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ABSTRACT
◥

Purpose: Regorafenib (REG) is approved for the treatment of
metastatic colorectal cancer, but has modest survival benefit and
associated toxicities. Robust predictive/early response biomarkers
to aid patient stratification are outstanding. We have exploited
biological pathway analyses in a patient-derived xenograft (PDX)
trial to study REG response mechanisms and elucidate putative
biomarkers.

Experimental Design: Molecularly subtyped PDXs were anno-
tated for REG response. Subtyping was based on gene expression
(CMS, consensus molecular subtype) and copy-number alteration
(CNA). Baseline tumor vascularization, apoptosis, and proliferation
signatures were studied to identify predictive biomarkers within
subtypes. Phospho-proteomic analysis was used to identify novel
classifiers. Supervised RNA sequencing analysis was performed on
PDXs that progressed, or didnot progress, followingREGtreatment.

Results: Improved REG response was observed in CMS4,
although intra-subtype response was variable. Tumor vascularity

did not correlate with outcome. In CMS4 tumors, reduced prolif-
eration and higher sensitivity to apoptosis at baseline correlated
with response. Reverse phase protein array (RPPA) analysis
revealed 4 phospho-proteomic clusters, one of which was enriched
with non-progressor models. A classification decision tree trained
on RPPA- and CMS-based assignments discriminated non-
progressors from progressors with 92% overall accuracy (97%
sensitivity, 67% specificity). Supervised RNA sequencing revealed
that higher basal EPHA2 expression is associated with REG
resistance.

Conclusions: Subtype classification systems represent canon-
ical “termini a quo” (starting points) to support REG biomarker
identification, and provide a platform to identify resistance
mechanisms and novel contexts of vulnerability. Incorporating
functional characterization of biological systems may optimize
the biomarker identification process for multitargeted kinase
inhibitors.

Introduction
Globally, colorectal cancer is the second most common cancer

diagnosis in women and the third most common in men. Twenty-
five percent of patients present with metastases at time of diagnosis
with a 5-year survival of approximately 10% (1). Mainstay therapy of
advanced colorectal cancer involves 5-fluorouracil (5-FU)-based che-
motherapy with the addition of targeted agents depending on RAS
status (1). Regorafinib (REG) is an orally active multitargeting kinase
inhibitor (MKI), which is FDA approved for the treatment of heavily
pre-treated chemorefractory patients withmetastatic colorectal cancer
(mCRC; refs. 2, 3). REG’s multiprongedmechanism of action includes
inhibition of tumor cell proliferation (via MAPK pathway signaling);
stimulation of mitochondrial apoptosis through transcriptional acti-
vation of PUMA [Bcl-2-binding component 3, isoforms 3/4 (BBC3)];
angiogenesis inhibition through targeting of VEGFR, FGFR, platelet-
derived growth factor receptor, and TIE-2 (Angiopoietin-1) receptor;
and a reduction in tumor-associated macrophages, an effect possibly
mediated through macrophage colony-stimulating factor 1 (CSF1)
receptor inhibition (1, 4–8).

In the CORRECT trial REG led to amodest improvement inmedian
overall survival [OS; 6.4 months (REG) vs. 5.0 months (placebo;
ref. 2)]. However, a majority of patients experience grade 3–4 adverse
events, which frequently prevent treatment continuation (2, 6). Elu-
cidation of predictive/early response biomarkers for better “precision
targeting” of REG will likely influence its continued use. Previous
attempts to identify such biomarkers have focused on oncogene
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mutations, plasma protein levels, gene expression analysis, circulating
tumor DNA,MSI status, and primary tumor location (6, 9–13), but no
“single-entity” biomarker has to date been validated for clinical use.

Profiling of complexmolecular alterations using unsupervised data-
driven approaches has led to new knowledge underpinning colorectal
cancer etiology. These data also support the identification of new
biomarkers to predict response to targeted therapies (14, 15). For
example, we have recently defined a unique mCRC classification
system [3 clusters defined by low (cluster 1), intermediate (cluster
2), and high (cluster 3) copy-number burden] based on genome-wide
distribution of copy-number alterations (CNA) in colorectal cancer
tumors, and have identified copy-number load as a novel predictive
biomarker of bevacizumab combination therapy (14). A major effort
has also focused on reclassifying colorectal cancer based on tumor
expression data, resulting in a new colorectal cancer consensus molec-
ular subtype (CMS) classification system, which defines a “consensus”
for transcriptomic subtyping of colorectal cancer (16). The marked
interconnectivity between independent gene expression classifiers
obtained by unsupervised clustering approaches gave rise to the four
CMS groups, which as we have recently discussed, not only reflect
cancer cell phenotypes but also microenvironment features present in
bulk tumor samples (17, 18). For example, CMS4 tumors have
significant enrichments for VEGF signaling, which is a target of
approved therapies in the metastatic setting, including bevacizumab
and REG. In this context, the biological hypothesis is that patients with
mesenchymal–stromal CMS4 tumors are particularly sensitive to anti-
angiogenic agents. The prognostic value of CMS subtypes has also
recently been confirmed in the metastatic setting (18).

Interestingly, retrospective exploratory analysis of the CORRECT
trial to evaluate the clinical benefit in colorectal cancer subgroups
suggests a differential response to REG across CMS subtypes (data
presented in Poster #3558, ASCO 2015; ref. 19). These hypothesis-
generating data suggested that CMS2 and CMS4 subtyped patients
received the greatest OS benefit from REG [Hazard ratios (HR) 0.779
and 0.672, respectively], compared with CMS3 and CMS1 patients
(HRs, 1.047 and 1.116, respectively). However, even in the confined
setting of CMS2 or CMS4, REG response is variable, and not all
patients of a given subtype respond to treatment (19, 20). Indeed in
general, the CMS classification does not currently provide a rationale

for therapy selection in mCRC (21). Moreover, technical issues that
lead to misclassification of colorectal cancer samples, as well as
biological factors related to spatial and temporal intratumor hetero-
geneity are likely to have an impact on the results of studies assessing
interactions between CMS groups and treatment effects (21).

We hypothesized that analysis of signaling pathways within
subtypes may provide novel insights into REG responses and may
explain response heterogeneity. To achieve these objectives, we used a
faithful preclinical patient-derived xenograft (PDX) platform of ratio-
nally selected subtyped tumors, which accurately recapitulate the
observed (modest) clinical treatment response. Within these models,
CMS and CNA classifiers were used as a starting point to (i) determine
whether known REG-targeted cancer hallmarks (angiogenesis,
proliferation, and apoptosis) had potential biomarker utility to support
better precision targeting of REG within subtypes and (ii) to provide
hints toward novel contexts of vulnerability and future REG combi-
nation approaches. Finally, to identify putative resistancemechanisms,
we studied differential gene expression signatures in PDXmodels that
progressed following REG treatment versus non-progressors.

Materials and Methods
Compliance with ethical standards and REG treatment

In vivo studies performed at University College Dublin were
approved by UCD Animal Research Ethics Committee and work
performed under Health Products Regulatory Authority license num-
ber AE18982/P076. In vivo studies performed at the Candiolo Cancer
Institute were approved by the Internal Ethical Committee and the
Italian Ministry of Health. Female NOD/SCID mice were purchased
from an approved supplier (Charles River laboratories) and were ages
between 4 and 6 weeks. In both institutes, animals were housed in
individually ventilated cages in a 12-hour light/dark cycle at 22�C.
Animals were provided with ad libitum access to food and water and
suitable environmental enrichment. Mice were anesthetized using
1%–2.5% isoflurane/1L/min O2 for the duration of all described
procedures. In all experiments, mice received 10 mg/kg of REG
[reconstituted in propylene glycol/PEG400/Kolliphor P188 (Sigma),
42.5/42.5/15 þ 20% H2O], orally, daily. Treatment was for 28 days
unless otherwise described, or until humane endpoint based on tumor
size, defined in the ethical approval. Tumor growthwas evaluated up to
three times weekly, using caliper measurements.

mCRC PDX population trial
PDXs derived from liver metastases of 43 treatment-naïve or

chemorefractory patients with mCRC that represented the global
molecular and genetic landscape of the human disease population
were selected from the PDX biobank at the Candiolo Cancer Institute.
The distribution of somatic mutations in the cohort was: wild-type,
n¼ 16 (37.2%);KRASmut, n¼ 18 (41.8%); BRAFmut, n¼ 5 (11.62%);
NRASmut, n ¼ 3 (6.9%). PDXs had previously been categorized into
CMS subtypes using gene expression data from the patient tumors
from which they were derived [available from the GEO database
(NCBI) with accession number GSE73255; refs. 22, 23] and following
methods outlined for the CMScaller package (24). Propagation,
implantation, and passaging (to a maximum of 10 passages) of tumor
material was performed also as previously described (25). A “one
animal per treatment” (1 � 1 � 1) experimental design was adopted
(i.e., n¼ 3 mice per PDXmodel). When PDX tumor volumes reached
approximately 400mm3 [calculated using the formula 4/3p.(d/2)2.D/2,
where d is the minor tumor axis and D is the major tumor axis] mice
were randomly assigned to respective groups (pre-treatment, vehicle,

Translational Relevance

The effect of regorafenib (REG) treatment on metastatic colo-
rectal cancer patient survival is modest, despite clinical approval.
Moreover, treatment is associated with several toxicities, which
may diminish quality of life. Elucidation of predictive/early
response biomarkers to aid patient stratification will likely influ-
ence its use. We have exploited biological pathways studies, using
defined molecular subtypes of colorectal cancer as “termini a quo”
(starting points), to study REG response mechanisms and biomar-
kers in clinically relevant patient-derived xenograft (PDX) models.
We demonstrate the potential for proliferation and apoptosis
signatures to predict REG response within consensus molecular
subtype (CMS) 4. Application of these signatures is amenable to the
molecular pathology setting, and could serve as a stratification tool
for REG in the clinic. Protein analysis further revealed cell death–
sensitive models that demonstrated improved response to REG
treatment. Moreover, we postulate that EPHA2 expression may be
associated with REG resistance treatment irrespective of CMS.
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Figure 1.

REG exerts a heterogeneous antitumor effect in PDX models and leads to a CMS independent decrease in CD31 staining. A, Overview of the PDX population
trial experimental workflow and downstream analyses. The PDX tumor cohort represents the global mutational incidence and CMS subtypes 1–4. The
percentage of PDX mutation status are as follows: wild-type (37%), KRASmut (41%), NRASmut (6.9%), BRAFmut (11%). Historic gene expression data
(generated from the same PDX models, available at GSE76402) has been used to classify the PDX models into CMS subtype. For the PDX population trial, a
“one animal per treatment” (1 � 1 � 1) experimental design was undertaken (i.e., n ¼ 43 PDX models, n ¼ 3 mice per PDX model). Following implantation
tumors were allowed to grow until they reached 400 mm3. One REG-naïve tumor was then harvested for pre-treatment analysis, whereas the 2 remaining
tumor-bearing mice were treated with either REG or vehicle for 28 days. B, Waterfall plot of REG response (in n ¼ 43 PDX-bearing mice treated with REG;
10/mg/kg/d) after 4 weeks of treatment. Tumor volume at 28 days was normalized to baseline (i.e., tumor volume on the day that treatment commenced).
Dotted line indicates the cutoff value for defined categories of therapy response using mRECIST criteria: cases displaying disease progression (“PD” >35%
increase in tumor volume) or stabilization (“SD” <35% increase in tumor volume). C, CD31 staining of pre- and post-treatment tumor material reveals that after
4 weeks, REG-treated tumors have a lower MVD (percentage of CD31 positivity of the total area) compared with vehicle-treated tumors (n¼ 43 vehicle, n¼ 43
REG, P ¼ 0.0174) in MVD density. D, Post-treatment CD31 expression does not correlate with changes in PDX tumor volume. E, REG effects on mean MVD
density are not specific to CMS subtypes. Mean is presented for each subtype (CMS1 n ¼ 10, CMS2 n ¼ 4, CMS3 n ¼ 2, CMS4 n ¼ 9, N/A n ¼ 18). Error bars
indicate SEM.
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REG). The REG-naïve tumor was immediately harvested for pre-
treatment analysis, whereas the 2 remaining tumor-bearing mice were
treated with either REG or vehicle. Following excision of tumors (pre-
and post-treatment), half was formalin fixed for IHC analyses, one
quarter of the tumor was flash-frozen [FF (for protein and low
coverage whole-genome sequencing (LC-WGS)], and the remaining
tissue preserved in RNAlater for transcriptomic profiling. Gene
expression data from REG-naïve PDX tumors (matching those used
in the population trial) were also available for basal gene expression
analyses [data were retrieved from the GEO database (NCBI) with
accession number GSE76402 (refs. 22, 23)]. Please refer to Fig. 1A for
details on experimental design.

Assignment of mCRC PDX models to CNA subtypes
Assignment of the PDX models to CNA subtype (using the

harvested REG-naïve pre-treatment mCRC PDX tumors), including
the preparation of shotgun whole-genome libraries and LC-WGS,
was performed as previously described (14). GISTIC (26) v2.027
(RRID:SCR_000151) was used to identify the most frequent and
overrepresented chromosomal aberrations in tumors according to
previously defined parameters. Significantly amplified or deleted
regions were assigned as homozygous deletion, loss, diploid, gain, or
amplification for each sample based on LogR signal and GISTIC
output threshold values (t <�1.3;�1.3≤ t <�0.1;�0.1≤ t≤ 0.1; 0.1 <
t≤ 0.9; t > 0.9, respectively).

IHC
Pre-treatment tumor and tumors excised following 28 days of

treatment with REG or vehicle in the PDX population trial were
studied. Half of the material from each tumor was formalin fixed and
processed for IHC analysis. IHC was performed using DAB probes for
Proliferation marker protein Ki-67 (1:100; Cell Signaling Technology,
Cat# 9449S, RRID:AB_2715512) and CD31 [Platelet endothelial cell
adhesion molecule (PECAM-1; 1:100, Cell Signaling Technology,
Cat#3528, RRID:AB_2160882]. Sections were deparaffinized and
endogenous peroxidase activity was blocked using 3% H2O2. Slides
were blocked for 10minutes in anUltraVision blocking agent. Primary
antibody was applied and incubated at room temperature for 1 hour.
Slideswere subsequently incubated for 20minutes in primary antibody
enhancer. Sections were then incubated in horseradish peroxidase
(HRP) for 15 minutes and DAB for 10 minutes and counterstained in
hematoxylin before dehydration in ascending gradient alcohols and
xylene before mounting. Slides were imaged using a light microscope
and images taken at �40. Tumor tissue sections (center areas of each
section) were analyzed using ImageJ (National Institutes of Health,
RRID:SCR_003070; ref. 27), which segmented cells with positive and
negative staining. The percentage of the area containing positive cells
was calculated as the brown area (positively stained cells) divided by
the sum of brown and blue areas (negatively stained cells)�100. The
software interpretation was manually verified by visual inspection of
the digital images to ensure accuracy.

Proliferation capacity
Historical REG-naïve PDX gene expression data (i.e., previously

collated data from the same PDX models as used in the current
study, available at GSE76402) were used to calculate the proliferation
capacity of each model. Analysis was as previously described (Sup-
plementary Methods in Nielsen and colleagues; ref. 28), done by
averaging the normalized gene expression values of an 11-gene
signature [BIRC5, CCNB1, CDC20, CDCA1 (NUF2), CEP55, NDC80,
MKI67, PTTG1, RRM2, TYMS, and UBE2C].

Western blotting
FF PDX tumor specimen pellets collected in the PDX population

trial were directly homogenized andmixedwith lysis buffer containing
0.5 mmol/L Tris-HCl (pH 6.8), 10% glycerin (w/v), 2% SDS (w/v), and
protease and phosphatase inhibitor cocktails (Roche). Protein con-
centration was determined with the Pierce 660 nm reagent assay
(Pierce) and a total of 30 mg of protein loaded into an SDS gel after
complete denaturation at 90�C for 10 minutes in Laemmli buffer. The
sampleswere then transferred to nitrocellulosemembrane and blocked
in 5%milk in TBST for 1 hour. Primary antibodies toMCL-1 (1:1,000;
BD Biosciences Cat# 559027, RRID:AB_397176), BCL-2 (1:100; Santa
Cruz Biotechnology, Cat# sc-509, RRID:AB_626733), BCL-xL
(1:1,000; Cell Signaling Technology, Cat# 2762, RRID:AB_10694844),
EPHA2 (1:1,000; Invitrogen Cat# 37–440, RRID:AB_2533318), and
actin (1:5,000; Sigma-Aldrich, Cat# A3853, RRID:AB_262137) were
mouse monoclonal. Antibodies to BAK (1:250; Santa Cruz Biotech-
nology, Cat# sc-517390) and BAX (1:1,000; Cell Signalling, Cat# 2772,
RRID:AB_10695870) were rabbit polyclonal. The HRP–conjugated
secondary antibodies were from Jackson ImmunoResearch (1:5,000).
Detection of protein bands was carried out using chemiluminescence
(EMD Millipore) on a LAS3000 Imager (FUJIFILM UK Ltd. System).
For quantitative analysis (input to DR_MOMP) BCL-2 profiling and
absolute protein concentration was performed as previously described
through quantitative Western blotting (29).

Calculation of the sensitivity of tumor cells to undergo
apoptosis using the DR_MOMP computational tool

The tumor cells’ sensitivity to undergo apoptosis was calculated
using the ordinary differential equation (ODE)–based systems
model DR_MOMP (29). This extensively validated computational
tool is comprised of 126 reactions and 71 protein species that
delivers a numeric score indicative of the sensitivity of cancer
cells to undergoing mitochondrial apoptosis (via membrane
outer mitochondrial permeability, MOMP). A full description of
DR_MOMP and relevant methodology has been previously been
described (Lindner and colleagues; ref. 29). Absolute protein levels
of BAK, BAX, BCL-2, BCL-xL, and MCL-1, measured in the
harvested FF REG-naïve tumor material using Western blot anal-
ysis, were used to calculate the genotoxic stress dose that induces
MOMP (“stress-dose”). Protein production, degradation, and BCL2
interactions were modeled by a pseudo-reaction network using
mass action kinetics, translated into a set of ODEs and solved using
the MATLAB 7.3 (The MathWorks, R2007b, 7.5.0.342, RRID:
SCR_001622) function ode15s.

Reverse phase protein array analysis
Protein was extracted from the harvested FF REG-naïve pretreat-

ment PDX tumor tissue and from HeLa cell line standards.
Reverse phase protein array (RPPA) was performed as previously
described (20). Protein lysates were normalized to 1 mg/mL as assessed
by bicinchoninic acid assay (BCA, Bio-Rad). A panel of 72 antibodies
targeting various key cancer-related proteins was used for measuring
protein levels (see Supplementary Table S1 for a full list of antibody
information). The DAKO (Carpinteria) catalyzed signal amplification
system was used for antibody blotting. Each slide was incubated with a
primary antibody. RPPA data were scaled across the samples for data
analysis. Only RPPA data with a coefficient of variation (CV) in the
range 0.25–2.5 were considered for analysis. Unsupervised clustering
was performed using the consensus clustering algorithm fromCancer-
Subtypes (v1.12.1) R package using parameters (clusterAlg ¼ “hc,”
distance ¼ “spearman”; ref. 30). RPPA clusters were annotated with
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treatment response and assignments to CMS subtype and copy-
number cluster. PAMR (v1.56.1; ref. 31) and SAMR (v3.0; ref. 32)
R package were used to identify protein predicting response to
treatment. A classification decision tree was fitted using as input the
assignments for CMS subtype and RPPA cluster to predict response
to REG treatment [stabilization (non-progressor) vs. progression].
Model development and visualization was performed with the rpart
(version 4.1–15) and rpart.plot (version 3.0.9) R packages.

Transcriptomic analysis of non-progressors and progressors
following REG treatment
Transcriptomic analysis of post-treatment PDX models

Tumor material, preserved in RNAlater, excised after 28 days
of treatment, from the 6 mice that responded best to REG treatment
(“non-progressors,” i.e., models exhibited growth stabilization
upon REG treatment) and 3 mice that responded the least
(“progressors”) in the PDX efficacy study were selected for tran-
scriptomic analysis. RNA was extracted from the PDX material
using TRIzol/chloroform and the RNeasy Mini Kit (Qiagen).
Quantity and quality of RNA were assessed by Nanodrop and
Experion (Bio-Rad). mRNA enrichment and library preparation
were performed using the TruSeq mRNA sample preparation
kit v2 (Illumina), as per the manufacturer’s instructions. RNA
sequencing was performed using Illumina HiSeq2000 as previously
described (33). One non-progressor PDX model was excluded due
to low raw read counts. Therefore, 5 non-progressors (n ¼ 3 CMS4,
n ¼ 2 unclassified) and 3 progressors (all CMS1) were analyzed for
differential gene expression.

Differential expression analysis was performed using the DESeq2
package [(RRID:SCR 015687; ref. 34) in the R statistical environment
(ref. 35) R Development Core Team, RRID:SCR_001905]. A “condi-
tions” data frame was created on the basis of the sample names, their
group, and their sensitivity to therapy. Counts and condition data
frames were loaded into a DESeq2DataSet class object using the
DESeqDataSetFromMatrix() call, with the design variable set as
“approximately group.” Volcano plots and heatmaps were generated
using EnhancedVolcano and Heatmap2 packages in R.

Data mining of historical treatment-naïve tumor gene expression
data

To determine whether targets that were differentially expressed
at treatment end point were also differentially expressed at basal
(i.e., untreated) level, the previously described publicly available
expression dataset (GSE76402) was mined using a supervised
approach.

Statistical analysis
Treatment response in PDXs was assessed by calculating the

percentage of increase in tumor volume for each model and charac-
terizing the change in volume according to mRECIST criteria (36).
One-way ANOVAs with Tukey’s post hocmultiple comparisons were
used to determine significance in IHC. For RPPA analysis, differences
in protein levels between clusters were identified by one-way ANOVA
with subsequent Tukey’s post hoc tests. Correlations were assessed
by fitting a linear regression to the data. Correlations and 95%
confidence intervals were calculated using Pearson’s correlation
analysis in GraphPad Prism 7 (La Jolla, RRID:SCR_002798; ref. 37).
Other statistical analyses were also performed using GraphPad
Prism 7. Unless otherwise stated, P values ≤ 0.05 were considered
statistically significant.

Results
Analysis of REG response in subtypedPDXmodels reveals CMS4
sensitivity

As described, PDX models were chosen to represent the global
molecular and genetic landscape of the human disease population
(Fig. 1A). Treatment response to REG in a clinically relevant panel of
n¼ 43molecularly characterized PDX tumorswas evaluated (Fig. 1B).
Treatment response was characterized according to mRECIST
criteria (36). Six PDX models displayed tumor growth stabilization
(defined as “non-progressors” <35% increase in tumor volume)
whereas 37 displayed progressive disease (defined as “progressors,”
>35% increase in tumor volume). No PDX models displayed either a
complete (< �95% decrease in tumor volume) or partial (< �50%
decrease in tumor volume) response.

When analyzed in the context of CMS subtype, of the 37models that
progressed under treatment, 10were CMS1, 4 CMS2, 2 CMS3, 5 CMS4
and 16 were unclassified [assignment of samples into CMS subtypes
failed; as described by Guinney and colleagues (ref. 16) non-consensus
samples are likelymixtures of one ormore subtype or of indeterminate
subtype]. Of the 6 non-progressor models (i.e., disease stabilization
was apparent), 4 were CMS4 whereas 2 were CMS-unclassified
(Fig. 1B). Thus in PDXs, as in patients, response to REG treatment
is heterogeneous, even within the CMS4 subtype.

We applied our previously described CNA classifier (12) to the PDX
cohort. Data revealed that CNA high cluster 3 was highly represented
(22 models). Fourteen models were CNA intermediate cluster 2 and
4 were CNA low cluster 1. Four PDX models were not available for
copy-number analysis due to failed quality metrics. When analyzed in
the context of response to REG treatment, of the 33 CNA-classified
models that progressed, 3 were CNA low cluster 1, 13 were CNA
intermediate cluster 2, and 17 were CNA high cluster 3. Of the 6 non-
progressormodels (i.e., evident disease stabilization), 5wereCNAhigh
cluster 3 and 1 was CNA intermediate cluster 2 (Supplementary
Fig. S1). Again, intra-subtype heterogeneity in response was evident.
Consequently, more detailed pathway studies were undertaken, using
the clinically relevant PDX model platform to interrogate observed
subtype-specific effects using functional and systems-based analyses.

Analysis of the subtype-specific treatment effects on tumor
vasculature in PDX models

Angiogensis is an established REG target. To explore the anti-
angiogenic effects of REG in selected PDX models, we investigated
tumor microvessel density (MVD) using mouse-specific CD31. We
further examined the relationship between pre-treatment tumor vas-
culature and treatment outcome. IHC was performed on half of each
tumor taken at pre-treatment and at the end-point of the PDX
population trial. After 28 days, REG-treated tumors had significantly
reduced endothelial expression of CD31 across all PDX tumors,
compared with vehicle-treated tumors [Fig. 1C; mean MVD
18.74 � 1.17 SEM (vehicle), 14.62 � 1.06 SEM (REG), P ¼
0.0174]. No change compared with pre-treatment tumors was
observed. There was no significant correlation between post-
treatment MVD (Fig. 1D) or pre-treatment MVD (data not shown)
and change in tumor volume, following REG treatment. When ana-
lyzed by CMS subtype, no significant effects on MVD were apparent
(Fig. 1E). A non-significant trend toward decreased MVD following
REG treatment in CMS4 subtyped and unclassified PDXs was
observed. When analyzed in the context of CNA clusters, REG
significantly attenuated MVD in CNA low cluster 1 (P ¼ 0.0286),
although the authors note the low sample size in this group, limiting
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conclusions. MVD had no significant effect on CD31 expression in
CNA intermediate cluster 2 or CNA high cluster 3 (Supplementary
Fig. S2A).

Gene-based proliferation signature predicts favorable REG
response in CMS4 models

REG prevents the phosphorylation of intracellular moieties that are
often involved in the processes of cell proliferation via targeting of
multiple active kinome sites. Thus, we next sought to interrogate the
antiproliferative effect of REG in the context of CMS and CNA
subtypes. We also examined whether pre-treatment proliferation was
correlated with treatment outcome. Available pre- and post-treatment
REG (n¼ 38) and vehicle (n¼ 38) FFPE PDXmaterial was stained for
human-specific Ki-67 to determine proliferation indices. Following
28 days of treatment, Ki-67 was significantly decreased in REG
compared with vehicle-treated tumors when the entire PDX cohort
was evaluated [mean proliferation index 47.391� 1.875 SEM(vehicle),
40.979 � 2.046 SEM (REG) P ¼ 0.0386; Fig. 2A]. Analysis of post-
treatment Ki-67 expression revealed no significant correlation with
changes in tumor volume following REG treatment [R ¼ 0.1351, P ¼
0.4186; Fig. 2B (post-treatment); pre-treatment data not shown].
When analyzed in the context of CMS, REG significantly reduced

proliferation in CMS1 tumors (P ¼ 0.0108; Fig. 2C). We observed a
non-significant trend toward decreased proliferation inCMS2, 3, and 4
tumors (P¼ 0.2624,P¼ 0.0502, andP¼ 0.0931, respectively;Fig. 2C).
REGdid not differentially affect proliferation in tumorswhen analyzed
in the context of CNA clusters (Supplementary Fig. S2B).

Next, using the publicly available transcriptomics data from the
same PDX models (i.e., REG-naïve cohort, transcriptomics data
available at GSE76402), we investigated whether a proliferation capac-
ity score, determined by the application of an established 11-gene
“proliferation signature” (28) to each PDX model, could predict REG
treatment outcome. The proliferation capacity score was determined
by averaging the normalized gene expression values measured in
each pre-treatment tumor. Across the entire PDX cohort, no relation-
ship between proliferation capacity score and tumor response to REG
was evident (data not shown). When analyzed in the context of
CMS subtype, no significant correlation was observed between pro-
liferation capacity score and response to REG in CMS1 or CMS2
(Pearson; CMS1; R ¼ �0.5335, P ¼ 0.1390; CMS2; R ¼ �0.7527,
P ¼ 0.2473; Fig. 2C). The ability of proliferative capacity score to
predict REG response could not be analyzed in the CMS3 subtype due
to a low number of CMS3 PDX tumors. However, a significant linear
correlation was observed in CMS4 PDXs (Pearson, R ¼ 0.6798,

Figure 2.

Gene-based proliferation score is a predictor of REG response in CMS4 PDXs. A, Ki-67 staining of pre- and post-treatment tumor material reveals that after 4 weeks
REG-treated tumors have lower proliferation than the vehicle-treated tumors (n¼ 38 vehicle, n¼ 38 REG, P¼ 0.0386). B, Post-treatment Ki67 expression does not
correlate with changes in PDX tumor volume. C, REG effects on tumor cell proliferation determined by Ki-67 staining, analyzed according to CMS subtypes. Mean is
presented for each subtype (CMS1 n ¼ 10, CMS2 n ¼ 3, CMS3 n ¼ 2, CMS4 n ¼ 9, N/A n ¼ 14). Error bars indicate SEM. D, Gene-based proliferation gene score
generated fromhistorical PDXgene expression (REG-naïve) data (GSE76402) does not correlatewith later therapeutic response in CMS1 (n¼9,P¼0.1390) or CMS2
(n ¼ 4, P ¼ 0.2473) PDXs. A significant (n ¼ 9, R ¼ 0.6798, P ¼ 0.0440) linear correlation between gene-based proliferation score percentage of change in tumor
volumes indicates that the proliferative score may predict tumor response in the CMS4 subtype.

Lafferty et al.

Clin Cancer Res; 27(21) November 1, 2021 CLINICAL CANCER RESEARCH5984

D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/27/21/5979/2989535/5979.pdf by guest on 09 M

arch 2022



P ¼ 0.0440; Fig. 2C), highlighting the potential utility of tumor
proliferation capacity score as a predictor of response inCMS4 tumors.
No significant correlation was observed between PDX proliferation
score and CNA cluster (Supplementary Fig. S2C).

DR_MOMP identifies PDX susceptibility to genotoxic stress and
predicts REG response in the CMS4 subtype

REG is known to affect apoptotic pathways through activation
of the BH3-only protein PUMA (5). Thus, we next used the
systems-based tool, DR_MOMP, to determine whether the pre-
dicted sensitivity of a PDX model to undergo MOMP (and thus,
apoptosis) was related to the observed REG response. To generate
input data for the DR_MOMP model, quantitative Western blots
were performed using FF REG-naïve tumor material from the n ¼
43 pre-treatment PDX models. Absolute protein levels of BAK,
BAX, BCL-2, BCL-xL, and MCL-1 were determined (Supplemen-
tary Figs. S3–S6; Fig. 3A and B). Using these data, DR_MOMP
calculates a numerical value for each PDX model (based on the
predicted levels of BH3-only proteins required to induce MOMP),
indicating how resistant or sensitive it is to MOMP induction, and
therefore to apoptosis (29). The higher the calculated “stress-dose”
required to induce MOMP, the more apoptosis resistant the tumor
is predicted to be. Although quantified levels of BCL-2 family
proteins varied between subtypes, there were no CMS or CNA
subtype-specific differences in the stress-dose required to induce
MOMP when apoptosis sensitivity was estimated at a systems level
(P ≥ 0.05 across all groups; Fig. 3C and D). To determine whether
the calculated stress-dose required to induce MOMP could be used
as a predictive marker of tumor response to REG in specific CMS
subtypes, correlation analysis was performed (Fig. 3E). No signif-
icant correlation was observed in CMS1 or 2. As noted previously,
the ability of DR_MOMP to predict REG response could not be
analyzed in the CMS3 subtype due to a low number of CMS3
PDX models. In CMS4 PDX models, a significant positive correlation
between the predicted stress-dose required to induce MOMP and
tumor growth was apparent (r ¼ 0.7013; P ¼ 0.0353). This highlights
the potential utility of DR_MOMP as a predictor of REG response
within CMS4. When analyzed in the context of CNA clusters, a
significant positive correlation was also seen between the predicted
stress-dose required to induce MOMP and PDX tumor volume in
CNA high cluster 3 (r ¼ 0.6056; P ¼ 0.0006; Fig. 3F).

RPPA analysis identifies proteomic clusters of distinct
activated/deactivated signaling pathways

To provide hints toward novel contexts of vulnerability and future
REG combination approaches, we next used an RPPA approach to
explore whether REG treatment responses were related to differences
in cell signaling pathways before treatment. We generated RPPA data
for 72 signaling phospho-proteins from 39 of the 43 FF REG-naïve
pretreatment PDX samples (4 samples were removed due to poor
quality). The phospho-proteins chosen are involved in several
key pathways, including cell proliferation, invasiveness signaling,
energetics/hypoxia, and apoptosis/DNA repair/stress signaling. First,
we performed unsupervised consensus clustering on the RPPA
data, which identified four distinct RPPA clusters, termed C1, C2,
C3, and C4, based on the protein profiles. Clusters C1–4 contained 6,
17, 14, and 2 PDX models, respectively (Fig. 4A). We found that
samples in RRPA cluster C1 showed significantly highermean levels of
proteins involved in cell proliferation, including phosphorylated
MAPK kinase 1/2 (MEK1/20S217), RAC-alpha serine/threonine–
protein kinase (AKT), and phosphorylated S6K-alpha-1 [(RSK)

S380] compared with clusters C2, C3, and C4 (ANOVA and Tukey’s
post hoc, P < 0.05). Samples in RPPA cluster C2 showed higher
mean levels of pro-apoptotic protein Pro-Caspase-3 compared with
clusters C1, C3, and C4 (ANOVA and Tukey post hoc, P < 0.05).
Samples in RPPA cluster C3 were found to have greater mean levels
of the pro-apoptotic protein BAX, along with proteins involved in
proliferation (MEK-1) and phosphorylated cyclin-dependent kinase
inhibitor 1B ([p27]T157) compared with clusters C1, C2, and C4
(ANOVA and Tukey post hoc, P < 0.05). In contrast, we found
significantly lower mean phosphorylated STAT3(Y705) levels in C3
compared with C1, C2, and C4. RPPA cluster C4 was not signif-
icantly associated with any proteins due to its low number of
samples (n ¼ 2).

Next, we investigated whether the RPPA clusters were associated
with response to REG. RPPA cluster C2 was found to contain all of
the PDX models that displayed stable disease upon REG treatment,
that is, non-progressors (n ¼ 6), although C2 also contained
progressive disease models (n ¼ 11). In contrast, C1, C3, and C4
contained only PDX models that progressed under REG treatment
(n ¼ 22; Fig. 4B i). Examination of the CMS subtypes of models
present in RPPA cluster C2 revealed that 4 samples belonged
to CMS1 (from a total 8 CMS1 cases), 5 to CMS4 (from a total
9 CMS4 cases), and 8 were unassigned (from a total of 17 CMS-
unassigned cases; Fig. 4B ii). Of the 6 C2 non-progressor models, 4
were CMS4, whereas 2 were of unassigned CMS subtype. None of
the 4 C2 models that were categorized as CMS1 responded to
treatment (Fig. 4B ii). There were 4 CMS4 models present in
clusters C3 and C4 that showed no response to REG.

We sought to further characterize the biology underpinning
response to REG by analyzing the interaction between CMS sub-
types and RPPA clusters in REG-naïve PDX models. To this end, we
fitted a classification decision tree to predict response to REG
[stabilization (i.e., non-progression) vs. progression] in the available
39 PDX models assigned to both a CMS subtype (CMS1–4 or
unassigned) and an RPPA cluster (C1–4). The trained decision tree
could discriminate non-progressor REG-treated PDX models (4 out
of 6, 67% specificity) from progressor REG-treated PDX models (32
out of 33, 97% sensitivity) with 92% overall accuracy. We observed
similar performance (overall accuracy: 90%, specificity: 67%, sen-
sitivity: 94%) when assessing classification metrics from a leave-
one-out cross-validation scheme, confirming the robustness of our
results. The classification decision tree (Fig. 4C) highlights
how PDXs from RPPA clusters C1, C3, and C4 (22 out of 39,
56%) were predicted to progress (0% actual stabilization). Similarly,
PDXs from C2 with CMS subtypes CMS1 or unassigned (12 out of
39, 31%) were predicted to progress (2 out of 12, 17% actual
stabilization). In contrast, PDXs from C2 with CMS subtypes
CMS2–4 (5 out of 39, 13%) were predicted to stabilize (4 out of
5, 80% actual stabilization).

We also analyzed the identified CNA clusters in the context of
RPPA clusters. The CNA clusters were equally distributed among
RPPA clusters C1-C4 (Fisher test, P < 0.62; Fig. 4A). However, 5 of
the 6 C2 samples that displayed disease stabilization with REG
treatment were in CNA high cluster 3. The remaining PDX models
in RPPA C2 were in CNA intermediate cluster 2 (Fisher test,
P < 0.7; Fig. 4B iii).

Finally, we performed an analysis of individual proteins associated
with treatment response to REG, independent of any cluster allocation,
using predictive analysis of microarray. We found cleaved Caspase-9,
Baculoviral IAP repeat-containing protein 2 (C-IAP1), and BCL-2
(T56) levels to be significantly associated with response to REG
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Figure 3.

Apoptosis sensitivity score is a predictor of REG outcome in CMS4 and CNA high subtyped mCRC PDX models. A and B, Absolute concentrations of BCL2 family
proteins were quantified in pre-treatment PDX models (n ¼ 43) for each CMS subtype (A) and CNA cluster (B; displayed as mean expression per group). C and D,
Calculated apoptosis sensitivity scores for each CMS subtype (C) and CNA cluster (D). E,Apoptosis sensitivity score does not correlate with therapeutic outcome in
CMS1 (n¼9) or CMS2 (n¼4) PDXs. A significant n¼9 linear correlation between apoptosis sensitivity score and change in tumor volume indicates that the apoptosis
sensitivity scoremay predict tumor outcome in the CMS4 subtype. F, Stress-dose required to induceMOMP does not correlate with therapeutic outcome in CNA low
cluster 1 (n ¼ 3) or CNA intermediate cluster 2 (n ¼ 12) PDXs. A significant (n ¼ 27, R ¼ 0.7013, P ¼ 0.0006�) linear correlation between the predicted stress-dose
required to induce MOMP and change in tumor volume predicts response in CNA high cluster 3 PDXs.
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Figure 4.

RPPA analysis reveals four phospho-protein clusters.A, Heatmap showing the level of phospho-proteins as determined by RPPA. PDXmodels were annotated with
cluster number, response to REG, CMS subtype, and CNA cluster information. B, Chord diagrams show overlap between RPPA clusters and response to REG. Chord
diagramsB ii and iii shows the CMS subtype (B ii) andCNA cluster (B iii) information for PDXs grouped into RPPA cluster C2.C,Classification decision tree trained on
assignments from RPPA clusters and CMS subtyping predicts response to REG treatment. Each node is annotated with the predicted treatment response
(stabilization vs. progression), purity (probability of response), and percentage of samples. D, Bar plot showing proteins predicting response to treatment in RPPA
cluster C2 as determined by PAM.
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(Supplementary Fig. S7). Furthermore, when analysis was limited to
the 17 PDXmodels of RPPA cluster C2, C-IAP1,MEK1/2, andBCL-xL
levels were significantly associated with response to treatment
(Fig. 4D).

Supervised transcriptomic analysis identifies genes associated
with REG therapeutic response
Transcriptomic analysis of post-treatment PDX models

Finally, to interrogate a putative subtype-specific REG mecha-
nism of action, we used kinase outlier analysis (38). Post-treatment
tumor material from the previously identified progressor [n ¼ 3
(all CMS1) and non-progressor (n ¼ 5; n ¼ 3 CMS4, n ¼ 2
CMS unclassified)] mice were initially used in this analysis. Vehicle
control– and REG-treated PDX material was processed for RNA
sequencing, which was performed at a depth of 50 million reads.
Unsupervised clustering revealed >300 genes that were differentially
expressed between non-progressor and progressor PDX models
(P ≤ 0.05; � 2.0 ≥ � ≥ þ 2.0; data not shown). Subsequent
supervised clustering, revealed that of known REG targets,
UGT1A1, MAPK11, EPHA2, and CYP2B6 were differentially
expressed in non-progressor versus progressor models. UGT1A1,
MAPK11, and EPHA2 were more highly expressed in the models
that progressed whereas CYP2B6 was expressed more highly in the
non-progressor models (Fig. 5A).

Supervised analysis of (REG-naïve) PDX expression data
Using supervised outlier analysis of PDX microarray data

[previously generated from earlier passages of the same PDX
models (i.e., REG naïve); transcriptomic data available at
GSE76402], we next sought to investigate whether basal expression
of the REG targets identified in the supervised analysis could predict
later outcome to REG therapy. We found that only EPHA2 was
differentially expressed at a basal level in REG-naïve PDXs. Further
analysis revealed a significant positive linear correlation between
basal EPHA2 expression values and later treatment outcome within
the entire PDX cohort [Fig. 5B; R ¼ 0.3116; 95% CI, 0.008425–
0.5624; P ¼ 0.0445).

To determine whether differential transcriptomic changes
were also evident at the protein level, and to further validate these
findings, we performed Western blot analysis using available
PDX tissue taken pre- and post-REG treatment. WB analysis
confirmed that pre- and post-treatment EPHA2 protein expression
is higher in PDX models that progressed following REG treatment
compared with non-progressor models (Supplementary Fig. S8).

Discussion
To our knowledge, this is the first multilayered preclinical

biomarker study to adopt functional, pathway-, and systems-based
multi-omic analyses to simultaneously interrogate the putative role
of novel colorectal cancer subtypes as biomarkers for REG. Here, we
have shown that PDX models replicate a subtype-specific drug
response observed in the hypothesis-generating retrospective anal-
ysis of CORRECT trial data, where CMS4 patients show best
response to REG treatment (19, 20). Moreover, data from PDXs
with intermediate/high CNA profiles suggest a favorable response
to REG. We observed that tumor proliferation capacity score (using
a pre-established 11-gene “proliferation signature”) as well as
apoptosis sensitivity were predictive of overall tumor response to
REG in CMS4 PDXs (P ¼ 0.044 and P ¼ 0.035, respectively). RPPA
analysis revealed four phospho-protein–based clusters. Only cluster

C2 contained REG-responsive models, which were also character-
ized by a significantly higher level of Pro-Caspase-3. A classification
decision tree identified a sub-population of PDXs composed of
cluster C2 and subtypes CMS2–4 enriched for REG non-progres-
sors. Finally, differential gene expression analysis of post-treatment
tumors (best and worst responders) revealed a potential role for
EPHA2 in mediating resistance to REG. Its potential utility as a
predictive biomarker of REG response was revealed through anal-
ysis of basal gene expression levels.

A PDX population study was implemented, with models selected
to reflect both the incidence of mutations in the global human
colorectal cancer population while also considering CMS. The 1� 1
� 1 experimental approach using mRECIST criteria has previously
been shown to effectively facilitate the assessment of drug response
across a large number of models to determine population-based
response rates (36). REG response was not related to the mutation
status of PDXs. Analysis by CMS subtype revealed that REG effects
on tumor growth delay recapitulated the hypothesis-generating
results observed by Teufel and colleagues (19) in the clinical setting.
However, we note that modest disease control was the best observed
response in the PDX trial and that REG treatment caused disease
stabilization/progression in the PDX cohort at a similar frequency
to that reported in a retrospective study of REG-treated patients
with mCRC (39).

Figure 5.

Expressionoutlier analysis reveals differential profiles of keyREG target genes in
CMS4/NA (REG non-progressor) versus CMS1 (REG progressor) PDX models.
A, Supervised hierarchical clustering identifies differential expression of key
REG targets in post-treatment CMS4/unassigned REG non-progressor models
(n¼ 5) versus CMS1 (n¼ 3) REG progressor PDXmodels. B,A significant (n¼ 41
R ¼ 0.3116, P ¼ 0.0445) linear correlation between basal EPHA2 expression
[identified from mining of historical (REG-naïve) PDX gene expression data
(GSE76402)] and the effect of REG on tumor volume indicates that EPHA2
expression may predict tumor response to REG irrelevant of the CMS subtype.
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Previously, we identified three distinct patient subgroups based
on CNA profiles that were able to predict outcome to bevacizumab
combination treatment (14). This work further suggested an overlap
between CMS subtypes and CNA clusters, with enrichment of
CMS1/3 in CNA low cluster 1 and enrichment of CMS2/4 in CNA
intermediate cluster 2 and CNA high cluster 3 (14). The overlap
between CNA clusters and CMS subtypes provides an insight
into the biological characteristics that may underpin this response.
CMS2 tumors have been found to have more frequent copy-
number gains in oncogenes and copy-number losses in tumor-
suppressor genes (40). Evidence suggests a link between chromo-
somal instability and a chronically inflamed tumor microenviron-
ment (41, 42). Indeed, the mesenchymal CMS4 subtype is charac-
terized by tumors with a high CNA load and a pro-angiogenic,
inflammatory immunosuppressed environment (16, 43). Therefore,
it is possible that tumors characterized by high chromosomal
instability (i.e., CNA cluster 2 and 3) and an inflamed microenvi-
ronment, may benefit from treatment with REG. Supporting this
hypothesis, all PDXs (n ¼ 3) assigned to CNA low cluster 1
progressed under REG treatment. However, the low sample num-
bers in cluster 1 are acknowledged and further studies are required
to confirm this effect.

We next sought to determine whether the positive effect of REG
observed in CMS4-subtyped PDXs was mediated through an anti-
angiogenic effect. Following 28 days of treatment, CD31 expression
across the entire PDX cohort was lower in REG-treated comparedwith
vehicle-treated PDX tumors (Fig. 1C and D). Although there was a
significant decrease in CD31 expression in CNA low cluster 1 tumors
(Supplementary Fig. S2A), limited conclusions can be drawndue to the
small sample size in this cluster. Moreover, as these tumors are largely
resistant to treatment this effect is unlikely to be of significant
mechanistic relevance. Our data suggest that the observed putative
REG subtype–specific activity is unlikely to be mediated by a differ-
ential anti-angiogenic response.

It has been well documented that REG inhibits proliferation in
tumor cells through inhibition of MAPK and ERK signaling (44, 45).
Here, this effect is also observed across our PDX cohort (Fig. 2A;
P ¼ 0.0386). Subtype-dependent analysis revealed that Ki-67
expression post-treatment was significantly lower in REG-treated
CMS1 tumors compared with CMS1 vehicle controls, yet average
responses were numerically similar across all CMS subtypes. To
investigate whether antiproliferative activity was predictive of REG
responses overall and between subtypes, we analyzed an 11-gene
proliferation signature using REG-naïve PDX gene expression
data (28). Our analysis revealed a significant (P ¼ 0.044) correlation
between change in tumor volume and proliferation capacity score
within the CMS4 subtype. CMS4 tumors with a low proliferation
capacity score displayed disease stabilization whereas CMS4 tumors
with a high proliferation capacity score displayed disease progres-
sion. Conversely, no significant correlations were observed between
change in tumor volume and proliferation capacity score in CMS1.
As observed in previous clinical studies (19, 20), tumors assigned to
CMS1 received no benefit from REG therapy. Despite enrichment of
BRAF mutations [Fig. 3D; in Guinney and colleagues (16)], there is
heterogeneity in oncogenic/cell proliferation pathways in the
CMS1 subtype. Such heterogeneity was similarly observed in the
current study. The low number of CMS3 PDXs precluded mean-
ingful assessment of the predictive capability of the gene-based
proliferation signature in this subtype. We note that the accuracy of
CMS3 classification is generally low, highlighting inherent difficul-
ties with correlative analyses in this subtype (21).

As REG is also known to affect apoptotic pathways (5), we next
sought to investigate whether this cancer hallmark effect was related to
tumor subtype. We used a validated systems biology model of apo-
ptosis (DR_MOMP; refs. 29, 46, 47) to predict tumor sensitivity to
undergo apoptosis following treatment. A significant positive corre-
lation between the predicted stress-dose required to induce MOMP
and PDX treatment response was seen in CMS4 tumors, and in tumors
assigned toCNAhigh cluster 3. Specifically, CMS4 tumors predicted to
be apoptosis resistant (and to require a higher stress-dose to induce
MOMP) were less vulnerable to REG treatment, compared with those
predicted to be apoptosis sensitive (and to require a lower stress-dose
to induceMOMP). This correlationwas not evident in CMS1 or CMS2
tumors.Moreover, given the previously identified overlap of the CMS4
subtype with CNA high cluster 3 (14), DR_MOMP was also
predictive in this CNA cluster. Previous studies have shown that
REG-induced upregulation of the BH3-only protein PUMA pro-
motes chemosensitization and apoptosis in colorectal cancer cell
lines (5). Although our results highlight the potential utility of
DR_MOMP as a predictor of response to REG within the CMS4
subtype, our data also suggest that apoptosis could be a key
targetable pathway in CMS4 tumors. For example, CMS4 tumors
with a high DR_MOMP score could benefit from a REG combi-
nation with a BCL2 antagonist. The proliferation and apoptosis
signatures presented, which identifies REG non-progressors within
the CMS4 subtype, are amenable to the molecular pathology setting,
and could serve as stratification tools for REG in the clinic.

Signaling pathway status in PDX models was studied by RPPA, a
sensitive method that can detect levels of phospho-proteins (48).
Among the identified RPPA clusters, we observed that non-
progressor PDX models were only evident in cluster C2. The PDX
models in RPPA cluster C2 were hallmarked by a significantly higher
level of Pro-Caspase-3. Although we did not have the CMS status for 8
of the 17PDXmodels of C2, 44%of the definedmodels wereCMS1 and
56% CMS4. Interestingly, 4 of the 5 CMS4 tumors in RPPA cluster C2
responded to REG. In contrast, the remaining 4 CMS4 models (found
in the RPPA cluster C3 and C4) showed no response to REG,
suggesting that almost exclusively, CMS4 tumors of the RPPA C2
subtype are responsive to REG. The CMS4 subtype is characterized by
higher level of TGF-b signaling, angiogenesis, complement activation
as well as stromal infiltration and immune upregulation (16). We also
observed that the CMS4 subtype within RPPA cluster C2 compared
with CMS4 in other clusters have differences in protein level of PCNA-
interacting partner (PARI; PARP-1), Caspase-3, and serine/threonine-
protein kinase mTOR, suggesting that further studies based on these
individual proteins might be useful to model the REG response.
Moreover, RRPA cluster C2 also contained a higher proportion of
CNA intermediate cluster 2 andCNAhigh cluster 3 tumors (94% inC2
compared with 84% overall). These observations suggest that together,
CMS4 subtype, a high CNA burden, and a low predicted stress-dose
required to induce MOMP could be predictive for response to REG.
These data require further validation in a larger cohort due to the low
sample size in CNA low cluster 1 (n ¼ 3).

To interrogate subtype-specific REG mechanism of action, post-
treatment PDX tumors (from both REG- and vehicle-treated best
andworst responders) from the 5models identified as non-progressors
(n ¼ 3 CMS4 and n ¼ 2 CMS unassigned) and 3 models identified as
progressors (CMS1) were subjected to gene expression analysis.
Supervised clustering revealed that known REG targets UGT1A1,
MAPK11, and EPHA2 were more highly expressed in the models that
progressedwhereasCYP2B6was expressedmore highly inmodels that
did not progress following treatment. Next, gene expression analysis
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of the identified targets (UGT1A1, MAPK11, EPHA2, and CYP2B6)
was performed using available microarray data (GSE76402, open
access) from the same cohort of PDX tumors (i.e., to investigate
basal levels of gene expression in REG-naïve tumor material).
EPHA2 was found to be differentially expressed across the PDXs
at a basal level. Subsequent correlation analysis revealed that
EPHA2 expression values were positively correlated with models
that were resistant to REG (Fig. 5). These findings were validated by
Western blot analysis of EPHA2 protein in the same PDX models.
EPHA2 is a known target of REG (4) and has been shown to
modulate angiogenesis and metastasis in several cancers (49–51).
Moreover, it has been associated with poor outcome and has been
implicated in resistance to FOLFIRI þ cetuximab combination
therapy in colorectal cancer (52). The EPHA2 tyrosine kinase
receptor has been implicated in tumor progression, stemness, and
resistance to treatment in a number of cancers (53). Moreover,
disruption of EPHA2 signaling in preclinical models of non–small
cell lung cancer and mCRC has been shown to impair tumor cell
proliferation, and viability while inducing apoptosis (54, 55). It is
possible that REG may convey a therapeutic benefit in CMS4
through such mechanisms, and that increased expression of EPHA2
could be a potential resistance mechanism in patients that progress
following REG treatment. Although expression levels of EPHA2
may predict REG outcome in CMS4 tumors, these data also suggest
that REG delivered in combination with a novel EPHA2 inhibitor
(e.g., GLPG1790; ref. 53) or of an EPHA2-targeted nanotherapeu-
tic (56) could improve response. REG has previously been shown to
inhibit EPHA2 in the in vitro setting (110–240 nmol/L; ref. 4).
Further studies are now mandated to establish the role of EphA2
kinase domain mutations in mediating REG-induced EPHA2 inhi-
bition. Clinical validation of EPHA2 as a predictive biomarker and/
or therapeutic target is also warranted.

Overall, functional and multi-omic analyses suggest that CMS4 and
CNA high tumors may respond best to REG. Within the context of
CMS4, we have presented data that support further development of an
apoptotic/proliferation signature to predict REG response.We have also
shown that tumors classified into CMS4 and RPPA subtype C2 are
almost exclusively non-progressors when treated with REG. In addition,
we have presented a classification decision tree that predicts response to
REG with higher accuracy by integrating the signaling pathways cross-
talk recapitulated by the RPPA clusters and the CMS subtyping. Col-
lectively, our data suggest that a combination of protein and gene
expression subtyping identifies the vast majority of non-progressors.
Finally, we have shown that EPHA2may be involved in a mechanism of
resistance to REG. We acknowledge that use of PDX models (estab-
lished in immunocompromised mice) precludes assessment of the
immunomodulatory effects of REG (8). Additional studies are required
to unravel these mechanisms. Overall (and as discussed elsewhere;
ref. 21), our data provide evidence that CMS and other subtype classi-
fication systems should not be used as a “one fits all tool,” but should
rather represent canonical “termini a quo” to (i) deepen knowledge of
colorectal cancer biology, (ii) support biomarker identification, and
(iii) provide a platform to identify novel contexts of vulnerability.
Including functional characterization of biological systems may also
optimize the biomarker identification process, especially for multi-
targeted MKIs where one single biomarker entity is unlikely to exist.

Authors’ Disclosures
A. Lafferty reports grants from Science Foundation Ireland during the conduct of

the study. A.C. O’Farrell reports grants from Science Foundation Ireland and
European Union’s Horizon 2020 during the conduct of the study. G. Argil�es reports

personal fees from Bayer, Servier, and Roche; grants and personal fees from Amgen;
grants fromMerck Serono; and personal fees from Sanofi outside the submitted work.
J. Tabernero reports personal fees from Array Biopharma, AstraZeneca, Avvinity,
Bayer, Boehringer Ingelheim, Chugai, Daiichi Sankyo, F. Hoffmann-La Roche Ltd.,
Genentech Inc, HalioDX SAS, Hutchison MediPharma International, Ikena Oncol-
ogy, IQVIA, Lilly,Menarini,Merck Serono,Merus,MSD,Mirati, Neophore,Novartis,
Orion Biotechnology, Peptomyc, Pfizer, Pierre Fabre, SamsungBioepis, Sanofi, Seattle
Genetics, Servier, Taiho, Tessa Therapeutics, TheraMyc, Imedex, Medscape Educa-
tion, MJH Life Sciences, PeerView Institute for Medical Education, and Physicians
Education Resource (PER) outside the submitted work. R. Dienstmann reports
personal fees from Roche, Boehringer Ingelheim, Merck Sharp & Dohme, Amgen,
Ipsen, Sanofi, Servier, and Libbs, as well as grants fromMerck andPierre Fabre outside
the submitted work. L. Trusolino reports grants from Symphogen, Servier, Pfizer,
Menarini, Merus, andMerck KGaA, as well as personal fees fromAstraZeneca, Merck
KGaA, and Eli Lilly outside the submitted work. A.T. Byrne reports grants from
Science Foundation Ireland and European Union’s Horizon 2020 research and
innovation programme during the conduct of the study. No disclosures were reported
by the other authors.

Authors’ Contributions
A. Lafferty:Data curation, formal analysis, investigation, visualization, methodology,
writing–original draft, writing–review and editing. A.C. O’Farrell: Supervision,
investigation, visualization, writing–original draft, project administration, writing–
review and editing.G.Migliardi: Formal analysis, supervision, investigation, writing–
review and editing. N. Khemka: Data curation, formal analysis, investigation,
visualization, writing–original draft, writing–review and editing. A.U. Lindner:Data
curation, formal analysis, investigation, writing–review and editing. F. Sassi:
Resources, investigation, methodology, writing–review and editing. E.R. Zanella:
Resources, supervision, writing–review and editing. M. Salvucci: Data curation,
formal analysis, investigation, writing–original draft, writing–review and editing.
E. Vanderheyden: Investigation, methodology, writing–review and editing.
E.Modave:Data curation, formal analysis, investigation, writing–review and editing.
B. Boeckx:Data curation, formal analysis, investigation, writing–review and editing.
L. Halang: Investigation, writing–review and editing. J. Betge: Resources,
data curation, writing–review and editing. M.P.A. Ebert: Resources, data curation,
writing–review and editing. P. Dicker:Data curation, formal analysis, writing–review
and editing. G. Argil�es: Resources, writing–review and editing. J. Tabernero:
Resources, writing–review and editing. R. Dienstmann: Resources, funding acqui-
sition, writing–review and editing. E. Medico: Resources, supervision, funding
acquisition, writing–review and editing. D. Lambrechts: Resources, formal analysis,
supervision, investigation, writing–review and editing. A. Bertotti: Resources, data
curation, formal analysis, supervision, funding acquisition, methodology, writing–
review and editing. C. Isella: Resources, data curation, supervision, writing–review
and editing. L. Trusolino: Conceptualization, resources, data curation, supervision,
funding acquisition, methodology, writing–review and editing. J.H.M. Prehn:
Conceptualization, resources, supervision, funding acquisition, visualization,
methodology, writing–original draft, writing–review and editing. A.T. Byrne:
Conceptualization, resources, supervision, funding acquisition, visualization,
methodology, writing–original draft, project administration, writing–review
and editing.

Acknowledgments
This research was supported by a Science Foundation Ireland (SFI) Career

Development Award “Coloforetell” (grant agreement number: 13/CDA/2183; to
A.T. Byrne). Additional funding was from AIRC, Associazione Italiana per la Ricerca
sul Cancro, Investigator Grants 20697 (to A. Bertotti), 12944 (to E. Medico), and
22802 (to L.Trusolino); AIRC 5 � 1,000 grant 21091 (to A. Bertotti, E. Medico, and
L. Trusolino); AIRC/CRUK/FC AECC Accelerator Award 22795 (to L. Trusolino);
My First AIRC grant 19047 (to C. Isella); European Research Council Consolidator
Grant 724748—BEAT (to A. Bertotti); and Fondazione Piemontese per la Ricerca
sul Cancro-ONLUS, 5 � 1,000 Ministero della Salute 2015 (to E. Medico and
L. Trusolino), 2014 and 2016 (to L. Trusolino). J.H.M. Prehn received funding from
Science Foundation Ireland and the Health Research Board (14/IA/2582, 16/US/
3301). A.T. Byrne, J.H.M. Prehn, L. Trusolino, D. Lambrechts, M.P.A. Ebert,
J. Tabernero and R. Dienstmann are further supported by the European Union’s
Horizon 2020 Health Research and Innovation award “COLOSSUS” (grant agree-
ment number: 754923). A.T. Byrne, L. Trusolino, E. Medico and A. Bertotti are
members of the EurOPDX Consortium, and receive funding from the European
Union’s Horizon 2020 research and innovation program, grant agreement no.
#731105 (EurOPDX Research Infrastructure, www.europdx.eu). We are grateful

Lafferty et al.

Clin Cancer Res; 27(21) November 1, 2021 CLINICAL CANCER RESEARCH5990

D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/27/21/5979/2989535/5979.pdf by guest on 09 M

arch 2022

http://www.europdx.eu


to Bayer Healthcare for providing REG. We thank Dr. Sandra Van Schaeybroeck
for advice regarding EPHA2 Western blot antibody.

The costs of publication of this article were defrayed in part by the
payment of page charges. This article must therefore be hereby marked

advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate
this fact.

Received March 12, 2021; revised July 5, 2021; accepted August 18, 2021;
published first August 23, 2021.

References
1. Fondevila F, M�endez-Blanco C, Fern�andez-Palanca P, Gonz�alez-Gallego J,

Mauriz JL. Anti-tumoral activity of single and combined regorafenib treat-
ments in preclinical models of liver and gastrointestinal cancers. Exp Mol
Med 2019;51:109.

2. Grothey A, Van Cutsem E, Sobrero A, Siena S, Falcone A, Ychou M, et al.
Regorafenib monotherapy for previously treated metastatic colorectal cancer
(CORRECT): an international, multicentre, randomised, placebo-controlled,
phase 3 trial. Lancet 2013;381:303–12.

3. Li J, Qin S, Xu R, Yau TC, Ma B, Pan H, et al. Regorafenib plus best
supportive care versus placebo plus best supportive care in Asian patients
with previously treated metastatic colorectal cancer (CONCUR): a rando-
mised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2015;16:
619–29.

4. Wilhelm SM, Dumas J, Adnane L, Lynch M, Carter CA, Schutz G, et al.
Regorafenib (BAY 73–4506): a new oral multikinase inhibitor of angiogenic,
stromal and oncogenic receptor tyrosine kinases with potent preclinical anti-
tumor activity. Int J Cancer 2011;129:245–55.

5. Chen D, Wei L, Yu J, Zhang L. Regorafenib inhibits colorectal tumor
growth through PUMA-mediated apoptosis. Clin Cancer Res 2014;20:
3472–84.

6. Arai H, Battaglin F, Wang J, Lo JH, Soni S, Zhang W, et al. Molecular insight
of regorafenib treatment for colorectal cancer. Cancer Treat Rev 2019;81:
101912.

7. Abou-Elkacem L, Arns S, Brix G, Gremse F, Zopf D, Kiessling F, et al.
Regorafenib inhibits growth, angiogenesis, and metastasis in a highly aggressive,
orthotopic colon cancer model. Mol Cancer Ther 2013;12:1322–31.

8. Hoff S, Gr€unewald S, R€ose L, Zopf D. Immunomodulation by regorafenib alone
and in combination with anti-PD1 antibody on murine models of colorectal
cancer. Ann Oncol 2017;28:v423.

9. Tabernero J, Lenz HJ, Siena S, Sobrero A, Falcone A, Ychou M, et al. Analysis of
circulating DNA and protein biomarkers to predict the clinical activity of
regorafenib and assess prognosis in patients with metastatic colorectal cancer:
a retrospective, exploratory analysis of the CORRECT trial. Lancet Oncol 2015;
16:937–48.

10. Lambrechts D, K€ochert K, Schulz A, Vonk R, RutsteinM, Kobina S, et al. PD-003
analysis of single-nucleotide polymorphisms (SNPs) in the phase 3 CORRECT
trial of regorafenib vs placebo in patients with metastatic colorectal cancer
(mCRC). Ann Oncol 2016;27:ii102.

11. K€ochert K, Beckmann G, Teufel M. Exploratory analysis of baseline microsat-
ellite instability (MSI) status in patients with metastatic colorectal cancer
(mCRC) treated with regorafenib (REG) or placebo in the phase 3 CORRECT
trial. Ann Oncol 2017;28:mdx393.060.

12. Ducreux M, Petersen LN, €Ohler L, Bergamo F, Metges J-P, Groot JW, et al.
Outcomes by tumor location in patients with metastatic colorectal cancer
(mCRC) treated with regorafenib (REG): final analysis from the prospective,
observational CORRELATE study. J Clin Oncol 2019;37:539.

13. Suenaga M, Mashima T, Kawata N, Wakatsuki T, Horiike Y, Matsusaka S, et al.
Serum VEGF-A and CCL5 levels as candidate biomarkers for efficacy and
toxicity of regorafenib in patients with metastatic colorectal cancer. Oncotarget
2016;7:34811–23.

14. SmeetsD,Miller IS, O’ConnorDP,Das S,MoranB, Boeckx B, et al. Copy number
load predicts outcome of metastatic colorectal cancer patients receiving bev-
acizumab combination therapy. Nat Commun 2018;9:4112.

15. Singh MP, Rai S, Pandey A, Singh NK, Srivastava S. Molecular subtypes of
colorectal cancer: an emerging therapeutic opportunity for personalized med-
icine. Genes Dis 2019;8:133–45.

16. Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C, et al.
The consensus molecular subtypes of colorectal cancer. Nat Med 2015;21:
1350–6.

17. Fridman WH, Miller I, Saut�es-Fridman C, Byrne AT. Therapeutic targeting of
the colorectal tumor stroma. Gastroenterology 2020;158:303–21.

18. Martini G, Dienstmann R, Ros J, Baraibar I, Cuadra-Urteaga JL, Salva F, et al.
Molecular subtypes and the evolution of treatment management in metastatic
colorectal cancer. Ther Adv Med Oncol 2020;12:1758835920936089.

19. Teufel M, Schwenke S, Seidel H, Beckmann G, Reischl J, Vonk R, et al.
Molecular subtypes and outcomes in regorafenib-treated patients with
metastatic colorectal cancer (mCRC) enrolled in the CORRECT trial.
J Clin Oncol 2015;33:3558.

20. Vogel A, Hofheinz RD, Kubicka S, Arnold D. Treatment decisions in metastatic
colorectal cancer—beyond first and second line combination therapies.
Cancer Treat Rev 2017;59:54–60.

21. Sveen A, Cremolini C, Dienstmann R Predictive modeling in colorectal
cancer: time to move beyond consensus molecular subtypes. Ann Oncol
2019;30:1682–5.

22. Isella C, Brundu F, Bellomo SE, Galimi F, Zanella E, Porporato R, et al. Selective
analysis of cancer-cell intrinsic transcriptional traits defines novel clinically
relevant subtypes of colorectal cancer. Nat Commun 2017;8:15107.

23. Medico E, Bertotti A, Isella C, Bellomo SE, Brundu F. CRIS, a superior predictive
and prognostic classification system of colorectal cancer based on high-
resolution analysis of cancer cell-autonomous traits II. Gene Expression Omni-
bus (GEO): NCBI; 2015.

24. Eide PW, Bruun J, Lothe RA, Sveen A. CMScaller: an R package for consensus
molecular subtyping of colorectal cancer preclinical models. Sci Rep 2017;7:
16618.

25. Bertotti A, Migliardi G, Galimi F, Sassi F, Torti D, Isella C, et al. A molecularly
annotated platform of patient-derived xenografts (“xenopatients”) identifies
HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer.
Cancer Discov 2011;1:508–23.

26. Beroukhim R, Getz G, Nghiemphu L, Barretina J, Hsueh T, Linhart D, et al.
Assessing the significance of chromosomal aberrations in cancer: methodology
and application to glioma. Proc Natl Acad Sci U S A 2007;104:20007–12.

27. Schneider CA, RasbandWS, Eliceiri KW.NIH image to ImageJ: 25 years of image
analysis. Nat Methods 2012;9:671–5.

28. Nielsen TO, Parker JS, Leung S, Voduc D, Ebbert M, Vickery T, et al. A
comparison of PAM50 intrinsic subtyping with immunohistochemistry and
clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast
cancer. Clin Cancer Res 2010;16:5222–32.

29. Lindner AU, Concannon CG, Boukes GJ, Cannon MD, Llambi F, Ryan D, et al.
Systems analysis of BCL2 protein family interactions establishes a model to
predict responses to chemotherapy. Cancer Res 2013;73:519–28.

30. Xu T, Le TD, Liu L, Su N, Wang R, Sun B, et al. CancerSubtypes: an R/
Bioconductor package for molecular cancer subtype identification, validation,
and visualization. Bioinformatics 2017;33:3131–3.

31. Hastie T, Tibshirani R, Nrasimhan B, Chu G. pamr: Pam: Prediction Analysis
for Microarrays. R package version 1.56.1. [cited 2020 Oct 21]. Available
from: https://cran.r-project.org/web/packages/pamr/index.html.

32. Tibshirani R, Seo M, Chu G, Narasimhan B, Li J. samr: SAM: significance
analysis of microarrays. R package version 3.0. [cited 2020 Oct 21]. Available
from: https://cran.r-project.org/web/packages/samr/index.html.

33. Cuppens T, Moisse M, Depreeuw J, Annibali D, Colas E, Gil-Moreno A, et al.
Integrated genome analysis of uterine leiomyosarcoma to identify novel driver
genes and targetable pathways. Int J Cancer 2018;142:1230–43.

34. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550.

35. RCoreTeam. R: a Language and Environment for Statistical Computing 2012.
Available from: https://www.R-project.org.

36. Gao H, Korn JM, Ferretti S, Monahan JE, Wang Y, Singh M, et al. High-
throughput screening using patient-derived tumor xenografts to predict clinical
trial drug response. Nat Med 2015;21:1318–25.

37. Motulsky HJ. Prism 4 Statistics Guide - Statistical analyses for laboratory and
clinical researchers. GraphPad Software Inc., San Diego CA, 2003. Available
from: www.graphpad.com.

Subtyping and Pathway Analysis to Study Regorafenib in PDXs

AACRJournals.org Clin Cancer Res; 27(21) November 1, 2021 5991

D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/27/21/5979/2989535/5979.pdf by guest on 09 M

arch 2022

https://cran.r-project.org/web/packages/pamr/index.html
https://cran.r-project.org/web/packages/samr/index.html
https://www.R-project.org
www.graphpad.com


38. Medico E, Russo M, Picco G, Cancelliere C, Valtorta E, Corti G, et al. The
molecular landscape of colorectal cancer cell lines unveils clinically actionable
kinase targets. Nat Commun 2015;6:7002.

39. Aljubran A, Elshenawy MA, Kandil M, Zahir MN, Shaheen A, Gad A, et al.
Efficacy of regorafenib in metastatic colorectal cancer: a multi-institutional
retrospective study. Clin Med Insights Oncol 2019;13:1179554918825447.

40. Thanki K, Nicholls ME, Gajjar A, Senagore AJ, Qiu S, Szabo C, et al.
Consensus molecular subtypes of colorectal cancer and their clinical
implications. Int Biol Biomed J 2017;3:105–11.

41. Shivakumar BM, Rotti H, Vasudevan TG, Balakrishnan A, Chakrabarty S, Bhat
G, et al. Copy number variations are progressively associated with the patho-
genesis of colorectal cancer in ulcerative colitis. World J Gastroenterol 2015;21:
616–22.

42. Paulson TG, Maley CC, Li X, Li H, Sanchez CA, Chao DL, et al. Chromosomal
instability and copy number alterations in Barrett’s esophagus and esophageal
adenocarcinoma. Clin Cancer Res 2009;15:3305–14.

43. Becht E, de Reynies A, Giraldo NA, Pilati C, Buttard B, Lacroix L, et al. Immune
and stromal classification of colorectal cancer is associated with molecular
subtypes and relevant for precision immunotherapy. Clin Cancer Res 2016;
22:4057–66.

44. Eschbach RS, Clevert DA, Hirner-Eppeneder H, Ingrisch M, Moser M,
Schuster J, et al. Contrast-enhanced ultrasound with VEGFR2-targeted
microbubbles for monitoring regorafenib therapy effects in experimental
colorectal adenocarcinomas in rats with DCE-MRI and immunohistochem-
ical validation. PLoS ONE 2017;12:e0169323.

45. Cyran CC, Kazmierczak PM, Hirner H, Moser M, Ingrisch M, Havla L, et al.
Regorafenib effects on human colon carcinoma xenografts monitored by
dynamic contrast-enhanced computed tomography with immunohistochemical
validation. PLoS One 2013;8:e76009.

46. Lindner AU, Salvucci M, Morgan C, Monsefi N, Resler AJ, Cremona M, et al.
BCL-2 system analysis identifies high-risk colorectal cancer patients. Gut 2017;
66:2141–8.

47. Flanagan L, Lindner AU, de Chaumont C, Kehoe J, Fay J, Bacon O, et al. BCL2
protein signalling determines acute responses to neoadjuvant chemoradiother-
apy in rectal cancer. J Mol Med 2015;93:315–26.

48. Boellner S, Becker K-F. Reverse phase protein arrays-quantitative assess-
ment of multiple biomarkers in biopsies for clinical use. Microarrays 2015;
4:98–114.

49. Udayakumar D, Zhang G, Ji Z, Njauw CN, Mroz P, Tsao H. EphA2 is a critical
oncogene in melanoma. Oncogene 2011;30:4921–9.

50. Brantley-Sieders DM, Zhuang G, Hicks D, Fang WB, Hwang Y, Cates JM, et al.
The receptor tyrosine kinase EphA2 promotes mammary adenocarcinoma
tumorigenesis andmetastatic progression inmice by amplifying ErbB2 signaling.
J Clin Invest 2008;118:64–78.

51. Binda E, Visioli A, Giani F, Lamorte G, Copetti M, Pitter KL, et al. The EphA2
receptor drives self-renewal and tumorigenicity in stem-like tumor-propagating
cells from human glioblastomas. Cancer Cell 2012;22:765–80.

52. Rey JB, Launay-Vacher V, Tournigand C. Regorafenib as a single-agent in the
treatment of patients with gastrointestinal tumors: an overview for pharmacists.
Target Oncol 2015;10:199–213.

53. Vitiello PP, Mele L, Prisco C, Cardone C, Cardiello D, Poliero L, et al. 28P -
GLPG 1790, a new selective EPHA2 inhibitor, is active in colorectal cancer
cell lines belonging to the CMS4/mesenchymal-like subtype. Ann Oncol
2019;30:v8–v9.

54. Amato KR, Wang S, Hastings AK, Youngblood VM, Santapuram PR, Chen H,
et al. Genetic and pharmacologic inhibition of EPHA2 promotes apoptosis in
NSCLC. J Clin Invest 2014;124:2037–49.

55. Martini G, Cardone C, Vitiello PP, Belli V, Napolitano S, Troiani T, et al. EPHA2
is a predictive biomarker of resistance and a potential therapeutic target for
improving antiepidermal growth factor receptor therapy in colorectal cancer.
Mol Cancer Ther 2019;18:845–55.

56. KamounWS, KirpotinDB,Huang ZR, Tipparaju SK,Noble CO,HayesME, et al.
Antitumour activity and tolerability of an EphA2-targeted nanotherapeutic in
multiple mouse models. Nat Biomed Eng 2019;3:264–80.

Clin Cancer Res; 27(21) November 1, 2021 CLINICAL CANCER RESEARCH5992

Lafferty et al.

D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/27/21/5979/2989535/5979.pdf by guest on 09 M

arch 2022



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 0
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides true
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        18
        18
        18
        18
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 18
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [792.000 1224.000]
>> setpagedevice


