Covalent triazine framework/carbon nanotube hybrids enabling selective reduction of CO₂ to CO at low overpotential

Electronic Supplementary Information

Andreas Laemont^a, Sara Abednatanzi^a, Parviz Gohari Derakshandeh^a, Florian Verbruggen^b, Erika

Fiset^{b,}, Qing Qin^c, Kevin Van Daele^d, Maria Meledina^{e,f}, Johannes Schmidt^g, Martin Oschatz^{c,h}, Pascal

Van Der Voort^a, Korneel Rabaey^b, Markus Antonietti^c, Tom Breugelmans^d and Karen Leus^{a,*}

[♠]CMET- Center for Microbial Ecology and Technology, Department of Biotechnology, Ghent University, 9000 Ghent

e Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium

* RWTH Aachen University, Central Facility for Electron Microscopy, D-52074 Aachen, Germany

^g Forschungszentrum Jülich GmbH, Ernst Ruska-Centre (ER-C 2), D-52425 Jülich, Germany

^h Institut für Chemie – Funktionsmaterialien, Technische Universität Berlin, Hardenbergstraße 40, 10623 Berlin, Germany

^{*i*} Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany

* corresponding author, karen.leus@ugent.be

^{a.}COMOC - Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, 9000 Ghent, Belgium.

^c Max Planck Institute of Colloids and Interfaces, Colloid Chemistry, Research Campus Golm, Am Mühlenberg 1, 14476 Potsdam, Germany

^d ELCAT – Applied Electrochemistry & Catalysis, Faculty of Applied Engineering, University of Antwerp, 2610 Antwerp, Belgium

Electronic Supplementary Information (ESI) available: [¹H NMR, FTIR, Raman, XRD, XPS, ADF-STEM-EDX, ICP-MS, LSV, CA,]. See DOI: 10.1039/x0xx00000x

Table of contents

I.	Synthesis and characterization of the catalyst3
	Synthesis of MWCNT-OH
	NMR
	Synthesis of CTFs 4
	Attenuated Total Reflectance (ATR) Infrared Spectroscopy5
	Diffuse Reflectance Infrared Fourier Transformed Spectroscopy (DRIFTS)
	Raman Spectroscopy7
	X-ray Photoelectron Spectroscopy (XPS)
	X-Ray Diffraction (XRD)
	Scanning Transmission Electron Microscopy combined with Energy Dispersive X-
	ray spectroscopy (STEM-EDX)
II.	Electrochemical measurements12
	Electrochemical setup 12
	Linear Sweep Voltammetry (LSV) 12
	Chronoamperometry (CA) 13
	Calculation of Faradaic efficiencies17
	. Control experiments 17
	Difference between HATCTF@MWCNT-OH and HATCTF + MWCNT-OH 17
	Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

I. Synthesis and characterization of the catalyst

Synthesis of MWCNT-OH

Figure S1: Acidic oxidation of pristine MWCNTs, followed by reduction using NaBH₄, yielding hydroxylfunctionalized carbon nanotubes (MWCNT-OH)

NMR

Figure S2: ¹H NMR spectrum of hexa-azatriphenylentrimethoxytrinitrile

Synthesis of the CTFs

2,6-pyridine-dicarbonitrile

PyCTF

terephtalonitrile

Figure S3: Ionothermal synthesis of the different CTFs

Attenuated Total Reflectance (ATR) Infrared Spectroscopy

Figure S4: FTIR-ATR spectrum detail of MWCNT-OH

Diffuse Reflectance Infrared Fourier Transformed Spectroscopy (DRIFTS)

Figure S5: FTIR-DRIFTS spectra of CTF1, pyCTF and HATCTF. The broad peaks at around 1570 cm⁻¹ and 1350 cm⁻¹ were ascribed to triazine ring vibrations. The absence of a nitrile peak around 2230 cm⁻¹ indicates the successful trimerization of the nitrile-containing monomer.

Figure S6: FTIR-DRIFTS spectra of CTF1@MWCNT-OH, pyCTF@MWCNT-OH and HATCTF@MWCNT-OH

Raman Spectroscopy

Figure S7: Detail of Raman spectra of CTF1, pyCTF and HATCTF. A broad D-band at around 1350 cm⁻¹ and G-band at around 1600 cm⁻¹ can be discerned.

Figure S8: Detail of Raman spectra of CTF1@MWCNT-OH, pyCTF@MWCNT-OH and HATCTF@MWCNT-OH. A broad Dband at around 1350 cm⁻¹ and G band at around 1600 cm⁻¹ can be discerned.

X-ray Photoelectron Spectroscopy (XPS)

	С	0	Ν	Na	F	Si	CI	Zn
	(at%)							
MWCNT-OH	95.58	3.96		0.45				
CTF1@MWCNT-OH	92.19	3.32	3.6		0.73	0.15		
pyCTF@MWCNT-OH	91.78	2.81	4.48		0.46		0.31	0.15
HATCTF@MWCNT-OH	88.53	3.7	6.32		1.3			0.15

Table S1: XPS elemental atomic percentages of MWCNT-OH and hybrid materials

X-Ray Diffraction (XRD)

Figure S9: XRD patterns of MWCNT-OH, CTF1, pyCTF, CTF1@MWCNT-OH and pyCTF@MWCNT-OH

Scanning Transmission Electron Microscopy combined with Energy Dispersive X-ray spectroscopy (STEM-EDX)

Figure S10: STEM-EDX of MWCNT-OH

Figure S12: STEM-EDX of pyCTF@MWCNT-OH

II. Electrochemical measurements

Electrochemical setup

Figure S13: The electrochemical H-type setup used for the electrochemical measurements.

Linear Sweep Voltammetry (LSV)

Figure S14: LSV curves of pyCTF@MWCNT-OH, CTF1@MWCNT-OH and HATCTF@MWCNT-OH. Recorded in 0.1 M KHCO3 at 5 mV/s

Chronoamperometry (CA)

Figure S15: Chronoamperometries of pristine carbon nanotubes. Recorded in 0.1 M KHCO₃. All potentials are expressed versus RHE.

Figure S16: Chronoamperometry curves of HATCTF@MWCNT-OH. Recorded in 0.1 M KHCO₃. All potentials are expressed versus RHE.

Figure S17: Chronoamperometry curves of pyCTF@MWCNT-OH. Recorded in 0.1 M KHCO $_3$. All potentials are expressed versus RHE.

Figure S18: Chronoamperometry curves of CTF1@MWCNT-OH. Recorded in 0.1 M KHCO₃. All potentials are expressed versus RHE.

Figure S19: Detail of the chromatogram of CTF1@MWCNT-OH

Figure S20: Detail of the chromatogram of pyCTF@MWCNT-OH

Figure S21: Detail of the chromatogram of HATCTF@MWCNT-OH

Figure S23: Calibration curve of H_2

Calculation of Faradaic efficiencies

The Faradaic efficiencies were calculated based on the online GC measurements of the gaseous endproducts H_2 and CO during chronoamperometry according to the following equation:

$$FE = \frac{znF}{Q}$$

In which z is the number of electrons exchanged to form one molecule of the desired product (in the case of CO and hydrogen gas, z = 2), n is the molar amount of endproduct formed measured via GC, F is the Faraday constant and Q is the total charge generated during the process in the time up until the sample injection. Since no gaseous products other than CO and H₂ were detected by means of GC and no liquid products were detected with NMR and HPLC the total Faradaic efficiency was normalized to 100%.

III. Control experiments

Difference between HATCTF@MWCNT-OH and HATCTF + MWCNT-OH

Figure S24: Schematic interpretation of the structures of HATCTF@MWCNT-OH and HATCTF+MWCNT-OH

Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

	Fe (g/kg)	Zn (g/kg)	Cu (mg/kg)	Mn (mg/kg)
HATCTF@MWCNT-OH	6.91	11.8	119	101
pristine MWCNT-OH	3.22	0.0604	76.9	88.8

Table S2: ICP-MS analysis of HATCTF@MWCNT-OH and pristine MWCNT-OH