l) + 2CO2(g), ∆Hr < 0. (16)

Besides saccharides concentration, the temperature’s influ-
ence must be considered to maintain ideal microorganisms’
growth. From [12] optimal temperature for the presented yeast
growth rate was determined to be between 28 ◦C−32 ◦C. As
the aeration inhibits saccharide consumption, the considered
model includes oxygen concentration as one of the state
variables.

Fig. 1. Schematic diagram of biochemical reactor

The biochemical reactor is modeled as a continuous stirred
tank reactor Fig. 1. The tank is fed with a constant glucose
solution Fr = 25 l/h, feeding the biomass (suspension of
yeasts) and producing the continuous outlet flow of ethanol.
The processes in the reactor are described with six differential
equations obtained along with their parameters from [13].

B. Model Predictive Control for Disturbance Rejection

The presented model predictive control (MPC) takes the
form of output steady-state control with discrete time state
space model and ∆u penalization:

min
u0,...,uN−1

N−1∑
k=0

(
y⊤
k Qyk +∆u⊤

k R∆uk

)
(17)

s.t. xk+1 = Adxk +Bduk, (18)
yk = Cdxk, (19)
∆uk = uk − uk−1, (20)
xk+1 ∈ X , uk ∈ U ,∆uk ∈ Udu (21)
x0 = x(t), u−1 = u(t− Ts), (22)
k = 0, 1, . . . , N − 1, (23)

where N is finite prediction horizon, Q ⪰ 0, R ⪰ 0 are penalty
matrices. Vectors xk ∈ Rnx , uk ∈ Rnu , yk ∈ Rny represents
system state, input, and controlled output predictions for define
step k, respectively. Model presented includes state matrix
Ad ∈ Rnx×nx , input matrix Bd ∈ Rnx×nu , and output matrix
Cd ∈ Rnx×ny . X ∈ Rnx , U ∈ Rnu , Udu ∈ Rnu are polyhedral
sets of constraints for states, control input and change of the
control input respectively.

The linear discrete time model Eq. (18) was derived from
the non-linear model of the biochemical reactor presented in
[13]. System states include [cx, cp, cs, cO2

, Tr, Tc]
⊤, biomass,

ethanol, glucose, dissolved oxygen concentrations, reactor

temperature, and the coolant’s temperature subsequently. The
state-space matrices are formulated as follows:

Ad =


0.99 −0.004 0 0 0.002 0
0.31 0.95 0.001 0 0 0
−0.75 0.063 0.97 0 0 0
−0.02 0 0 0 −0.07 −0.002
0.23 0 0 0.001 0.95 0.025
0.07 0 0 0 0.53 0.39

 (24)

Bd = [0 0 0 0.2 −2.2 −97.9]
⊤ · 10−3 (25)

Cd = [0 0 0 0 1 0]
⊤ (26)

where the sampling period is Ts = 0.5 h, and steady-
state values for the ideal yeast growth environment
[csx, c

s
p, c

s
s , c

s
O2
, T s

r , T
s
c]

⊤ = [0.92 g/l, 12.6 g/l, 29.5 g/l,
6.02 mg/l, 29.6 ◦C, 27.1 ◦C]⊤ and F s

c = 18 l/h are selected
as the linearization point.

The MPC’s goal is to stabilize the biochemical reactor
at its steady state and eliminate the disturbance’s effect to
provide ideal conditions for stable ethanol production. The
controlled variable is the temperature in the reactor Tr, as
the microorganism growth is linked to it. The manipulated
variable is the coolant flow Fc. The penalty matrices are
selected as Q = 1000 and R = 1. The prediction horizon
is set to N = 10. The manipulated variable’s constraints are
−18 ≤ u ≤ 162, and the change of the manipulated variable
is constrained to −18 ≤ ∆u ≤ 9. The state constraints
[−1.11,−13.89,−26.23,−5.83,−12.16,−20.22]⊤ ≤ x are
presented only for safety reasons. They can not be reached
during normal reactor operations. Note that the variables and
constraint values are stated in the deviation form.

C. Neural Network Approximation

The main drawback of RLWE-based HE schemes is that
they are not usable for evaluating complex algorithms such
as MPC. Therefore, we decided to approximate the MPC
controller by a neural network (NN-MPC) with an appropriate
structure that would allow us to perform a homomorphic in-
ference over encrypted states to compute an encrypted control
action. To obtain a good approximation of the MPC controller
(17–23), we set up a series of experiments (66 in total)
with different initial state conditions, generated by quantizing
the state space, and performed MPC control to steady state.
Overall 9823 data samples were obtained, containing six state
variables and corresponding MPC control action for each
sample. Before the NN training, the state variables were
normalized. The data samples were then randomly shuffled,
and 70% was used as a training set for NN-MPC. The
remaining samples were split into two sets of the same size
and used as validation and testing data. The NN was trained
in Python deep learning API Keras, using an Adam Optimizer.
The learning rate was set to 2.5× 10−4, and we used a mean
square error as a loss function. The number of training epochs
was set to 2500.

With respect to the maximum multiplicative depth of the
CKKS setup (Fig. 2), we have chosen a neural network with
three fully connected layers, 50 neurons each, and a linear
output layer. The main limitation of HE schemes is that

TABLE I
COMPARISON OF ACTIVATION FUNCTIONS USED IN MCP-MIMICKING NN.

Activation
name

Activation
function

Prediction
error

(RMSE)

No. of strict
constr. violations

(upper/lower)

No. of constr.
violations > 0.1%

(upper/lower)

Severity of constr.
violations (RMSE)

(upper/lower)

Implementable
in HE

HE mult.
depth

(levels)

tanh
e2x − 1

e2x + 1
0.148 114 / 80 0 / 0 0.028 / 0.047 no –

sigmoid
1

1 + e−x
0.398 119 / 4 32 / 3 0.380 / 0.235 no –

ReLU max (0, x) 0.568 75 / 72 22 / 41 0.648 / 0.372 no –

p-approx.
tanh

−0.891x3 + 1.336x2

+0.594x− 0.0196
0.769 19 / 78 14 / 65 1.352 / 1.042 yes 2

p-approx.
sigmoid

−0.00219x3 + 0.164x2

+0.5
1.599 28 / 66 25 / 53 0.844 / 1.444 yes 2

p-approx.
ReLU

−0.002x4 + 0.147x2

+0.5x+ 0.12
1.500 64 / 76 58 / 59 1.273 / 0.620 yes 3

square x2 2.186 31 / 54 27 / 51 4.223 / 3.916 yes 1

Fig. 2. A structure of implemented MPC-mimicking neural network with
multiplicative depths of layers and activation functions

they are unsuitable for evaluating arbitrary functions such as
those used in activations in NNs. To overcome this issue, we
tested several most commonly used homomorphic approxi-
mations of activation functions [14]. These are polynomial
approximations of hyperbolic tangent (tanh), sigmoid, ReLU,
and a commonly used HE-friendly square function. Table I
compares four approximated activations along with classical
tanh, sigmoid, and ReLU. In this comparison, we focused
on the root mean square error (RMSE) value between NN
testing data and NN prediction, the number of strict and
non-strict constraint violations, the RMSE of those violations,
and the HE multiplicative depth of a function. The results
show that all NNs with approximated activation functions
provide worse prediction performance than NNs with standard
activations. From all the activations implementable in HE,
the smallest prediction error was achieved by approximated
tanh function (p-approx. tanh). Figure 3 shows the prediction
performance of trained NN-MPC using a p-approx. tanh as an
activation function. It is clear that control action occasionally

violates the constraints, however, these violations are just
minor with RMSE value of 1.352 for upper and 1.042 for
lower constraints, and overall RMSE prediction error only
0.769 (Tab. I).

Fig. 3. Trained neural network performance illustrated on 100 randomly
chosen data samples from testing set.

D. Homomorphic Multiplicative Depth of NN

In RLWE-based HE schemes, one of the most critical
aspects of computation is the depth of the arithmetic circuit.
Every ciphertext contains cryptographic noise (in the case of
CKKS, also an approximation error) that grows in size with
the number of operations being carried out over it. This will
eventually lead to the corruption of encrypted data if noise
reaches a threshold known as noise budget. To avoid the
exponential growth of error during the ciphertext multiplica-
tion, CKKS employs a modulus-switching technique called
rescaling. However, this procedure can be performed a limited
number of times and is dictated by the number of inner primes
Γi in coefficient moduli array (Sec. III-E).

The structure of NN used in this work (Fig. 2) contains
a chain of consecutive ciphertext multiplications called multi-
plicative depth. For each hidden NN layer, the plaintext matrix
of weights is homomorphically multiplied by an encrypted
vector of states. The output layer also requires one ciphertext

multiplication. In CKKS, the plaintext polynomial evaluation
over ciphertext is of depth n− 1, for n being an order of the
polynomial. In the case of p-approx. tanh activation function,
the multiplicative depth is two. Overall the depth of NN is 10.

E. Setup of Cryptographic Parameters

Several essential parameters (Table II) are considered when
setting up the cryptosystem. First is polynomial modulus
degree N . Bigger N increases the security of the scheme but,
also increases the computational complexity. Simultaneously,
larger N allows for a higher multiplicative depth of the
arithmetic circuit. This is done by selecting an array of bit
sizes for coefficient moduli [Γo, Γi, · · ·Γi, Γo]. The difference
between the outer primes Γo and inner primes Γi (in bits)
defines the bit precision of integer parts of encoded/encrypted
numbers (in our case 17 bits). The number of inner primes Γi
(10) defines the maximum multiplicative depth. The scale ∆,
usually chosen to be the same value as Γi, controls numerical
precision after the decimal point of encoded/encrypted num-
bers, such that the precision is roughly the difference between
the inner prime bit size and precision before the decimal point
(in our case 33− 17 = 16 bits).

TABLE II
CKKS PARAMETERS USED IN THE CASE STUDY.

Parameter Symbol Value Impacts

Polynomial
modulus degree N 16384

security level,
mult. depth,
performance

Coefficient mod.
bit sizes Γ

[50, 33, 33, 33, 33, 33
33, 33, 33, 33, 33, 50]

mult. depth,
precision

Scale ∆ 33 precision

F. Control over Encrypted Data

The control setup consists of three environments. First
is MATLAB, where numerical simulation of the biochem-
ical reactor is performed using ode23s solver. MATLAB
communicates with an encryption/decryption layer written in
Python, where measured states of the process are sent to be
encrypted, and encrypted control actions from NN-MPC are
decrypted before they are sent back to the process. This layer
is considered a part of the trusted environment on the side of
the process. The NN-MPC controller is evaluated in a separate
server-side Python script, simulating a cloud environment. The
encryption/decryption layer and NN-MPC communicate via
HTTP. To implement operations over encrypted data, we use
Python library TenSEAL6 [15] based on Microsoft SEAL [16].
The general algorithm of closed-loop control over encrypted
data is shown in Alg. 1. Firstly, the data owner (process)
generates cryptographic keys. These are public key pk, secret
key sk, Galois key gk, and re-linearization key rk. During
the key exchange, pk, gk, rk are sent to the controller and
later used for homomorphic evaluation. During the control,

6https://github.com/OpenMined/TenSEAL

Algorithm 1: Implementation of HE control

1 Key generation (process side - data owner):
2 generate: pk, sk, gk, rk
3 keep: sk

4 Key exchange:
5 send: pk, gk, rk → Controller

6 Closed-loop:
7 Process (process side - data owner)
8 Measure states → xk

9 Encode states → x′
k = E(xk,∆)

10 Encrypt states → xE
k = E(x′

k, sk)

11 NN-MPC Controller (cloud environmet)
12 Evaluate → uE

k = NN(xE
k , pk, gk, rk)

13 Process (process side - data owner)
14 Decrypt → u′

k = D(uE
k , sk)

15 Decode → uk = D(u′
k,∆)

16 Apply → uk

a vector of state measurements is encoded with the scale ∆
into plaintext and encrypted using sk. Encrypted states xE

k are
then sent to the NN-MPC controller to be evaluated. Public
key pk is used in every homomorphic operation (additions,
multiplications), rk is required in multiplication between two
ciphertexts (evaluation of activation functions), and gk is used
for matrix multiplications. The resulting encrypted control uE

k

is then sent back to the process, decrypted using sk, decoded,
and applied to the process.

The biochemical reactor was controlled on a simu-
lated timespan of 150 hours with a control sampling pe-
riod of 30 minutes for original MPC, NN-MPC, and
NN-MPC over encrypted data. To illustrate the distur-
bance rejection performance of the controllers, we initi-
ated control in an arbitrary combination of states xinit =
[0.81, 11.82, 31.50, 6.15, 28.06, 25.12]. Afterward, two addi-
tional impulse disturbances on process input (coolant flow)
were applied in time 100h (Fc = 70) and 125h (Fc = 0). The
results are shown in figure 4. Both the original MPC (blue
line) and NN-MPC (orange line) were able to compensate
for disturbances and bring the process states to the desired
operating point. MPC provides a faster response and shorter
settling time than NN-MPC. As a result of a rather large
initial state disturbance, the NN-MPC tent to slightly violate
the bottom input constraint. However, this violation did not
apply since the inputs are trimmed before being sent to the
process. The NN-MPC control over encrypted data (black line)
is almost identical to plain NN-MPC, with minor numerical
discrepancy caused by cryptographic noise and rounding errors
introduced during message encoding.

G. Limitations

While the primary goal of HE-based process control (the
ability to compute over secured data) was achieved, several

Fig. 4. Disturbance rejection control trends for product temperature. The blue
line shows the control trajectory of the original MPC, the orange line shows
the performance of the NN-MPC controller, and the black line shows the NN-
MPC controller over encrypted data.

limitations must be considered. The RLWE-based cryptosys-
tems tend to be computationally demanding. In the presented
control scenario, a single HE inference of the NN-MPC
controller took on average 10.11 seconds (AMD Ryzen 3950X
CPU, 128GB DRR4 RAM). The per-layer computational time
grows quadratically with the number of neurons (size of
weight matrices). While the complexity grows only linearly
with an increasing number of layers, more than three hidden
layers would require higher multiplicative depth, thus bigger
polynomial modulus degree N . This would lead to an im-
practical cryptosystem setup due to the computational demand
and size of the keys. For the CKKS setup used in this work
(Table II), the size of the public key was 1.97MB, the secret
key 1.01MB, the re-linearization key 21.69MB, and Galois
keys 564.81MB.

IV. CONCLUSIONS

This paper shows that even complex controllers like MPC
can be implemented in an approximated form on HE frame-
works if the implementer is willing to sacrifice some of the
original control performance and numerical precision. The
main benefit, i.e., the preservation of data privacy, comes with
the cost of increased computational and memory demand that
can vary based on the setup of the cryptosystem. The practi-
cality of such a setup depends on a specific application. The
homomorphically evaluated NN-MPC of the same structure as
the one presented in this paper would not be implementable
for controlling processes with fast dynamics. However, the
presented approach is viable for slow processes like the
biochemical reactor. One of the options for reducing both the
computational time and size of the transferred data would be
decreasing the multiplicative depth of NN. This can be done
either by decreasing the number of layers and/or using a square

function as activation. This would allow for N to be 4096 or
even 2048, reducing the computational overhead significantly
at the cost of creating a bigger discrepancy between MPC
and NN-MPC. The computational time can also be reduced
by decreasing the number of neurons in layers, resulting in
homomorphic multiplication between smaller matrices and
vectors.

ACKNOWLEDGMENT

This research is funded by the Slovak Research and De-
velopment Agency under the project APVV-21-0019, by the
Scientific Grant Agency of the Slovak Republic under the grant
VEGA 1/0691/21, and by the European Commission under the
grant no. 101079342 (Fostering Opportunities Towards Slovak
Excellence in Advanced Control for Smart Industries).

REFERENCES

[1] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on
homomorphic encryption schemes: Theory and implementation,” vol. 51,
jul 2018.

[2] M. S. Darup, A. B. Alexandru, D. E. Quevedo, and G. J. Pappas,
“Encrypted control for networked systems: An illustrative introduction
and current challenges,” IEEE Control Systems Magazine, vol. 41, no. 3,
pp. 58–78, 2021.

[3] M. S. Darup, “Encrypted polynomial control based on tailored two-party
computation,” International Journal of Robust and Nonlinear Control,
vol. 30, no. 11, pp. 4168–4187, 2020.

[4] J. Tran, F. Farokhi, M. Cantoni, and I. Shames, “Implementing homo-
morphic encryption based secure feedback control,” Control Engineering
Practice, vol. 97, p. 104350, 04 2020.

[5] Y. Lin, F. Farokhi, I. Shames, and D. Nešić, “Secure control of nonlinear
systems using semi-homomorphic encryption,” in 2018 IEEE Conference
on Decision and Control (CDC), pp. 5002–5007, 2018.

[6] A. B. Alexandru, M. Morari, and G. J. Pappas, “Cloud-based mpc with
encrypted data,” in 2018 IEEE Conference on Decision and Control
(CDC), pp. 5014–5019, 2018.

[7] N. Schlüter and M. S. Darup, “Encrypted explicit mpc based on two-
party computation and convex controller decomposition,” in 2020 59th
IEEE Conference on Decision and Control (CDC), pp. 5469–5476, 2020.

[8] O. Regev, “The learning with errors problem (invited survey),” in 2010
IEEE 25th Annual Conference on Computational Complexity, pp. 191–
204, 2010.

[9] K. Tjell, N. Schlüter, P. Binfet, and M. S. Darup, “Secure learning-based
mpc via garbled circuit,” in 2021 60th IEEE Conference on Decision
and Control (CDC), pp. 4907–4914, 2021.

[10] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Advances in Cryptology –
ASIACRYPT 2017 (T. Takagi and T. Peyrin, eds.), pp. 409–437, Springer
International Publishing, 2017.

[11] W. Jung, E. Lee, S. Kim, J. Kim, N. Kim, K. Lee, C. Min, J. H. Cheon,
and J. H. Ahn, “Accelerating fully homomorphic encryption through
architecture-centric analysis and optimization,” IEEE Access, vol. 9,
pp. 98772–98789, 2021.

[12] K. Y. F. Lip, E. Garcı́a-Rı́os, C. E. Costa, J. M. Guillamón,
L. Domingues, J. Teixeira, and W. M. van Gulik, “Selection and
subsequent physiological characterization of industrial saccharomyces
cerevisiae strains during continuous growth at sub-and-supra optimal
temperatures,” Biotechnology Reports, vol. 26, p. e00462, 2020.

[13] M. Ławryńczuk, “Modelling and nonlinear predictive control of a yeast
fermentation biochemical reactor using neural networks,” Chemical
Engineering Journal, vol. 145, no. 2, pp. 290–307, 2008.

[14] S. Obla, X. Gong, A. Aloufi, P. Hu, and D. Takabi, “Effective activation
functions for homomorphic evaluation of deep neural networks,” IEEE
Access, vol. 8, pp. 153098–153112, 2020.

[15] A. Benaissa, B. Retiat, B. Cebere, and A. E. Belfedhal, “Tenseal: A
library for encrypted tensor operations using homomorphic encryption,”
2021.

[16] “Microsoft SEAL (release 4.1).” https://github.com/Microsoft/SEAL,
Jan. 2023. Microsoft Research, Redmond, WA.

