
Nature Nanotechnology

nature nanotechnology

https://doi.org/10.1038/s41565-023-01357-8Article

In-memory factorization of holographic
perceptual representations

Jovin Langenegger1,2, Geethan Karunaratne    1,2, Michael Hersche    1,2,
Luca Benini2, Abu Sebastian    1  & Abbas Rahimi    1 

Disentangling the attributes of a sensory signal is central to sensory
perception and cognition and hence is a critical task for future
artificial intelligence systems. Here we present a compute engine
capable of efficiently factorizing high-dimensional holographic
representations of combinations of such attributes, by exploiting
the computation-in-superposition capability of brain-inspired
hyperdimensional computing, and the intrinsic stochasticity associated
with analogue in-memory computing based on nanoscale memristive
devices. Such an iterative in-memory factorizer is shown to solve at least five
orders of magnitude larger problems that cannot be solved otherwise, as
well as substantially lowering the computational time and space complexity.
We present a large-scale experimental demonstration of the factorizer
by employing two in-memory compute chips based on phase-change
memristive devices. The dominant matrix–vector multiplication operations
take a constant time, irrespective of the size of the matrix, thus reducing
the computational time complexity to merely the number of iterations.
Moreover, we experimentally demonstrate the ability to reliably and
efficiently factorize visual perceptual representations.

One of the fundamental problems in sensory perception is
unbinding—the separation of causes of a raw sensory signal1 that
contain multiple attributes. For instance, the pixel intensities
sensed by photoreceptors result from the combination of differ-
ent physical attributes1–5. For example, the observed luminance at a
point on the sensor is a multiplicative combination of reflectance and
shading3. To be able to estimate these constituent factors, visual
perception must begin with the observed luminance and solve an
inverse problem that involves undoing the multiplication by which
the attributes were combined1,4. This factorization problem is
also at the core of other levels of conceptual hierarchy, such as
factoring time-varying pixel data of dynamic scenes into persistent
and dynamic components6–9, factoring a sentence structure into
roles and fillers10,11, and finally cognitive analogical reasoning12–16.
How these factorization problems could be efficiently solved by
biological neural circuits remains unclear. Moreover, given their

ubiquitous presence in perception and cognition, it is essential
that future artificial intelligence systems are equipped with compute
units that can efficiently perform these factorization operations
across very large problem sizes.

An elegant mathematical approach to represent the combination
of attributes is via high-dimensional holographic vectors in the context
of brain-inspired vector symbolic architectures17–20 (Supplementary
Note 1). They are holographic because the encoded information is
equally distributed over all the components of the vector. Moreover,
any two randomly drawn vectors, by virtue of their higher dimen-
sionality, are almost orthogonal to each other, that is, their expected
similarity is close to zero with a higher probability20. These vectors
can also be manipulated by a rich set of dimensionality-preserving
algebraic operations. In one approach, an object with F attributes
can be described by the element-wise multiplication of an associated
D-dimensional holographic bipolar ({−1, +1}D) vector corresponding

Received: 17 October 2022

Accepted: 21 February 2023

Published online: xx xx xxxx

 Check for updates

1IBM Research—Zurich, Rüschlikon, Switzerland. 2Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland.
 e-mail: ase@zurich.ibm.com; abr@zurich.ibm.com

http://www.nature.com/naturenanotechnology
https://doi.org/10.1038/s41565-023-01357-8
http://orcid.org/0000-0002-0805-4789
http://orcid.org/0000-0003-3065-7639
http://orcid.org/0000-0001-5603-5243
http://orcid.org/0000-0003-3141-4970
http://crossmark.crossref.org/dialog/?doi=10.1038/s41565-023-01357-8&domain=pdf
mailto:ase@zurich.ibm.com
mailto:abr@zurich.ibm.com

Nature Nanotechnology

Article https://doi.org/10.1038/s41565-023-01357-8

Object

Position

Blue

Product vector

Similarity
calculation

Green

Red

Blue

Colour
code book

Object
code book

In-memory factorizer

Disentanglement

Convolutional neural network

x

y

Position
code book

y

x
y

x

y

x

b

a

Product
vector

MVM

Distribution of the code-book values

–1 +1

Probability density function

Colour

Red

Blue

Green

Red

Blue

Green

Projection

Current estimate

Code-book
values

t.MVM

Convergence
detector

Projections

Similarity

In-memory MVM

Fig. 1 | Factorization of perceptual representations using the in-memory
factorizer. a, A visual input is first fed through a convolutional neural network
to approximately map it to a D-dimensional product vector. The generated
product vector is applied as an input to the in-memory factorizer, which contains
a unique code book of code vectors for each possible attribute. The factorizer
disentangles the product vector and predicts the correct attribute factors.
b, The in-memory factorizer iteratively searches in superposition. For each
attribute, an updated estimate is computed during every iteration by unbinding
the contribution of the other factors from the product vector. The unbound

estimate is fed through the similarity calculation with sparse activation as
nonlinearity and the projection to obtain a novel estimate, which is then fed back
to be used in the subsequent iteration. The similarity calculation is based on
MVM operations and projection is based on transposed MVM operations that
can be executed in the in-memory fashion in a crossbar array of memristive
devices by exploiting Ohm’s law and Kirchhoff’s current summation law with a
computational time complexity of 𝒪𝒪𝒪1). Moreover, the intrinsic stochasticity
associated with storing the bipolar code vectors in the array and the resulting
imprecise MVM operations serve as a key enabler for the in-memory factorizer.

http://www.nature.com/naturenanotechnology

Nature Nanotechnology

Article https://doi.org/10.1038/s41565-023-01357-8

to each attribute, which results in a unique product vector of the same
fixed dimensionality21. The element-wise multiplication operation can
be viewed as the binding operation that binds the attribute vectors and
generates the product vector. Moreover, it has recently been shown that
given the raw image of an object, a deep convolutional neural network
can be trained to approximately generate the product vector22. The
factorization problem can now be posed as the decomposition of an
exact product vector or, as in the latter case, an inexact product vector,
into its constituent attribute vectors.

In this Article, we propose a non-deterministic, non-von
Neumann compute engine that efficiently factorizes such product
vectors to obtain estimates of the constituent attributes. The compute
engine combines the emerging compute paradigm of in-memory
computing (IMC)23–25 with an enhanced variant of a resonator net-
work21,26. We introduce nonlinear sparse activation between two key
operations of the resonator network, and exploit the intrinsic
stochasticity associated with the memristive devices employed for
IMC to enhance the maximally solvable problem size. Finally, we
present a large-scale experimental demonstration using IMC
cores based on phase-change memory (PCM) technology and applica-
tions in visual perception.

In-memory stochastic factorizer with sparse
activations
The resonator network is a nonlinear dynamical system capable of
factorizing holographic vectors and is indeed a viable neural solution
to the factorization problem21,26. If there are F attributes, the resonator
network iteratively searches across a set of possible estimates referred
to as the code book associated with each attribute. For example, in
Fig. 1a, F = 3, with the attributes being object, position and colour. The
vectors associated with each code book are referred to as code vectors.
All the code vectors are randomly drawn, which makes them quasi-
orthogonal to each other in high-dimensional space, as mentioned
previously20. When each code book contains a finite set of M code
vectors, there are MF possible combinations to be searched to
factorize the D-dimensional product vector into its constituent

factors, where D ≪ MF. The product vectors could be constructed
by binding the randomly drawn code vectors or could be approxi-
mate variants that are generated by a convolutional neural
network (Fig. 1a). Factorizing these product vectors that exhibit no
correlational structure forms a hard combinatorial search problem. By
exploiting the quasi-orthogonality of the code vectors, the resonator
network is able to rapidly search through the various combinations in
superposition by iteratively unbinding all but one of the factors from
the product vector, and then projecting it into the space of possible
solutions of the considered factor. Note that in bipolar space, unbinding
is also performed via element-wise multiplication. Both similarity
search and projection operations associated with the resonator net-
work involve matrix–vector multiplication (MVM) operations where
the matrix transpires to be a fixed code book. This is highly amenable
to IMC using memristive devices27,28. As shown in Fig. 1b, the proposed
in-memory factorizer stores the code vectors on crossbar arrays of
memristive devices performing analogue in-memory MVM opera-
tions. The similarity calculation and projection are based on MVM and
transposed MVM operations, respectively. These operations can be
executed in the in-memory fashion in a crossbar array of memristive
devices by exploiting Ohm’s law and Kirchhoff’s current summation law.

The unsupervised nature of the conventional resonator
network’s deterministic search could result in checking the same
sequence of solutions multiple times across iterations, resulting
in limit cycles that prevent convergence to the optimal solution.
One of the key insights from the in-memory factorizer is that the
intrinsic stochasticity associated with memristive devices can
substantially reduce the occurrence of such limit cycles. As shown
in Fig. 2a, during the similarity calculation, the analogue in-memory
MVM results in a stochastic similarity vector. The stochasticity enables
the factorizer to break free of limit cycles and thus explore a sub-
stantially larger solution space (Fig. 2b). Note that unlike earlier
energy-based combinatorial optimization problems such as simulated
annealing29, Boltzmann machines30–33 and Hopfield networks34–36, the
in-memory factorizer is able to leverage device-level stochasticity—
as a valuable computational tool—for breaking limit cycles.

T

xblue

xred

xgreen

a b

<x, xblue>˜

x(t + 1)ˆ
x(t)ˆ

<x, xred>˜

<x, xgreen>˜

x̃

xnoise(t + 1)ˆ

xnoise(t + 2)ˆ xnoise(t + 3)ˆ

xnoise(t + 4)ˆx(t + 2)ˆ

x(t + 3)ˆ

Fig. 2 | Stochastic similarity computation, sparse activations and limit cycles.
a, The similarity calculation computes the similarities between the unbound
estimate vector ̃x and all the code vectors (for example, {xred, xgreen, xblue}). The
in-memory similarity calculation, denoted by <.,.>, is stochastic with additive
noise. The distributions of noisy similarity results projected onto a two-
dimensional space are shown in green, red and blue, respectively. Furthermore,
a winner-takes-all approach activates similarity values only above a certain
threshold (T) level, which results in a similarity vector with sparse non-zero
elements. Similarity values smaller than T are zeroed out; for example,
< ̃x, xred > is not activated (that is, zeroed), but the other two similarity values
(< ̃x, xblue > and < ̃x, xgreen >), larger than T, remain activated. The activation

threshold (T) is depicted in purple. b, Visualized by the black arrows, this figure
shows a limit cycle of length l = 4. When stuck in a limit cycle of length l, we
constantly end up checking the same l solutions. In contrast, the orange arrows
show an example trajectory of the factor’s estimates (x̂) of the in-memory
factorizer exploiting stochasticity in both similarity and projection operations,
which yields noisy estimates. For a subsequent time step, there is some
uncertainty, as visualized by the orange circles. As the search for factorization is
an iterative process, the uncertainty for the subsequent time steps increases.
Eventually, the uncertainty is high enough for the in-memory factorizer to
diverge from a limit cycle and to converge to the correct factorization in time.

http://www.nature.com/naturenanotechnology

Nature Nanotechnology

Article https://doi.org/10.1038/s41565-023-01357-8

Another limitation of the conventional resonator network is
the use of the identity function, as a linear activation, between
the similarity search and projection operations. We find that by
adopting a nonlinear winner-takes-all approach and by zeroing
out the weaker similarity values, both convergence rate and
maximally solvable problem size of the in-memory factorizer are
enhanced (Supplementary Note 2). The winner-takes-all approach
uses an activation threshold T to sparsify the similarity vector (Fig. 2a),
which was chosen on the basis of Bayesian optimization (Methods).

The resulting non-deterministic in-memory factorizer with
nonlinear sparse activations can be analysed and compared with the
state of the art using three figures of merit: dimensionality, compu-
tational complexity and operational capacity. The dimensionality
refers to the number of elements in a code vector. The computational
complexity defines the average number of operations required by
a factorizer to factorize a given product vector, where each opera-
tion refers to a D-dimensional dot-product calculation. This depends
on the problem size and number of factors. Given an upper bound
for the first two figures of merit, the operational capacity defines
the maximally solvable problem size with an accuracy of at least 99%.
To compare the operational capacity of the in-memory factorizer
with the baseline resonator network21,26, we performed extensive
simulations of the in-memory factorizer in software (Methods). As
shown in Fig. 3, the in-memory factorizer substantially enhances

the operational capacity by up to five orders of magnitude, even
when the vector dimensionality is reduced by a factor of over
four (Supplementary Fig. 1).

Large-scale experimental demonstration
Next we present an experimental realization of the in-memory
factorizer using IMC cores based on PCM devices fabricated in
14 nm complementary metal–oxide–semiconductor technology
(Methods). We employed two IMC cores, one to calculate the simi-
larities and one for the projections (Fig. 4a). Each IMC core features a
crossbar array of 256 × 256 unit cells capable of performing stochas-
tic and analogue MVM operations37. Each unit cell comprises four
PCM devices organized in a differential configuration and can be
programmed to a certain conductance value (the bipolar code
books are stored in two out of four devices). However, due to the
intrinsic stochasticity associated with crystal nucleation and growth38,
there will be a distribution of conduction values across multiple
devices in the crossbar (Fig. 4b). This distribution will become slightly
broader with time as a result of the variability associated with the
structural relaxation of the atomic configuration in each device39.
In addition to this, there is read noise that exhibits a 1/f spectral
characteristic and random telegraph noise (Supplementary Note 3
provides more details)40. The input to the IMC core is applied using a
constant-pulse-width-modulated voltage applied to all the rows of the

a
Fa

ct
or

iz
at

io
n

ac
cu

ra
cy

N
um

be
r o

f i
te

ra
tio

ns

Problem size, M3

1.0

0.8

0.6

0.4

0.2

0
104

107

106

105

104

103

102

101

100

105 106 107 108 109 1010 1011

b

Problem size, M3

Baseline
In-memory factorizer

Baseline
In-memory factorizer

104 105 106 107 108 109 1010 1011

Fa
ct

or
iz

at
io

n
ac

cu
ra

cy

N
um

be
r o

f i
te

ra
tio

ns

Problem size, M4

1.0

0.8

0.6

0.4

0.2

0
104

107

106

105

104

103

102

101

100

105 106 107 108 109 1010 1011

Problem size, M4
104 105 106 107 108 109 1010 1011

Fig. 3 | Operational capacity of the stochastic in-memory factorizer with
sparse activations. a,b, Operational capacity for F = 3 (a) and F = 4 (b). The
problem size MF is shown on the x axis, and the y axes show the accuracy (left) and
number of iterations required to solve a given problem size (right). The black
dashed lines indicate the equivalent number of dot-product operations required
for a brute-force approach to search among MF precomputed product vectors.
These lines indicate the upper limit for the operation count. For each F, we use

the smallest dimension reported by the baseline resonator network21,26, namely,
D = 1,500 for F = 3 and D = 2,000 for F = 4. The blue cross indicates the largest
problem size that is within the operational capacity of the baseline resonator
network, meaning that problems larger than that size cannot be factorized by
the baseline network at 99% accuracy, and the in-memory factorizer can solve
problem sizes at least five orders of magnitude larger at 99% accuracy, or higher.

http://www.nature.com/naturenanotechnology

Nature Nanotechnology

Article https://doi.org/10.1038/s41565-023-01357-8

Code vectors

Local digital processing unit
(LDPU)

Diagonal decoder

12
8

an
al

og
ue

-t
o-

di
gi

ta
l c

on
ve

rt
er

s

12
8

an
al

og
ue

-t
o-

di
gi

ta
l c

on
ve

rt
er

s

Input digital-to-
analog converters

Host
In memory

PCM unit cell

+ –

Wordline

Bitlines

Similarity calculation (core 1) Projection (core 2)

To
 d

ig
ita

l-t
o-

an
al

og
ue

 c
on

ve
rt

er

To
 d

ig
ita

l-t
o-

an
al

og
ue

 c
on

ve
rt

er

From analogue-to-digital converter

T

Product vector

100

75

50

25

0

–25

–50

–75

–100
–100 –75 –50 –25 0 25 50 75 100 –60 –40 –20 0 20 40 60

–10
0

0.2

0.4

0 10

b

M
ea

su
re

d

0.30

0.25

0.20

0.15

0.10

0.05

0

Si
m

ila
rit

y
va

lu
e

di
st

rib
ut

io
n

Reference Similarity valueConductance value (µS)

Pr
ob

ab
ili

ty
di

st
rib

ut
io

n

a

fρ

c

To analogue-to-digital converter

Current estimates

d

Holographic perceptual
representationRaw image Convolutional neural

network

Top electrode

PCM

Bottom
Electrode

Transposed
code vectors

Local digital processing unit
(LDPU)

Diagonal decoder

12
8

an
al

og
ue

-t
o-

di
gi

ta
l c

on
ve

rt
er

s

12
8

an
al

og
ue

-t
o-

di
gi

ta
l c

on
ve

rt
er

s

Input digital-to-
analog converters

From analog-to-digital converter

–fρ

ResNet-18

t = 0 t = 1 t = N – 1 t = N t = N + 1

Fig. 4 | Experimental realization of the in-memory factorizer. a, Experimental
setup includes two IMC cores for similarity calculation and projection. The
associated MVM operations are executed using the crossbars and the fully
integrated peripherals. The unbinding, permutation, activation and
bipolarization operations are executed on the host computer connected to the
cores. On the crossbar, one unit cell stores one bipolar (±1) weight value
associated with the code vectors. b, Measured output of the in-memory MVM
plotted against the reference output obtained at high precision, indicating the
intrinsic stochasticity associated with the operation. The grey histogram
corresponds to the positive conductance values and the black histogram, to the
negative ones. The bottom-right inset shows the distribution of programmed
conductance values on the first core executing the similarity calculation. The
top-left inset shows a low-angle annular dark-field scanning transmission
electron microscope image44 of a nanoscale PCM device in its RESET state, where

a large amorphous region blocks the bottom electrode, resulting in a
conductance value close to zero. To encode a 1 or −1 in a unit cell, the amorphous
region corresponding to the appropriate device is partially crystallized to
achieve a higher conductance value. The target conductance value was set at
5 μS. Scale bar, 50 nm. c, The red, green and blue histograms correspond to the
distribution of similarity between the same unbound estimate vector (̃x) and
three colour code vectors (xred, xgreen, xblue). The purple vertical line corresponds
to the activation threshold at T = 33, which avoids activating any similarity values
related to xred. d, Raw image is fed through a ResNet-18 network to generate a
holographic product vector visualized as a binary heat map. The in-memory
factorizer iteratively disentangles the holographic vector. In the first time step,
all the code vectors show an equal similarity to the current estimate. Over time,
the in-memory factorizer converges to the correct factorization, indicated by a
high similarity value for a single code vector.

http://www.nature.com/naturenanotechnology

Nature Nanotechnology

Article https://doi.org/10.1038/s41565-023-01357-8

crossbar array in parallel. Ohm’s law defines the current flowing through
each unit cell, and the current is summed up on the corresponding
bitlines in accordance with Kirchhoff’s current summation law. This
current is digitized and accumulated by 256 analogue-to-digital con-
verters operating in parallel.

Each IMC core performs MVM operations in a constant amount of
time, 𝒪𝒪𝒪1), which leads to merely reducing the time complexity of
factorization to the average number of iterations. Moreover, the intrin-
sic randomness associated with the PCM devices is exploited to calcu-
late the stochastic similarity and projection vectors that minimize the
occurrence of limit cycles (Fig. 4b,c). A permute logic is employed to
temporally multiplex one crossbar array for multiple factors, and the
hyperparameters such as the activation and convergence thresholds
were obtained through Bayesian learning (Methods). The experimen-
tally realized in-memory factorizer is compared with the baseline reso-
nator network21,26, where both methods used D = 256, M = 256 and
F = 3. These parameters set the total problem size to MF = 16,777,216
and the maximum number of iterations to N = 21,845, which ensures
that the computational complexity does not exceed that of the
brute-force search (Methods). When using the same code books and
5,000 randomly selected product vectors as queries, the baseline
resonator network is found to be incapable of factorizing any of the
product vectors. In contrast, the in-memory factorizer is capable
of achieving an outstanding accuracy of 99.71% with an average
number of 3,312 iterations.

Finally, we demonstrate the role of the in-memory factorizer in
visual perception to disentangle the attributes of raw images. The
perception system consists of two main components (Fig. 4d). A
convolutional neural network is trained to map the input image to a
holographic perceptual product vector, based on a known set of image
attributes. Hence, during inference, the output of the neural network is
an approximation of the product vector that describes the image. The
in-memory factorizer is used to disentangle the approximate product
vector using a known set of image attributes. For experiments, we used
the input images from the relational and analogical visual reasoning
(RAVEN) dataset41. The images contain objects with attributes such
as type, size, colour and position. Each set of attributes is mapped
to a unique code book, leveraging its symbolic nature (Methods).
The disentanglement of 1,000 images from the RAVEN dataset to
the correct estimate of attributes achieved an accuracy of 99.42%
(Supplementary Video 1).

Conclusion
We have compared the in-memory factorizer with a dedicated reference
digital design that benefits from the proposed sparse activations and
all the other features, except the intrinsic stochasticity that is inherent
in PCM devices. Using the same configurations as the experiments
(D = 256, M = 256, F = 3 and 5,000 trials), the deterministic digital design
was able to reach an accuracy of 95.76% with 3,802 iterations on average.
Compared with the in-memory factorizer, the digital design demanded
14.8% more iterations on average, and still exhibited 4.0% lower accu-
racy. Even if we allow the maximum number of iterations to be arbitrar-
ily large, the digital design is still not able to match the accuracy of the
in-memory factorizer due to the limit cycles (Supplementary Note 4),
thus highlighting the crucial role of the intrinsic stochasticity associ-
ated with PCM devices.

The in-memory factorizer could also result in a notable gain in
energy and areal efficiency. By combining the advantages of in-place
computation and the reduced number of iterations, it is estimated that
a custom-designed in-memory factorizer based on a 512 × 512 crossbar
array is capable of factorizing a single query within an energy budget of
33.1 μJ on average, resulting in energy savings of 12.2 times compared
with the reference digital design. The total area saving is estimated to
be 4.85 times (Supplementary Note 4). The non-volatile storage of the
code books is an added advantage compared with the digital design.

Note that the application of in-memory factorizers can go beyond
visual perception, as factorization problems arise everywhere in per-
ception and cognition, for instance, in analogical reasoning12–16,42.
Other applications include tree search21 and the prime factorization
of integers43. Recently, it has been shown how the classical integer
factorization problem can be solved by casting it as a problem of factor-
izing holographic vectors43. These pave the way for solving non-trivial
combinatorial search problems.

To summarize, we have presented a non-von Neumann compute
engine to factorize high-dimensional, holographic vectors by search-
ing in superposition. We have experimentally verified it using two
state-of-the-art IMC cores based on PCM technology, which provides
in-place computation and non-volatility. The experimental results
show the reliable and efficient factorization of holographic vectors
spanning a search space of 256 × 256 × 256. The intrinsic stochasticity
associated with PCM devices is coupled with nonlinear sparse activa-
tions to enhance the operational capacity by five orders of magnitude
as well as to reduce the spatial and time complexity associated with the
computational task. Furthermore, we have demonstrated the efficacy
of the in-memory factorizer in disentangling the constituent attributes
of raw images. This work highlights the role of emerging non-von
Neumann compute paradigms in realizing critical building blocks of
future artificial intelligence systems.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41565-023-01357-8.

References
1.	 Feldman, J. The neural binding problem(s). Cogn. Neurodyn. 7,

1–11 (2013).
2.	 Land, E. H. & McCann, J. J. Lightness and retinex theory. J. Opt.

Soc. Am. 61, 1–11 (1971).
3.	 Barrow, H. G. & Tenenbaum, J. M. in Computer Vision Systems

3–26 (Academic Press, 1978).
4.	 Adelson, E. & Pentland, A. in The Perception of Shading and

Reflectance 409–424 (Cambridge Univ. Press, 1996).
5.	 Barron, J. T. & Malik, J. Shape, illumination and reflectance from

shading. IEEE Trans. Pattern Anal. Mach. Intell. 37, 1670–1687
(2015).

6.	 Memisevic, R. & Hinton, G. E. Learning to represent spatial
transformations with factored higher-order Boltzmann machines.
Neural Comput. 22, 1473–1492 (2010).

7.	 Burak, Y., Rokni, U., Meister, M. & Sompolinsky, H. Bayesian model
of dynamic image stabilization in the visual system. Proc. Natl
Acad. Sci. USA 107, 19525–19530 (2010).

8.	 Cadieu, C. F. & Olshausen, B. A. Learning intermediate-level
representations of form and motion from natural movies.
Neural Comput. 24, 827–866 (2012).

9.	 Anderson, A. G., Ratnam, K., Roorda, A. & Olshausen, B. A. High-
acuity vision from retinal image motion. J. Vision 20, 34 (2020).

10.	 Smolensky, P. Tensor product variable binding and the
representation of symbolic structures in connectionist systems.
Artif. Intell. 46, 159–216 (1990).

11.	 Jackendoff, R. Foundations of Language: Brain, Meaning,
Grammar, Evolution (Oxford Univ. Press, 2002).

12.	 Hummel, J. E. & Holyoak, K. J. Distributed representations
of structure: a theory of analogical access and mapping.
Psychol. Rev. 104, 427–466 (1997).

13.	 Kanerva, P. in Advances in Analogy Research: Integration of Theory
and Data from the Cognitive, Computational and Neural Sciences
164–170 (New Bulgarian Univ., 1998).

http://www.nature.com/naturenanotechnology
https://doi.org/10.1038/s41565-023-01357-8

Nature Nanotechnology

Article https://doi.org/10.1038/s41565-023-01357-8

14.	 Kanerva, P. Pattern completion with distributed representation.
In International Joint Conference on Neural Networks 1416–1421
(IEEE, 1998).

15.	 Plate, T. A. Analogy retrieval and processing with distributed
vector representations. Expert Syst. Int. J. Knowledge Eng. Neural
Netw. 17, 29–40 (2000).

16.	 Gayler, R. W. & Levy, S. D. A distributed basis for analogical
mapping: new frontiers in analogy research. In New Frontiers
in Analogy Research, Second International Conference on the
Analogy 165–174 (New Bulgarian University Press, 2009).

17.	 Gayler, R. W. Vector symbolic architectures answer Jackendoff’s
challenges for cognitive neuroscience. In Joint International
Conference on Cognitive Science 133–138 (Springer, 2003).

18.	 Plate, T. A. Holographic reduced representations. IEEE Trans.
Neural Netw. 6, 623–641 (1995).

19.	 Plate, T. A. Holographic Reduced Representations: Distributed
Representation for Cognitive Structures (Stanford Univ., 2003).

20.	 Kanerva, P. Hyperdimensional computing: an introduction to
computing in distributed representation with high-dimensional
random vectors. Cogn. Comput. 1, 139–159 (2009).

21.	 Frady, E. P., Kent, S. J., Olshausen, B. A. & Sommer, F. T. Resonator
networks, 1: an efficient solution for factoring high-dimensional,
distributed representations of data structures. Neural Comput.
32, 2311–2331 (2020).

22.	 Hersche, M., Zeqiri, M., Benini, L., Sebastian, A. & Rahimi, A.
A neuro-vector-symbolic architecture for solving Raven’s
progressive matrices. Nat. Mach. Intell. https://doi.org/10.1038/
s42256-023-00630-8 (2023).

23.	 Lanza, M. et al. Memristive technologies for data storage,
computation, encryption and radio-frequency communication.
Science 376, eabj9979 (2022).

24.	 Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E.
Memory devices and applications for in-memory computing.
Nat. Nanotechnol. 15, 529–544 (2020).

25.	 Wang, Z. et al. Resistive switching materials for information
processing. Nat. Rev. Mater. 5, 173–195 (2020).

26.	 Kent, S. J., Frady, E. P., Sommer, F. T. & Olshausen, B. A. Resonator
networks, 2: factorization performance and capacity compared to
optimization-based methods. Neural Comput. 32, 2332–2388 (2020).

27.	 Wong, H.-S. P. & Salahuddin, S. Memory leads the way to better
computing. Nat. Nanotechnol. 10, 191–194 (2015).

28.	 Chua, L. Resistance switching memories are memristors.
Appl. Phys. A 102, 765–783 (2011).

29.	 Shin, J. H., Jeong, Y. J., Zidan, M. A., Wang, Q. & Lu, W. D. Hardware
acceleration of simulated annealing of spin glass by RRAM
crossbar array. In Proc. IEEE International Electron Devices Meeting
3.3.1–3.3.4 (IEEE, 2018).

30.	 Bojnordi, M. N. & Ipek, E. Memristive Boltzmann machine:
a hardware accelerator for combinatorial optimization and
deep learning. In Proc. IEEE International Symposium on High
Performance Computer Architecture 1–13 (IEEE, 2016).

31.	 Mahmoodi, M. R., Prezioso, M. & Strukov, D. B. Versatile stochastic
dot product circuits based on nonvolatile memories for
high performance neurocomputing and neurooptimization.
Nat. Commun. 10, 5113 (2019).

32.	 Borders, W. A. et al. Integer factorization using stochastic
magnetic tunnel junctions. Nature 573, 390–393 (2019).

33.	 Wan, W. et al. 33.1 A 74 TMACS/W CMOS-RRAM neurosynaptic
core with dynamically reconfigurable dataflow and in-situ
transposable weights for probabilistic graphical models. In Proc.
IEEE International Solid-State Circuits Conference 498–500 (IEEE,
2020).

34.	 Kumar, S., Strachan, J. P. & Williams, R. S. Chaotic dynamics in
nanoscale NbO2 Mott memristors for analogue computing. Nature
548, 318–321 (2017).

35.	 Cai, F. et al. Power-efficient combinatorial optimization
using intrinsic noise in memristor Hopfield neural networks.
Nat. Electron. 3, 409–418 (2020).

36.	 Yang, K. et al. Transiently chaotic simulated annealing based
on intrinsic nonlinearity of memristors for efficient solution of
optimization problems. Sci. Adv. 6, eaba9901 (2020).

37.	 Khaddam-Aljameh, R. et al. Hermes core—a 14nm CMOS and
PCM-based in-memory compute core using an array of 300ps/
LSB linearized CCO-based ADCs and local digital processing. In
2021 Symposium on VLSI Circuits 1–2 (IEEE, 2021).

38.	 Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A. & Eleftheriou, E.
Stochastic phase-change neurons. Nat. Nanotechnol. 11, 693–699
(2016).

39.	 Le Gallo, M., Krebs, D., Zipoli, F., Salinga, M. & Sebastian, A.
Collective structural relaxation in phase-change memory devices.
Adv. Electron. Mater. 4, 1700627 (2018).

40.	 Le Gallo, M. & Sebastian, A. An overview of phase-change
memory device physics. J. Phys. D Appl. Phys. 53, 213002
(2020).

41.	 Zhang, C., Gao, F., Jia, B., Zhu, Y. & Zhu, S.-C. RAVEN: a dataset
for relational and analogical visual reasoning. In Proc. IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR)
5312–5322 (IEEE, 2019).

42.	 Kent, S. Multiplicative Coding and Factorization in Vector Symbolic
Models of Cognition. PhD thesis, Univ. California (2020).

43.	 Kleyko, D. et al. Integer factorization with compositional
distributed representations. In Proc. 9th Annual Neuro-Inspired
Computational Elements Conference 73–80 (ACM, 2022).

44.	 Li, J. et al. Low angle annular dark field scanning transmission
electron microscopy analysis of phase change material. In Proc.
International Symposium for Testing and Failure Analysis 2021
206–210 (ASM, 2021).

Publisher’s note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional
affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with
the author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited
2023

http://www.nature.com/naturenanotechnology
https://doi.org/10.1038/s42256-023-00630-8
https://doi.org/10.1038/s42256-023-00630-8

Nature Nanotechnology

Article https://doi.org/10.1038/s41565-023-01357-8

Methods
Detection of convergence in the in-memory factorizer
The iterative factorization problem is said to be converged if, for two
consecutive time steps, all the estimates are constant, that is,
x̂f𝒪t + 1) = x̂f𝒪t) for f ∈ [1, F]. To detect this convergence, we define a novel
early convergence detection algorithm. The in-memory factorizer is
said to be converged if a single similarity value across all the factors
surpasses a convergence detection threshold:

converged = {
true, ifαf

i > Tconvergence

false, otherwise,
(1)

where i ∈ [1, |Xf|] for f ∈ [1, F]. On convergence, the predicted factoriza-
tion is given by the code vector associated with the largest similarity
value per code book. The novel convergence detection counteracts
parasitic code vectors with a high enough similarity value to prevent
the in-memory factorizer from converging to a stable solution. Fur-
thermore, there is no need to store the history of prior estimates.
Otherwise, the last estimate for each factor needs to be stored to be
able to compare it with the latest estimate and detect convergence,
resulting in a total of F × D stored bits. We used Bayesian optimization
to find the optimal convergence detection threshold. It stays at a fixed
ratio of D for any given set of hyperparameters and problem sizes.

Maximal number of iterations
To use strictly fewer search operations than the brute-force approach,
the maximal number of iterations (N) must be constrained to

N ×M × F < MF. (2)

In all our experiments, we constrain the maximum number of iterations
to N < MF−1

F
 to ensure a lower computational complexity compared with

the brute-force approach.

Hyperparameter optimization via Bayesian optimization
We find the optimal hyperparameters of the in-memory
factorizer h∗ = [T∗, T∗convergence] by solving a Bayesian optimization
problem, where T* is the activation threshold and T∗convergence is the
convergence threshold. We define the error rate l to be the ratio of
the wrongly factorized product vectors. More formally, we try to find
the optimal set of hyperparameters h* by minimizing the error rate l,
which is a function of the hyperparameters h:

h∗ = arg min
h

l𝒪h). (3)

We model the error rate as a Gaussian process with a radial basis
function kernel and minimize it using Bayesian optimization. To
sample possible hyperparameters during optimization, we use the
expected improvement acquisition function.

We reduce the computational complexity of the error rate
evaluation for a given set of hyperparameters h by limiting the
maximum number of iterations to N′ = N/10 and the number of trials
to 256. A low number of iterations N′ yields higher error rates, yet
they still provide a good indication of the in-memory factorizer’s
performance given a set of hyperparameters. Additionally, the
reduced number of trials gives noisy evaluations of l, which is modelled
as additive Gaussian measurement noise.

We derive the final parameter estimates by averaging results
over the five best experiments. For the hardware experiments, the
stochasticity is inherently provided by the PCM crossbar arrays. How-
ever, for simulating the in-memory factorizer in software, we need
to model stochasticity as a noise level. Hence, the noise level (n*) is
treated as an extra hyperparameter for optimization. Accordingly, to
simulate our method in the software, we optimize for three

hyperparameters: the activation threshold, convergence threshold
and noise level given by h∗ = [T∗, T∗convergence, n∗].

In-memory experiments
For the experimental demonstration, we employed an IMC core
fabricated by IBM Research in a 14 nm complementary metal–oxide–
semiconductor technology node37. This features 256 × 256 unit cells,
each comprising four PCM devices arranged in a differential configu-
ration where one pair of devices is connected in parallel to represent
positive conductance and another pair to represent negative conduct-
ance on the unit cell. For these experiments, however, we program
only one device, either on the positive or negative side, as it provides
a sufficient dynamic range in conductance to achieve more than
99% accuracy. This effectively allows us to optimize the unit cell to
consist of just two PCM devices (Fig. 4a).

A custom printed circuit board houses two such HERMES cores,
and a field-programmable gate array board is used to control the com-
munication protocol and loading data to and from the cores. The
field-programmable gate array, in turn, is controlled by a Linux machine
running a Python version 3.6 environment on top. The host machine
performs the unbinding and applies the activation function, and the
two cores perform the dominant MVM similarity search and projection
operations. An iterative programming scheme of the PCM devices is
employed to store the code vectors in the crossbars. The output of
the in-memory MVM is measured in terms of the analogue-to-digital
converter count units. Subsequently, a linear correction is applied to
correct circuit-level mismatches. The linear correction parameters are
calculated before MVM operations.

The single crossbar core with dimensions of 256 × 256 limits the
total number of supported code vectors across all the code books to
256. To overcome this limitation, we propose a permute logic to tem-
porally multiplex one single crossbar array for all the F factors. This
enables us to exploit the complete crossbar for one single code book
with up to 256 code vectors, and reuse it across an arbitrary number of
factors. As shown in Fig. 4a, before the similarity calculation, we apply
the permute logic as a factor-wise exclusive circular shift on the esti-
mated unbinding. This results in a quasi-orthogonal time multiplexing
of the crossbar. Before updating the estimates, we reverse the circular
shift to obtain unaltered estimates.

Software simulations of the in-memory factorizer
Stochasticity is the key enabler of the in-memory factorizer. Adding
some stochasticity helps to diverge from the limit cycles as each solu-
tion becomes unique. For the experiments reported in Fig. 3, this impor-
tant aspect is modelled in software by simulating the noisy behaviour of
the MVMs on the crossbar as an additive Gaussian noise with zero mean:

α′i = f𝒪αi) = αi + n, (4)

where αi is a single entry of the output vector and n is normally
distributed with n ∼ 𝒩𝒩𝒪0, σ2).

In total, we simulated F × (M + D) additive Gaussian noise
sources: M on the similarity vector and D on the projection vector.
The noisy similarity vector is required to break free of the limit cycles.
Due to the random distribution of similarity values, there is always a
chance of activating none of the similarity values if they do not cross
the activation threshold. Adding noise on top of this projection
prevents such an all-zero estimation by randomly initializing the
vector before bipolarization.

The PCM devices on the crossbar array exhibit a similar noisy
behaviour, which can be modelled as a combination of noise compo-
nents such as programming noise, read noise and drift variability. In
Supplementary Note 3, we model the extent to which each of these
noise components is present in the experimental crossbar arrays and
analyse the sensitivity to change in the noise components as reflected

http://www.nature.com/naturenanotechnology

Nature Nanotechnology

Article https://doi.org/10.1038/s41565-023-01357-8

in the performance figures, such as factorization accuracy and the
number of iterations required for convergence.

To concretely quantify the effect of the aggregated PCM device
noise on the performance of the factorizer, we conducted simulations
where the aggregated noise standard deviation gradually increases
from zero noise, and maintaining the ratio of the standard deviation
between read noise and programming noise, as observed on the experi-
mental platform (σr/σp = 0.3951/1.1636). These results are shown in
Extended Data Fig. 1.

We observe that with zero noise, the factorizer performs
poorly, with an accuracy of 25.4% and requiring on average 16,000 
iterations to converge. This expected behaviour is due to the
deterministic nature of the search and the resulting inability to break
free of the limit cycles. The factorizer, however, operates at its peak
performance when the standard deviation of aggregated noise is main-
tained within the range of [0.293 μS, 1.277 μS]. Note that the standard
deviation of aggregated noise observed on the experimental platform
(0.98 μS) falls in the middle of this tolerated noise range (Extended
Data Fig. 1).

Visual disentanglement
We use the RAVEN41 dataset, which provides a rich set of progressive
matrices tests, for visual abstract reasoning tasks. We only focus on
the visual perception part of the task to disentangle a sensory input
image from its underlying attribute factors. The RAVEN dataset pro-
vides a total of 70,000 tests, each consisting of 16 panels of images.
In our experiment, we considered the 2 × 2 image constellation with
a single object. Each object can have one of four possible positions,
ten colours, six sizes and five types. There are, thus, 1,200 possible
combinations. We mapped each set of attributes to a single code book
of the in-memory factorizer. We reused the same code book as for the
synthetic experiment. The first code book represents the position
attribute and the second, the colour attribute. For the third code book,
we fused the size and type attributes into a single code book, ending
up with a total of 30 possible size–type combinations.

Each image can be described by a product vector formed by the
binding of the corresponding code vectors. To map the input image to
the product vector, we used a convolutional neural network. We used
the ResNet-18 convolutional neural network and mapped its output
to our 256-dimensional vector space using the training schema pro-
posed elsewhere22. After training, we ran all the test images through the
trained ResNet-18 network to obtain an estimate of the product vector.

Next, we passed all the estimated product vectors through the
same experimental test setup as the synthetic experiments. The main
difference lies in the product vector: for the synthetic one, we used the

exact product vectors, but for the visual perception task, the product
vectors are the output of the convolutional neural network, which will
be an approximate product vector as opposed to being the exact one.

Data availability
The data that support the findings of this study are available via Zenodo
at https://zenodo.org/record/7599430. Source data are provided with
this paper.

Code availability
Our code is available via GitHub at https://github.com/IBM/
in-memory-factorizer.

Acknowledgements
This work is supported by the IBM Research AI Hardware Center and by
the Swiss National Science Foundation (SNF) (grant no. 200800). We
thank M. Le Gallo for the technical help; K. Brew and J. Li for assistance
with TEM imaging of PCM devices; and V. Narayanan, C. Apte and
R. Haas for managerial support.

Author contributions
J.L., G.K., M.H., A.S. and A.R. conceived the idea and designed the
experiments. J.L. performed the experiments and characterization.
J.L., A.S. and A.R. wrote the paper, with input from all the authors.
All the authors provided critical comments and analyses.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s41565-023-01357-8.

Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41565-023-01357-8.

Correspondence and requests for materials should be addressed to
Abu Sebastian or Abbas Rahimi.

Peer review information Nature Nanotechnology thanks Mario Lanza
and Yuchao Yang for their contribution to the peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

http://www.nature.com/naturenanotechnology
https://doi.org/10.5281/zenodo.7599430
https://github.com/IBM/in-memory-factorizer
https://github.com/IBM/in-memory-factorizer
https://doi.org/10.1038/s41565-023-01357-8
https://doi.org/10.1038/s41565-023-01357-8
http://www.nature.com/reprints

Nature Nanotechnology

Article https://doi.org/10.1038/s41565-023-01357-8

(a)

(b)

aggregated noise (standard deviation)

aggregated noise (standard deviation)

default noise

default noise

Extended Data Fig. 1 | Desirable range of noise. The aggregated noise
corresponding to the programming noise, drift variability, and read noise in
the PCM devices affects (a) the accuracy of factorization, and (b) the number of
iterations to converge. The optimal range for the standard deviation of the noise

lies between 0.293μS and 1.277μS. As indicated by the green vertical line, the level
of noise observed in the experimental crossbar array lies within the desirable
range of noise.

http://www.nature.com/naturenanotechnology

	In-memory factorization of holographic perceptual representations

	In-memory stochastic factorizer with sparse activations

	Large-scale experimental demonstration

	Conclusion

	Online content

	Fig. 1 Factorization of perceptual representations using the in-memory factorizer.
	Fig. 2 Stochastic similarity computation, sparse activations and limit cycles.
	Fig. 3 Operational capacity of the stochastic in-memory factorizer with sparse activations.
	Fig. 4 Experimental realization of the in-memory factorizer.
	Extended Data Fig. 1 Desirable range of noise.

