21st International Symposium INFOTEH-JAHORINA, 16-18 March 2022

Face Mask Detection Based on Machine
Learning and Edge Computing

Ivan Jovovi¢, Dejan Babi¢, Stevan Cakic,
Tomo Popovi¢, Senior IEEE Member

Faculty for Information Systems and Technologies
University of Donja Gorica
Podgorica, Montenegro
ivan.jovovic@udg.edu.me

Abstract— This paper describes research effort aimed at the use
of machine learning, Internet of Things, and edge computing for
a use case in health, mainly the prevention of the spread of
infectious diseases. The main motivation for the research was the
Covid-19 pandemic and the need to improve control of the
prevention measures implementation. In the study, the
experimentation was focused on the use of machine learning to
create and utilize prediction models for face mask detection. The
prediction model is then evaluated on the various platforms with
a focus on the use on various edge devices equipped with a video
camera sensor. Different platforms have been tested and evaluated
such as standard laptop PC, Raspberry Pi3, and Jetson Nano Al
edge platform. Finally, the paper discusses a possible approach to
implement a solution that would utilize the face mask detection
function and lays out the path for the future research steps.

Keywords— artificial intelligence; Covidl9 prevention, edge
computing, face mask detection, image processing; Internet of
Things; machine learning

I. INTRODUCTION

Edge computing assumes the processing of the data near the
source instead of relaying to the servers at remote data centers.
Internet of Things (IoT) was introduced to the community in
late 90s for supply chain management [1], and then the concept
of collecting data without human intervention was widely
adopted in application domains such as health care, environment
monitoring, transportation, etc. [2,3]. As of April 2021, the
number of people on the Internet has grown a lot, i.e.
approximately 60% of the world population is now online [4].
This is reflected on the amount data being produced every day.
At the end of 2021, there was around 74 zettabytes of data, as
estimated by Cisco Global Cloud Index. With this being said, it
can be realized that some IoT applications require short response
time, while a huge quantity of data could be created and may
introduce a heavy load on communication and processing.
Traditional Cloud computing, with processing servers located
in remote data centers, may not be efficient enough to handle
this kind of challenges. For example, one such application is
autonomous cars. One gigabyte of data can be generated by a
self-driving car every second, and it requires real-time
processing for the car to make correct decision [5]. If all the data
needs to be send to the Cloud for the processing, it could also

This research was funded in part by the EUROCC project, European High-
Performance Computing Joint Undertaking (JU) under grant agreement No.
951732. The JU receives support from the EU’s Horizon 2020 research and
innovation programme and EUROCC project participating institutions.

Srdjan Krco, Petar Knezevic¢
DunavNET
Novi Sad, Serbia

introduce waiting for response for a long time. So, there is a
variety of use cases where the data needs to be processed at the
edge to get response in shorter time, and for the processing to
be more efficient [6]. In recent years, especially due to the
advancements in computing equipment and machine learning
(ML), artificial intelligence (Al) is finding its practical uses in
variety of applications that employ IoT, edge computing, and
big data analytics [7].

Edge computing provides numerous of benefits to the
information technology. Some of those benefits are: reduced
latency, improved bandwidth, longer lifespan, etc. [8]. In this
research, we focused on the use of edge computing device called
Jetson Nano, which is a small, powerful computer designed for
entry-level edge IoT and Al applications. Jetson Nano is an
Nvidia product aimed at implementation of IoT solutions with
the power of GPU computation [9]. This device has GPIO
(General Purpose Input/Output) pins and GPU core to help users
build programs and solutions quite easily. The Nvidia Jetson
Nano was introduced to public in mid-March of 2019 and this
product was intended for [oT makers. Since it is said that Jetson
Nano is a small general-purpose computer, it can be treated as
an everyday computer. It can be used to browse internet, write
documents, print, etc. In order to act like real computer user
needs to provide keyboard, mouse and monitor. However, the
designated use of this device is to be used in building various
IoT solutions, where edge processing is needed. Sensors and
additional modules can be added directly to a Nano board. The
board provides GPIO interface that is used for connecting
external device modules. Programming platforms based on
modern programming languages such as Python and C++ are
supported by Nvidia Jetson Nano software image containing the
system software and development environment. Since Jetson’s
system software image is based on Ubuntu operating system, it
supports installation of wide range of standard Linux programs,
compilers, databases, etc. Nvidia Jetson Nano is equipped with
a GPU containing 128 cores that enables implementation of
edge Al applications [10]. Speaking of Al and machine learning
software tools, Jetson can run Python with Pandas, NumPy,
TensorFlow, and other similar tools. As such, Jetson Nano can
be used for various computer vision applications in the Al and
IoT edge setup. It just needs to be connected with external

camera sensor and equipped with valid program scripts and ML
trained prediction models.

In the study, the research was focused on the use of machine
learning to create and utilize prediction models for face mask
detection that can then be ported to an edge Al/IoT device
equipped with camera in order to create a face mask detection
system. Such a system could find its use in prevention of the
spread of infectious diseases.

II. MATERIALS AND METHODS

A. IoT/AI Edge Platform

As for the computing [0T/Al platform, we selected Nvidia
Jetson Nano system [10]. This is a powerful computing board,
but it does not have an internal storage, and because of that an
external storage is needed. The most common storage that is
finding its use with this system is MicroSD card with the
minimum of 16GB, but 32GB is used for this example. This
storage is used for operating system, application and/or service
software, and data. In order to prepare the system, a PC
computer with MicroSD card reader/writer is needed in order to
prepare the software setup configuration and fully enable Nvidia
Jetson Nano for edge computing. In addition, some hardware
requirements such as keyboard, mouse, Ethernet cable, Power
adapter, HDMI cable and monitor are needed for the first boot
and the development process. Later, once everything is
developed and configured, Jetson Nano can be used in headless
mode.

The operating system can be obtained in ISO file format
from the official Jetson Nano pages at the Nvidia website.,
where the latest version of JetPack software development kit
(SDK) [11]. After the ISO file has been downloaded it is used
to flash MicroSD card. Balena Etcher software tool can be used
for this step. Once the MicroSD card is prepared, it is installed
into the dedicated port, and configuring process of the Jetson
Nano board can start. For the configuration and development,
the system is connected to keyboard, mouse, and monitor, and
it is used as a regular PC. The remaining process of the
configuration is mostly straightforward, and it includes setting
up the user’s personal information and preferences.

The implementation architecture assumed for this study is
illustrated in Fig. 1. For ML process, we selected the Faster R-
CNN network as it will be explained in the next section.
Resulting ML prediction model is ported to Jetson Nano that
processes images obtained from the camera.

Image Machine —
Preprocessing Learning
The Dataset a]\]\;Ldlr;ference ’,ﬁ)T Cloud
ode

3 (optional)}

By e
A] Video strcam @ 2
—_—>

h i

1P Camera -,
ToT/Al Edge Edge
Device Software

Figure 1. IoT/AlI Edge Platform Setup for Face Mask Detection

The dataset of images with people wearing or not wearing
face masks with corresponding annotations is used for creation
and training of inference models. Prior to the use for ML
process, the data in the data set is preprocessed in order to
augment and enhance the dataset to get better results. After the
successful ML session, the output ML inference model can be
ported to the [oT/AI edge device, in this case Jetson Nano. The
camera sensor can then be used to obtain video stream, i.e., real-
life images aimed at locations we expect to find people wearing
face masks. The inference model is used to process the input
images. The result of this process can be an action or alert
performed locally where the device is installed. Optionally, the
results can be communicated via Internet to a remote loT data
platform in the cloud, and integrated into different applications
that require face mask detection.

B. The Dataset Selection and Preparation

The dataset for machine learning in this study is obtained
from Kaggle-s open-source database. This dataset contains 853
images and prior to their use, these images were further
preprocessed in order to gain a richer dataset [12]. The dataset
contained only partially labeled images and it was needed to
label all the images according to the desired target function of
the prediction model, in our case face mask detection. Computer
Vision Annotation Tool (CVAT) is tool that was used for
labeling images in this example.

As mention, in order to create a richer dataset, the
Roboflow’s augmentation tool was used to triple our previously
labeled dataset. This tool is rotating existing images and labels
in two other directions, so after this step, the dataset contained
2559 images out of which 2029 were used for training, 270 were
used for validation and 260, were for the model testing, which
was approximately 80/10/10 split.

C. Methods and Tools

The main tools used in this example were: Detectron2,
PyTorch, Google Colab and OpenCV [7]. The experimentation,
training and testing of the models, was performed both locally
on PC workstation and remotely using Google Colab
environment. The PC workstation specifications include Intel
17 CPU, Nvidia GeForce RTX 2060 GPU card, and 16GB of
RAM. Training the model locally would take up to 180 minutes,
while training of the model using Google Colab would take
about 160 minutes. Figure 2 provides visualization of how the
model training process went.

The image classification was done with the use of a Faster
R-CNN machine learning algorithm. The Faster R-CNN is a
class of deep learning neural networks which is and upgrade to
previous R-CNN algorithm. Faster R-CNN algorithm contains
multiple improvements and innovations implemented to speed
up training and testing process, while also increasing detection
accuracy [13]. More details about Faster R-CNN can be found
in [13,14]. Detectron2 is software library used for purpose of
building the model. Detectron2 is Facebook’s next generation
library that enables various detection and segmentation
algorithms. The previous versions were Detectron and maskr-
cnn benchmark. Detectron2 supports multiple computer vision
projects and applications on Facebook. The latest version of the

platform is implemented in PyTorch. Detectron? is flexible and
extensible and it is able to provide fast training on single and
multiple GPUs. The software library includes a variety of
network models such as Faster R-CNN, Mask R-CNN,
RetinaNet, Panoptic FPN, TensorMask, etc. Models built using
Detecron2 can be exported in TorchScript format or in Caffe2
format for the later use in production deployment. The face
detection mask machine learning experiment described in this
paper was based on the adaptation of the official demonstration
scripts for Detectron2 software library [15].

Training Loss and Accuracy

0.8 -

10-

=
o

Loss/Accuracy
[=]
ES

A naiM
0.2 - —— val_loss
train_acc '&_\\—’\’
— val_acc
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5

Epoch #

Figure 2. Visualization of the model training process

D. Installation and System Configuration

Conceptualized as an Al/IoT edge device, the Jetson Nano
can compute multiple neural networks in parallel for Al
applications such as image classification, object detection,
object segmentation, and speech processing. It is designed to
provide powerful computing resources in a small package. In
comparison with other similar devices, it has shown far more
better results, for example, the comparison with a well-known
Raspberry Pi platform is shown in Table 1 [16]. Here, the Jetson
Nano is compared with Raspberry Pi3 based on how many
frames per second (FPS) can each device compute using
different types of machine learning models.

In order for everything to run on the edge devices, it is
needed to make sure that all of the required software components
are installed properly. In addition to the operating system and
Python, we needed Detectron2 software library. As Detectron2
was released recently, the process of installation on Jetson Nano
was not as straightforward as on the other platforms. Jetson
Nano CPU is a quad-core ARM A57 64-bit CPU (aarch64) and
most of the software needs to be built from the source. The first
step is to make sure that the latest version of JetPack SDK is
installed with adequate CUDA version. After that, it is needed
to install PyTorch, TorchVision and Cython, and these tools
need to be installed in that order. TorchVision has to be
compatible with Pytorch aarch64 version. Next step is to
installation of PyCoco tools and pyyaml. PyCoco tools and
PyYaml are needed for importing the input images and
visualizing the output image. With all the previously mentioned
software components installed, the installation of Detectron2
can take place. Detectron2 can be cloned and installed from its
official GitHub repository. This process can take up to 3 hours
depending on Internet speed. There is a suggestion to install

everything inside virtual environment in case of something has
gone wrong during the installation. Detailed information about
versions can be found in [17]. Another way of installing
Detectron2 on Jetson Nano is by pulling and configuring Docker
container provided by Detectron2 official page. Since both,
Jetson Nano and Detectron2 are relatively new, there are not
many documented projects that involve both of these tools
together, and this is the reason why the installation can be
challenging.

TABLE L. COMPARISON JETSON NANO VS. RASPBERRY P13
Model Application Framework | Jetson Nano | RPi3
ResNet50 Classification | TensorFlow 36 FPS 1.4 FPS
(224x224)

MobileNet- | Classification | TensorFlow 64 FPS 2.5 FPS
v2(300x300)

SSD ResNet | Object TensorFlow S FPS DNR
(960x544) detection

SSD ResNet | Object TensorFlow 16 FPS DNR
(480x272) detection

SSD ResNet | Object TensorFlow 18 FPS DNR
(300x300) detection

SSD MNet Object TensorFlow 8 FPS DNR
(960x544) detection

SSD MNet Object TensorFlow 27 FPS DNR
(480x272) detection

SSD MNet Object TensorFlow 39 FPS 1 FPS
(300x300) detection

Inception 4 | Classification | PyTorch 11 FPS DNR
(299x299)

Tiny Yolo Object Darknet 25 FPS 0.5 FPS
(416x416) detection

VGG-19 Classification | MXNet 10 FPS 0.5 FPS
(224x224)

III. RESULTS AND DISCUSSION

In this study, the focus of the experimentation was to create
inference models and then port them into the Al edge platform
in order to integrate everything into the proposed
implementation architecture. Such a system could be further
developed into a production level for the use in face mask
detection alert system. The evaluation of the accuracy of the
inference model was not in the focus as it can be improved by
using enhanced and additional datasets. The experimental setup
was evaluated using an actual video stream recording at the
university entrance (University of Donja Gorica, Podgorica),
and the initial results and performance of the model was
satisfactory. As illustrated in the example shown in Fig. 4, it
can be seen that model managed to detect 80% of people
wearing masks with accuracy of 70-90%. Such accuracy was
expected, having in mind the size and quality of the dataset,
and the accuracy of the model could be improved.

As for the timings, we tested the end-to-end script on the
system several times in a row, and during these tests we
obtained the similar results. It took around 52 seconds on
average to process the predict function based on the created
inference model using Detectron2. It took a bit more time then
expected to process the script from the start to the end, around
2 minutes in each test. The main reason for this additional time
and difference between computing prediction function and
execution of the complete script is that the end-to-end script

was programmed to draw the boundary boxes around detected
faces/masks, and then save output picture, as illustrated in Fig.
3. This functionality can be optimized in the future.

Figure 3. An example output from the proposed system (UDG, Podgorica)

The other way of evaluation of the performance is in
measuring and representing behavior of different hardware parts
of Jetson Nano as illustrated in Table 2. The hardware parts
include CPU and GPU in this case. Since the model was based
on GPU computation completely, the result of 98% GPU usage
was as expected, while CPU was used only around 40% during
the time our model was working. The temperature of the device
was around 45°C degrees during the execution of the testing
script. These results were acquired using Jetson Nano statistic
software. The results from similar project on Jetson Nano were
more-less like our results, but in this case, author used YOLOv4
for detection. [18].

TABLE II. PERFORMANCE RESULTS
Test 1 Test 2 Test 3
CPU [%] 42 39 41
GPU [%] 98 98 98
Temperature [C] 44 46 45
RAM 2.1 2.1 2.1
Power [W] 6.2 6.1 6.3

IV. CONCLUSIONS

This paper describes experimentation with Al edge platform
and proposes a solution for computer vision system aimed at
face mask detection and prevention of infectious disease
spreading. Such a system could be used in health care
institutions, but also in public spaces, shopping malls, schools
and universities, etc. The paper discusses the selection of the
IoT/Al edge device platform based on the Jetson Nano
embedded system on module board, and all of the software tools
needed to create and implement such a system. The inference
model was created using publicly available dataset, Detectron2

software library and Faster R-CNN network model. The initial
results are promising and such an approach to implementing a
face mask detection system based on the proposed architecture
and selected tools is possible.

The next steps for future research will include selection of
additional datasets, experimentation with various machine
learning parameters, aiming for better accuracy of the prediction
model. We foresee the use of Google Colab and HPC resources
for these experiments. As for the system implementation and
[oT/Al edge platform, the solution needs a better power
management and the script for image pre- and post- processing
can be optimized. The device will need better cooling using
additional heat sink and adding a fan. The combination of a
camera sensor and this edge device with well-trained inference
model, can result in a new Al edge computer vision sensor that
can be integrated into various IoT and disease prevention
solutions.

REFERENCES

[17 K. Ashton, “That ‘internet of thing’ thing,” RFiD journal, vol. 22, no. 7,
pp. 97-114, 2009.

[2] H. Sundmaeket, P. Guillemin, P. Friess and S. Woelffie, “Vision and
challenges for realising the Internet of Things,” 2010.

[3] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
(iot): A wvision, architectural elements, and future directions,” Future
Generation Computer systems, vol. 29, no. 7, pp. 1645- 1660, 2013.

[4] S.Kemp, “60% of the world’s population is now online”, We are Social,
April 2021.

[5] R. Cheruvu, “Big data Applications in Self-Driving cars”, Harvard
University, pp. 1-4, 2016.

[6] Jie Cao, Quan Zhang, Weisong Shi, “Edge computing- a primer”,
Springer Intermational Publishing, pp. 5-8, 2018.

[71 M.Merenda, C.Porcaro, D.Iero, “Edge machine learining for Al-enabled
10T devices: A review”,pp. 2-5, 2021.

[8] Shijun Lio, Bedir Tekinerdogan, Mikio Aoyama, Liang-Jie Zhang, “Edge
Computing- EDGE 2018”, Springer International Conference, pp. 7-9,
2018.

[91 A. Kurniawan, “IoT projects with Nvidia Jetson Nano”, pp. 4-12, 2021

[10] Jetson Nano Developer Kit, [Online] Available:
https://developer.nvidia.com/embedded/jetson-nano-developer-kit

[11] ISO file, [Online] Available:
https://developer.nvidia.com/embedded/develop/software

[12] Face-Mask dataset”, [Online]

Available: ,https://www.kaggle.com/andrewmvd/face-mask-detection.

[13] Ren Shaoqing, “Faster r-cnn: Towards realtime object detection with
region proposal networks”,pp. 2-4, 2015

[14] Girshick Ross, “Fast r-cnn”, Proceedings of the IEEE international
conference on computer vision,2015.

[15] “How to train detectron2 with custom dataset”, [Online] Available:
https://colab.research.google.com/github/Tony607/detectron2_instance
segmentation_demo/blob/master/Detectron2_custom coco_data_segme
ntation.ipynb

[16] “Jetson Nano Deep learning inference benchmarks”, [Online] Available:
https://developer.nvidia.com/embedded/jetson-nano-dl-inference-
benchmarks

[17] “Install and run Detectron2 on Nvidia Jetson Nano”, [Online] Available:
https://che-adrian.medium.com/install-and-run-detectron2-on-nvidia-
jetson-nano-1c66b522598d

[18] S. Valladares, M.Toscano, R. Tufino, D. Vallejo, “Performance
Evaluation of the Nvidia Jetson Nano through a real-time machine
learing algorithm”, pp. 4-5, 2021.

