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In-memory factorization of holographic  
perceptual representations

Jovin Langenegger1,2, Geethan Karunaratne    1,2, Michael Hersche    1,2, 
Luca Benini2, Abu Sebastian    1   & Abbas Rahimi    1 

Disentangling the attributes of a sensory signal is central to sensory 
perception and cognition and hence is a critical task for future 
artificial intelligence systems. Here we present a compute engine 
capable of efficiently factorizing high-dimensional holographic 
representations of combinations of such attributes, by exploiting 
the computation-in-superposition capability of brain-inspired 
hyperdimensional computing, and the intrinsic stochasticity associated 
with analogue in-memory computing based on nanoscale memristive 
devices. Such an iterative in-memory factorizer is shown to solve at least five 
orders of magnitude larger problems that cannot be solved otherwise, as 
well as substantially lowering the computational time and space complexity. 
We present a large-scale experimental demonstration of the factorizer 
by employing two in-memory compute chips based on phase-change 
memristive devices. The dominant matrix–vector multiplication operations 
take a constant time, irrespective of the size of the matrix, thus reducing 
the computational time complexity to merely the number of iterations. 
Moreover, we experimentally demonstrate the ability to reliably and 
efficiently factorize visual perceptual representations.

One of the fundamental problems in sensory perception is  
unbinding—the separation of causes of a raw sensory signal1 that  
contain multiple attributes. For instance, the pixel intensities  
sensed by photoreceptors result from the combination of differ-
ent physical attributes1–5. For example, the observed luminance at a 
point on the sensor is a multiplicative combination of reflectance and  
shading3. To be able to estimate these constituent factors, visual  
perception must begin with the observed luminance and solve an 
inverse problem that involves undoing the multiplication by which 
the attributes were combined1,4. This factorization problem is  
also at the core of other levels of conceptual hierarchy, such as  
factoring time-varying pixel data of dynamic scenes into persistent 
and dynamic components6–9, factoring a sentence structure into  
roles and fillers10,11, and finally cognitive analogical reasoning12–16.  
How these factorization problems could be efficiently solved by  
biological neural circuits remains unclear. Moreover, given their 

ubiquitous presence in perception and cognition, it is essential  
that future artificial intelligence systems are equipped with compute 
units that can efficiently perform these factorization operations  
across very large problem sizes.

An elegant mathematical approach to represent the combination 
of attributes is via high-dimensional holographic vectors in the context 
of brain-inspired vector symbolic architectures17–20 (Supplementary 
Note 1). They are holographic because the encoded information is 
equally distributed over all the components of the vector. Moreover, 
any two randomly drawn vectors, by virtue of their higher dimen-
sionality, are almost orthogonal to each other, that is, their expected 
similarity is close to zero with a higher probability20. These vectors 
can also be manipulated by a rich set of dimensionality-preserving 
algebraic operations. In one approach, an object with F attributes 
can be described by the element-wise multiplication of an associated 
D-dimensional holographic bipolar ({−1, +1}D) vector corresponding 
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Fig. 1 | Factorization of perceptual representations using the in-memory 
factorizer. a, A visual input is first fed through a convolutional neural network  
to approximately map it to a D-dimensional product vector. The generated 
product vector is applied as an input to the in-memory factorizer, which contains 
a unique code book of code vectors for each possible attribute. The factorizer 
disentangles the product vector and predicts the correct attribute factors.  
b, The in-memory factorizer iteratively searches in superposition. For each 
attribute, an updated estimate is computed during every iteration by unbinding 
the contribution of the other factors from the product vector. The unbound 

estimate is fed through the similarity calculation with sparse activation as 
nonlinearity and the projection to obtain a novel estimate, which is then fed back 
to be used in the subsequent iteration. The similarity calculation is based on  
MVM operations and projection is based on transposed MVM operations that  
can be executed in the in-memory fashion in a crossbar array of memristive 
devices by exploiting Ohm’s law and Kirchhoff’s current summation law with a 
computational time complexity of 𝒪𝒪𝒪1). Moreover, the intrinsic stochasticity 
associated with storing the bipolar code vectors in the array and the resulting 
imprecise MVM operations serve as a key enabler for the in-memory factorizer.
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to each attribute, which results in a unique product vector of the same 
fixed dimensionality21. The element-wise multiplication operation can 
be viewed as the binding operation that binds the attribute vectors and 
generates the product vector. Moreover, it has recently been shown that 
given the raw image of an object, a deep convolutional neural network 
can be trained to approximately generate the product vector22. The 
factorization problem can now be posed as the decomposition of an 
exact product vector or, as in the latter case, an inexact product vector, 
into its constituent attribute vectors.

In this Article, we propose a non-deterministic, non-von  
Neumann compute engine that efficiently factorizes such product 
vectors to obtain estimates of the constituent attributes. The compute 
engine combines the emerging compute paradigm of in-memory 
computing (IMC)23–25 with an enhanced variant of a resonator net-
work21,26. We introduce nonlinear sparse activation between two key  
operations of the resonator network, and exploit the intrinsic  
stochasticity associated with the memristive devices employed for  
IMC to enhance the maximally solvable problem size. Finally, we  
present a large-scale experimental demonstration using IMC  
cores based on phase-change memory (PCM) technology and applica-
tions in visual perception.

In-memory stochastic factorizer with sparse 
activations
The resonator network is a nonlinear dynamical system capable of 
factorizing holographic vectors and is indeed a viable neural solution  
to the factorization problem21,26. If there are F attributes, the resonator 
network iteratively searches across a set of possible estimates referred  
to as the code book associated with each attribute. For example, in 
Fig. 1a, F = 3, with the attributes being object, position and colour. The 
vectors associated with each code book are referred to as code vectors.  
All the code vectors are randomly drawn, which makes them quasi- 
orthogonal to each other in high-dimensional space, as mentioned  
previously20. When each code book contains a finite set of M code 
vectors, there are MF possible combinations to be searched to 
factorize the D-dimensional product vector into its constituent 

factors, where D ≪ MF. The product vectors could be constructed 
by binding the randomly drawn code vectors or could be approxi-
mate variants that are generated by a convolutional neural  
network (Fig. 1a). Factorizing these product vectors that exhibit no 
correlational structure forms a hard combinatorial search problem. By 
exploiting the quasi-orthogonality of the code vectors, the resonator 
network is able to rapidly search through the various combinations in 
superposition by iteratively unbinding all but one of the factors from 
the product vector, and then projecting it into the space of possible 
solutions of the considered factor. Note that in bipolar space, unbinding  
is also performed via element-wise multiplication. Both similarity 
search and projection operations associated with the resonator net-
work involve matrix–vector multiplication (MVM) operations where 
the matrix transpires to be a fixed code book. This is highly amenable 
to IMC using memristive devices27,28. As shown in Fig. 1b, the proposed 
in-memory factorizer stores the code vectors on crossbar arrays of 
memristive devices performing analogue in-memory MVM opera-
tions. The similarity calculation and projection are based on MVM and 
transposed MVM operations, respectively. These operations can be 
executed in the in-memory fashion in a crossbar array of memristive 
devices by exploiting Ohm’s law and Kirchhoff’s current summation law.

The unsupervised nature of the conventional resonator  
network’s deterministic search could result in checking the same 
sequence of solutions multiple times across iterations, resulting  
in limit cycles that prevent convergence to the optimal solution.  
One of the key insights from the in-memory factorizer is that the  
intrinsic stochasticity associated with memristive devices can  
substantially reduce the occurrence of such limit cycles. As shown 
in Fig. 2a, during the similarity calculation, the analogue in-memory 
MVM results in a stochastic similarity vector. The stochasticity enables  
the factorizer to break free of limit cycles and thus explore a sub-
stantially larger solution space (Fig. 2b). Note that unlike earlier 
energy-based combinatorial optimization problems such as simulated 
annealing29, Boltzmann machines30–33 and Hopfield networks34–36, the 
in-memory factorizer is able to leverage device-level stochasticity— 
as a valuable computational tool—for breaking limit cycles.
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Fig. 2 | Stochastic similarity computation, sparse activations and limit cycles. 
a, The similarity calculation computes the similarities between the unbound 
estimate vector ̃x and all the code vectors (for example, {xred, xgreen, xblue}). The 
in-memory similarity calculation, denoted by <.,.>, is stochastic with additive 
noise. The distributions of noisy similarity results projected onto a two-
dimensional space are shown in green, red and blue, respectively. Furthermore,  
a winner-takes-all approach activates similarity values only above a certain 
threshold (T) level, which results in a similarity vector with sparse non-zero 
elements. Similarity values smaller than T are zeroed out; for example, 
< ̃x, xred > is not activated (that is, zeroed), but the other two similarity values 
(< ̃x, xblue > and < ̃x, xgreen >), larger than T, remain activated. The activation 

threshold (T) is depicted in purple. b, Visualized by the black arrows, this figure 
shows a limit cycle of length l = 4. When stuck in a limit cycle of length l, we 
constantly end up checking the same l solutions. In contrast, the orange arrows 
show an example trajectory of the factor’s estimates (x̂) of the in-memory 
factorizer exploiting stochasticity in both similarity and projection operations, 
which yields noisy estimates. For a subsequent time step, there is some 
uncertainty, as visualized by the orange circles. As the search for factorization is 
an iterative process, the uncertainty for the subsequent time steps increases. 
Eventually, the uncertainty is high enough for the in-memory factorizer to 
diverge from a limit cycle and to converge to the correct factorization in time.

http://www.nature.com/naturenanotechnology


Nature Nanotechnology

Article https://doi.org/10.1038/s41565-023-01357-8

Another limitation of the conventional resonator network is  
the use of the identity function, as a linear activation, between  
the similarity search and projection operations. We find that by  
adopting a nonlinear winner-takes-all approach and by zeroing  
out the weaker similarity values, both convergence rate and  
maximally solvable problem size of the in-memory factorizer are 
enhanced (Supplementary Note 2). The winner-takes-all approach 
uses an activation threshold T to sparsify the similarity vector (Fig. 2a), 
which was chosen on the basis of Bayesian optimization (Methods).

The resulting non-deterministic in-memory factorizer with 
nonlinear sparse activations can be analysed and compared with the  
state of the art using three figures of merit: dimensionality, compu-
tational complexity and operational capacity. The dimensionality 
refers to the number of elements in a code vector. The computational 
complexity defines the average number of operations required by 
a factorizer to factorize a given product vector, where each opera-
tion refers to a D-dimensional dot-product calculation. This depends  
on the problem size and number of factors. Given an upper bound 
for the first two figures of merit, the operational capacity defines  
the maximally solvable problem size with an accuracy of at least 99%. 
To compare the operational capacity of the in-memory factorizer  
with the baseline resonator network21,26, we performed extensive 
simulations of the in-memory factorizer in software (Methods). As 
shown in Fig. 3, the in-memory factorizer substantially enhances 

the operational capacity by up to five orders of magnitude, even 
when the vector dimensionality is reduced by a factor of over  
four (Supplementary Fig. 1).

Large-scale experimental demonstration
Next we present an experimental realization of the in-memory  
factorizer using IMC cores based on PCM devices fabricated in  
14 nm complementary metal–oxide–semiconductor technology  
(Methods). We employed two IMC cores, one to calculate the simi-
larities and one for the projections (Fig. 4a). Each IMC core features a  
crossbar array of 256 × 256 unit cells capable of performing stochas-
tic and analogue MVM operations37. Each unit cell comprises four  
PCM devices organized in a differential configuration and can be  
programmed to a certain conductance value (the bipolar code  
books are stored in two out of four devices). However, due to the  
intrinsic stochasticity associated with crystal nucleation and growth38, 
there will be a distribution of conduction values across multiple 
devices in the crossbar (Fig. 4b). This distribution will become slightly 
broader with time as a result of the variability associated with the 
structural relaxation of the atomic configuration in each device39.  
In addition to this, there is read noise that exhibits a 1/f spectral 
characteristic and random telegraph noise (Supplementary Note 3 
provides more details)40. The input to the IMC core is applied using a 
constant-pulse-width-modulated voltage applied to all the rows of the 
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Fig. 3 | Operational capacity of the stochastic in-memory factorizer with 
sparse activations. a,b, Operational capacity for F = 3 (a) and F = 4 (b). The 
problem size MF is shown on the x axis, and the y axes show the accuracy (left) and 
number of iterations required to solve a given problem size (right). The black 
dashed lines indicate the equivalent number of dot-product operations required 
for a brute-force approach to search among MF precomputed product vectors. 
These lines indicate the upper limit for the operation count. For each F, we use 

the smallest dimension reported by the baseline resonator network21,26, namely, 
D = 1,500 for F = 3 and D = 2,000 for F = 4. The blue cross indicates the largest 
problem size that is within the operational capacity of the baseline resonator 
network, meaning that problems larger than that size cannot be factorized by 
the baseline network at 99% accuracy, and the in-memory factorizer can solve 
problem sizes at least five orders of magnitude larger at 99% accuracy, or higher.
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Fig. 4 | Experimental realization of the in-memory factorizer. a, Experimental 
setup includes two IMC cores for similarity calculation and projection. The 
associated MVM operations are executed using the crossbars and the fully 
integrated peripherals. The unbinding, permutation, activation and 
bipolarization operations are executed on the host computer connected to the 
cores. On the crossbar, one unit cell stores one bipolar (±1) weight value 
associated with the code vectors. b, Measured output of the in-memory MVM 
plotted against the reference output obtained at high precision, indicating the 
intrinsic stochasticity associated with the operation. The grey histogram 
corresponds to the positive conductance values and the black histogram, to the 
negative ones. The bottom-right inset shows the distribution of programmed 
conductance values on the first core executing the similarity calculation. The 
top-left inset shows a low-angle annular dark-field scanning transmission 
electron microscope image44 of a nanoscale PCM device in its RESET state, where 

a large amorphous region blocks the bottom electrode, resulting in a 
conductance value close to zero. To encode a 1 or −1 in a unit cell, the amorphous 
region corresponding to the appropriate device is partially crystallized to 
achieve a higher conductance value. The target conductance value was set at 
5 μS. Scale bar, 50 nm. c, The red, green and blue histograms correspond to the 
distribution of similarity between the same unbound estimate vector ( ̃x) and 
three colour code vectors (xred, xgreen, xblue). The purple vertical line corresponds 
to the activation threshold at T = 33, which avoids activating any similarity values 
related to xred. d, Raw image is fed through a ResNet-18 network to generate a 
holographic product vector visualized as a binary heat map. The in-memory 
factorizer iteratively disentangles the holographic vector. In the first time step, 
all the code vectors show an equal similarity to the current estimate. Over time, 
the in-memory factorizer converges to the correct factorization, indicated by a 
high similarity value for a single code vector.
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crossbar array in parallel. Ohm’s law defines the current flowing through 
each unit cell, and the current is summed up on the corresponding 
bitlines in accordance with Kirchhoff’s current summation law. This 
current is digitized and accumulated by 256 analogue-to-digital con-
verters operating in parallel.

Each IMC core performs MVM operations in a constant amount of 
time, 𝒪𝒪𝒪1), which leads to merely reducing the time complexity of 
factorization to the average number of iterations. Moreover, the intrin-
sic randomness associated with the PCM devices is exploited to calcu-
late the stochastic similarity and projection vectors that minimize the 
occurrence of limit cycles (Fig. 4b,c). A permute logic is employed to 
temporally multiplex one crossbar array for multiple factors, and the 
hyperparameters such as the activation and convergence thresholds 
were obtained through Bayesian learning (Methods). The experimen-
tally realized in-memory factorizer is compared with the baseline reso-
nator network21,26, where both methods used D = 256, M = 256 and  
F = 3. These parameters set the total problem size to MF = 16,777,216 
and the maximum number of iterations to N = 21,845, which ensures 
that the computational complexity does not exceed that of the 
brute-force search (Methods). When using the same code books and 
5,000 randomly selected product vectors as queries, the baseline 
resonator network is found to be incapable of factorizing any of the 
product vectors. In contrast, the in-memory factorizer is capable  
of achieving an outstanding accuracy of 99.71% with an average  
number of 3,312 iterations.

Finally, we demonstrate the role of the in-memory factorizer in 
visual perception to disentangle the attributes of raw images. The 
perception system consists of two main components (Fig. 4d). A  
convolutional neural network is trained to map the input image to a 
holographic perceptual product vector, based on a known set of image 
attributes. Hence, during inference, the output of the neural network is 
an approximation of the product vector that describes the image. The 
in-memory factorizer is used to disentangle the approximate product 
vector using a known set of image attributes. For experiments, we used 
the input images from the relational and analogical visual reasoning 
(RAVEN) dataset41. The images contain objects with attributes such 
as type, size, colour and position. Each set of attributes is mapped 
to a unique code book, leveraging its symbolic nature (Methods). 
The disentanglement of 1,000 images from the RAVEN dataset to  
the correct estimate of attributes achieved an accuracy of 99.42% 
(Supplementary Video 1).

Conclusion
We have compared the in-memory factorizer with a dedicated reference 
digital design that benefits from the proposed sparse activations and 
all the other features, except the intrinsic stochasticity that is inherent 
in PCM devices. Using the same configurations as the experiments 
(D = 256, M = 256, F = 3 and 5,000 trials), the deterministic digital design 
was able to reach an accuracy of 95.76% with 3,802 iterations on average. 
Compared with the in-memory factorizer, the digital design demanded 
14.8% more iterations on average, and still exhibited 4.0% lower accu-
racy. Even if we allow the maximum number of iterations to be arbitrar-
ily large, the digital design is still not able to match the accuracy of the 
in-memory factorizer due to the limit cycles (Supplementary Note 4), 
thus highlighting the crucial role of the intrinsic stochasticity associ-
ated with PCM devices.

The in-memory factorizer could also result in a notable gain in 
energy and areal efficiency. By combining the advantages of in-place 
computation and the reduced number of iterations, it is estimated that 
a custom-designed in-memory factorizer based on a 512 × 512 crossbar 
array is capable of factorizing a single query within an energy budget of 
33.1 μJ on average, resulting in energy savings of 12.2 times compared 
with the reference digital design. The total area saving is estimated to 
be 4.85 times (Supplementary Note 4). The non-volatile storage of the 
code books is an added advantage compared with the digital design.

Note that the application of in-memory factorizers can go beyond 
visual perception, as factorization problems arise everywhere in per-
ception and cognition, for instance, in analogical reasoning12–16,42. 
Other applications include tree search21 and the prime factorization 
of integers43. Recently, it has been shown how the classical integer 
factorization problem can be solved by casting it as a problem of factor-
izing holographic vectors43. These pave the way for solving non-trivial 
combinatorial search problems.

To summarize, we have presented a non-von Neumann compute 
engine to factorize high-dimensional, holographic vectors by search-
ing in superposition. We have experimentally verified it using two 
state-of-the-art IMC cores based on PCM technology, which provides 
in-place computation and non-volatility. The experimental results 
show the reliable and efficient factorization of holographic vectors 
spanning a search space of 256 × 256 × 256. The intrinsic stochasticity 
associated with PCM devices is coupled with nonlinear sparse activa-
tions to enhance the operational capacity by five orders of magnitude 
as well as to reduce the spatial and time complexity associated with the 
computational task. Furthermore, we have demonstrated the efficacy 
of the in-memory factorizer in disentangling the constituent attributes 
of raw images. This work highlights the role of emerging non-von 
Neumann compute paradigms in realizing critical building blocks of 
future artificial intelligence systems.
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Methods
Detection of convergence in the in-memory factorizer
The iterative factorization problem is said to be converged if, for two 
consecutive time steps, all the estimates are constant, that is, 
x̂f𝒪t + 1) = x̂f𝒪t) for f ∈ [1, F]. To detect this convergence, we define a novel 
early convergence detection algorithm. The in-memory factorizer is 
said to be converged if a single similarity value across all the factors 
surpasses a convergence detection threshold:

converged = {
true, ifαf

i > Tconvergence

false, otherwise,
(1)

where i ∈ [1, |Xf|] for f ∈ [1, F]. On convergence, the predicted factoriza-
tion is given by the code vector associated with the largest similarity 
value per code book. The novel convergence detection counteracts 
parasitic code vectors with a high enough similarity value to prevent 
the in-memory factorizer from converging to a stable solution. Fur-
thermore, there is no need to store the history of prior estimates. 
Otherwise, the last estimate for each factor needs to be stored to be 
able to compare it with the latest estimate and detect convergence, 
resulting in a total of F × D stored bits. We used Bayesian optimization 
to find the optimal convergence detection threshold. It stays at a fixed 
ratio of D for any given set of hyperparameters and problem sizes.

Maximal number of iterations
To use strictly fewer search operations than the brute-force approach, 
the maximal number of iterations (N) must be constrained to

N ×M × F < MF. (2)

In all our experiments, we constrain the maximum number of iterations 
to N < MF−1

F
 to ensure a lower computational complexity compared with 

the brute-force approach.

Hyperparameter optimization via Bayesian optimization
We find the optimal hyperparameters of the in-memory  
factorizer h∗ = [T∗, T∗convergence]  by solving a Bayesian optimization  
problem, where T* is the activation threshold and T∗convergence is the  
convergence threshold. We define the error rate l to be the ratio of  
the wrongly factorized product vectors. More formally, we try to find 
the optimal set of hyperparameters h* by minimizing the error rate l, 
which is a function of the hyperparameters h:

h∗ = arg min
h

l𝒪h). (3)

We model the error rate as a Gaussian process with a radial basis  
function kernel and minimize it using Bayesian optimization. To  
sample possible hyperparameters during optimization, we use the 
expected improvement acquisition function.

We reduce the computational complexity of the error rate  
evaluation for a given set of hyperparameters h by limiting the  
maximum number of iterations to N′ = N/10 and the number of trials  
to 256. A low number of iterations N′ yields higher error rates, yet  
they still provide a good indication of the in-memory factorizer’s  
performance given a set of hyperparameters. Additionally, the  
reduced number of trials gives noisy evaluations of l, which is modelled 
as additive Gaussian measurement noise.

We derive the final parameter estimates by averaging results  
over the five best experiments. For the hardware experiments, the 
stochasticity is inherently provided by the PCM crossbar arrays. How-
ever, for simulating the in-memory factorizer in software, we need  
to model stochasticity as a noise level. Hence, the noise level (n*) is 
treated as an extra hyperparameter for optimization. Accordingly, to 
simulate our method in the software, we optimize for three 

hyperparameters: the activation threshold, convergence threshold 
and noise level given by h∗ = [T∗, T∗convergence, n∗].

In-memory experiments
For the experimental demonstration, we employed an IMC core  
fabricated by IBM Research in a 14 nm complementary metal–oxide–
semiconductor technology node37. This features 256 × 256 unit cells, 
each comprising four PCM devices arranged in a differential configu-
ration where one pair of devices is connected in parallel to represent 
positive conductance and another pair to represent negative conduct-
ance on the unit cell. For these experiments, however, we program 
only one device, either on the positive or negative side, as it provides 
a sufficient dynamic range in conductance to achieve more than  
99% accuracy. This effectively allows us to optimize the unit cell to 
consist of just two PCM devices (Fig. 4a).

A custom printed circuit board houses two such HERMES cores, 
and a field-programmable gate array board is used to control the com-
munication protocol and loading data to and from the cores. The 
field-programmable gate array, in turn, is controlled by a Linux machine 
running a Python version 3.6 environment on top. The host machine 
performs the unbinding and applies the activation function, and the 
two cores perform the dominant MVM similarity search and projection 
operations. An iterative programming scheme of the PCM devices is 
employed to store the code vectors in the crossbars. The output of 
the in-memory MVM is measured in terms of the analogue-to-digital 
converter count units. Subsequently, a linear correction is applied to 
correct circuit-level mismatches. The linear correction parameters are 
calculated before MVM operations.

The single crossbar core with dimensions of 256 × 256 limits the 
total number of supported code vectors across all the code books to 
256. To overcome this limitation, we propose a permute logic to tem-
porally multiplex one single crossbar array for all the F factors. This 
enables us to exploit the complete crossbar for one single code book 
with up to 256 code vectors, and reuse it across an arbitrary number of 
factors. As shown in Fig. 4a, before the similarity calculation, we apply 
the permute logic as a factor-wise exclusive circular shift on the esti-
mated unbinding. This results in a quasi-orthogonal time multiplexing 
of the crossbar. Before updating the estimates, we reverse the circular 
shift to obtain unaltered estimates.

Software simulations of the in-memory factorizer
Stochasticity is the key enabler of the in-memory factorizer. Adding  
some stochasticity helps to diverge from the limit cycles as each solu-
tion becomes unique. For the experiments reported in Fig. 3, this impor-
tant aspect is modelled in software by simulating the noisy behaviour of 
the MVMs on the crossbar as an additive Gaussian noise with zero mean:

α′i = f𝒪αi) = αi + n, (4)

where αi is a single entry of the output vector and n is normally  
distributed with n ∼ 𝒩𝒩𝒪0, σ2).

In total, we simulated F × (M + D) additive Gaussian noise 
sources: M on the similarity vector and D on the projection vector. 
The noisy similarity vector is required to break free of the limit cycles.  
Due to the random distribution of similarity values, there is always a 
chance of activating none of the similarity values if they do not cross  
the activation threshold. Adding noise on top of this projection  
prevents such an all-zero estimation by randomly initializing the  
vector before bipolarization.

The PCM devices on the crossbar array exhibit a similar noisy 
behaviour, which can be modelled as a combination of noise compo-
nents such as programming noise, read noise and drift variability. In 
Supplementary Note 3, we model the extent to which each of these 
noise components is present in the experimental crossbar arrays and 
analyse the sensitivity to change in the noise components as reflected 
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in the performance figures, such as factorization accuracy and the 
number of iterations required for convergence.

To concretely quantify the effect of the aggregated PCM device 
noise on the performance of the factorizer, we conducted simulations 
where the aggregated noise standard deviation gradually increases 
from zero noise, and maintaining the ratio of the standard deviation 
between read noise and programming noise, as observed on the experi-
mental platform (σr/σp = 0.3951/1.1636). These results are shown in 
Extended Data Fig. 1.

We observe that with zero noise, the factorizer performs  
poorly, with an accuracy of 25.4% and requiring on average 16,000  
iterations to converge. This expected behaviour is due to the  
deterministic nature of the search and the resulting inability to break 
free of the limit cycles. The factorizer, however, operates at its peak 
performance when the standard deviation of aggregated noise is main-
tained within the range of [0.293 μS, 1.277 μS]. Note that the standard 
deviation of aggregated noise observed on the experimental platform 
(0.98 μS) falls in the middle of this tolerated noise range (Extended 
Data Fig. 1).

Visual disentanglement
We use the RAVEN41 dataset, which provides a rich set of progressive 
matrices tests, for visual abstract reasoning tasks. We only focus on 
the visual perception part of the task to disentangle a sensory input 
image from its underlying attribute factors. The RAVEN dataset pro-
vides a total of 70,000 tests, each consisting of 16 panels of images. 
In our experiment, we considered the 2 × 2 image constellation with 
a single object. Each object can have one of four possible positions, 
ten colours, six sizes and five types. There are, thus, 1,200 possible 
combinations. We mapped each set of attributes to a single code book 
of the in-memory factorizer. We reused the same code book as for the 
synthetic experiment. The first code book represents the position 
attribute and the second, the colour attribute. For the third code book, 
we fused the size and type attributes into a single code book, ending 
up with a total of 30 possible size–type combinations.

Each image can be described by a product vector formed by the 
binding of the corresponding code vectors. To map the input image to 
the product vector, we used a convolutional neural network. We used 
the ResNet-18 convolutional neural network and mapped its output 
to our 256-dimensional vector space using the training schema pro-
posed elsewhere22. After training, we ran all the test images through the 
trained ResNet-18 network to obtain an estimate of the product vector.

Next, we passed all the estimated product vectors through the 
same experimental test setup as the synthetic experiments. The main 
difference lies in the product vector: for the synthetic one, we used the 

exact product vectors, but for the visual perception task, the product 
vectors are the output of the convolutional neural network, which will 
be an approximate product vector as opposed to being the exact one.

Data availability
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(a)

(b)

aggregated noise (standard deviation)

aggregated noise (standard deviation)

default noise

default noise

Extended Data Fig. 1 | Desirable range of noise. The aggregated noise 
corresponding to the programming noise, drift variability, and read noise in 
the PCM devices affects (a) the accuracy of factorization, and (b) the number of 
iterations to converge. The optimal range for the standard deviation of the noise 

lies between 0.293μS and 1.277μS. As indicated by the green vertical line, the level 
of noise observed in the experimental crossbar array lies within the desirable 
range of noise.
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