
21st International Symposium INFOTEH-JAHORINA, 16-18 March 2022

Face Mask Detection Based on MachineLearning and Edge Computing
Ivan Jovović, Dejan Babić, Stevan Čakić,Tomo Popović, Senior IEEE Member

Faculty for Information Systems and TechnologiesUniversity of Donja GoricaPodgorica, Montenegroivan.jovovic@udg.edu.me

Srdjan Krčo, Petar KneževićDunavNETNovi Sad, Serbia

Abstract— This paper describes research effort aimed at the useof machine learning, Internet of Things, and edge computing fora use case in health, mainly the prevention of the spread ofinfectious diseases. The main motivation for the research was theCovid-19 pandemic and the need to improve control of theprevention measures implementation. In the study, theexperimentation was focused on the use of machine learning tocreate and utilize prediction models for face mask detection. Theprediction model is then evaluated on the various platforms witha focus on the use on various edge devices equipped with a videocamera sensor. Different platforms have been tested and evaluatedsuch as standard laptop PC, Raspberry Pi3, and Jetson Nano AIedge platform. Finally, the paper discusses a possible approach toimplement a solution that would utilize the face mask detectionfunction and lays out the path for the future research steps.
Keywords— artificial intelligence; Covid19 prevention, edgecomputing, face mask detection, image processing; Internet ofThings; machine learning

I. INTRODUCTION
Edge computing assumes the processing of the data near thesource instead of relaying to the servers at remote data centers.Internet of Things (IoT) was introduced to the community inlate 90s for supply chain management [1], and then the conceptof collecting data without human intervention was widelyadopted in application domains such as health care, environmentmonitoring, transportation, etc. [2,3]. As of April 2021, thenumber of people on the Internet has grown a lot, i.e.approximately 60% of the world population is now online [4].This is reflected on the amount data being produced every day.At the end of 2021, there was around 74 zettabytes of data, asestimated by Cisco Global Cloud Index. With this being said, itcan be realized that some IoT applications require short responsetime, while a huge quantity of data could be created and mayintroduce a heavy load on communication and processing.Traditional Cloud computing, with processing servers locatedin remote data centers, may not be efficient enough to handlethis kind of challenges. For example, one such application isautonomous cars. One gigabyte of data can be generated by aself-driving car every second, and it requires real-timeprocessing for the car to make correct decision [5]. If all the dataneeds to be send to the Cloud for the processing, it could also

introduce waiting for response for a long time. So, there is avariety of use cases where the data needs to be processed at theedge to get response in shorter time, and for the processing tobe more efficient [6]. In recent years, especially due to theadvancements in computing equipment and machine learning(ML), artificial intelligence (AI) is finding its practical uses invariety of applications that employ IoT, edge computing, andbig data analytics [7].
Edge computing provides numerous of benefits to theinformation technology. Some of those benefits are: reducedlatency, improved bandwidth, longer lifespan, etc. [8]. In thisresearch, we focused on the use of edge computing device calledJetson Nano, which is a small, powerful computer designed forentry-level edge IoT and AI applications. Jetson Nano is anNvidia product aimed at implementation of IoT solutions withthe power of GPU computation [9]. This device has GPIO(General Purpose Input/Output) pins and GPU core to help usersbuild programs and solutions quite easily. The Nvidia JetsonNano was introduced to public in mid-March of 2019 and thisproduct was intended for IoT makers. Since it is said that JetsonNano is a small general-purpose computer, it can be treated asan everyday computer. It can be used to browse internet, writedocuments, print, etc. In order to act like real computer userneeds to provide keyboard, mouse and monitor. However, thedesignated use of this device is to be used in building variousIoT solutions, where edge processing is needed. Sensors andadditional modules can be added directly to a Nano board. Theboard provides GPIO interface that is used for connectingexternal device modules. Programming platforms based onmodern programming languages such as Python and C++ aresupported by Nvidia Jetson Nano software image containing thesystem software and development environment. Since Jetson’ssystem software image is based on Ubuntu operating system, itsupports installation of wide range of standard Linux programs,compilers, databases, etc. Nvidia Jetson Nano is equipped witha GPU containing 128 cores that enables implementation ofedge AI applications [10]. Speaking of AI and machine learningsoftware tools, Jetson can run Python with Pandas, NumPy,TensorFlow, and other similar tools. As such, Jetson Nano canbe used for various computer vision applications in the AI andIoT edge setup. It just needs to be connected with external

This research was funded in part by the EUROCC project, European High-Performance Computing Joint Undertaking (JU) under grant agreement No.951732. The JU receives support from the EU’s Horizon 2020 research andinnovation programme and EUROCC project participating institutions.



camera sensor and equipped with valid program scripts and MLtrained prediction models.
In the study, the research was focused on the use of machinelearning to create and utilize prediction models for face maskdetection that can then be ported to an edge AI/IoT deviceequipped with camera in order to create a face mask detectionsystem. Such a system could find its use in prevention of thespread of infectious diseases.

II. MATERIALS AND METHODS
A. IoT/AI Edge Platform

As for the computing IoT/AI platform, we selected NvidiaJetson Nano system [10]. This is a powerful computing board,but it does not have an internal storage, and because of that anexternal storage is needed. The most common storage that isfinding its use with this system is MicroSD card with theminimum of 16GB, but 32GB is used for this example. Thisstorage is used for operating system, application and/or servicesoftware, and data. In order to prepare the system, a PCcomputer with MicroSD card reader/writer is needed in order toprepare the software setup configuration and fully enable NvidiaJetson Nano for edge computing. In addition, some hardwarerequirements such as keyboard, mouse, Ethernet cable, Poweradapter, HDMI cable and monitor are needed for the first bootand the development process. Later, once everything isdeveloped and configured, Jetson Nano can be used in headlessmode.
The operating system can be obtained in ISO file formatfrom the official Jetson Nano pages at the Nvidia website.,where the latest version of JetPack software development kit(SDK) [11]. After the ISO file has been downloaded it is usedto flash MicroSD card. Balena Etcher software tool can be usedfor this step. Once the MicroSD card is prepared, it is installedinto the dedicated port, and configuring process of the JetsonNano board can start. For the configuration and development,the system is connected to keyboard, mouse, and monitor, andit is used as a regular PC. The remaining process of theconfiguration is mostly straightforward, and it includes settingup the user’s personal information and preferences.
The implementation architecture assumed for this study isillustrated in Fig. 1. For ML process, we selected the Faster R-CNN network as it will be explained in the next section.Resulting ML prediction model is ported to Jetson Nano thatprocesses images obtained from the camera.

Figure 1. IoT/AI Edge Platform Setup for Face Mask Detection

The dataset of images with people wearing or not wearingface masks with corresponding annotations is used for creationand training of inference models. Prior to the use for MLprocess, the data in the data set is preprocessed in order toaugment and enhance the dataset to get better results. After thesuccessful ML session, the output ML inference model can beported to the IoT/AI edge device, in this case Jetson Nano. Thecamera sensor can then be used to obtain video stream, i.e., real-life images aimed at locations we expect to find people wearingface masks. The inference model is used to process the inputimages. The result of this process can be an action or alertperformed locally where the device is installed. Optionally, theresults can be communicated via Internet to a remote IoT dataplatform in the cloud, and integrated into different applicationsthat require face mask detection.
B. The Dataset Selection and Preparation

The dataset for machine learning in this study is obtainedfrom Kaggle-s open-source database. This dataset contains 853images and prior to their use, these images were furtherpreprocessed in order to gain a richer dataset [12]. The datasetcontained only partially labeled images and it was needed tolabel all the images according to the desired target function ofthe prediction model, in our case face mask detection. ComputerVision Annotation Tool (CVAT) is tool that was used forlabeling images in this example.
As mention, in order to create a richer dataset, theRoboflow’s augmentation tool was used to triple our previouslylabeled dataset. This tool is rotating existing images and labelsin two other directions, so after this step, the dataset contained2559 images out of which 2029 were used for training, 270 wereused for validation and 260, were for the model testing, whichwas approximately 80/10/10 split.

C. Methods and Tools
The main tools used in this example were: Detectron2,PyTorch, Google Colab and OpenCV [7]. The experimentation,training and testing of the models, was performed both locallyon PC workstation and remotely using Google Colabenvironment. The PC workstation specifications include IntelI7 CPU, Nvidia GeForce RTX 2060 GPU card, and 16GB ofRAM. Training the model locally would take up to 180 minutes,while training of the model using Google Colab would takeabout 160 minutes. Figure 2 provides visualization of how themodel training process went.
The image classification was done with the use of a FasterR-CNN machine learning algorithm. The Faster R-CNN is aclass of deep learning neural networks which is and upgrade toprevious R-CNN algorithm. Faster R-CNN algorithm containsmultiple improvements and innovations implemented to speedup training and testing process, while also increasing detectionaccuracy [13]. More details about Faster R-CNN can be foundin [13,14]. Detectron2 is software library used for purpose ofbuilding the model. Detectron2 is Facebook’s next generationlibrary that enables various detection and segmentationalgorithms. The previous versions were Detectron and maskr-cnn benchmark. Detectron2 supports multiple computer visionprojects and applications on Facebook. The latest version of the



platform is implemented in PyTorch. Detectron2 is flexible andextensible and it is able to provide fast training on single andmultiple GPUs. The software library includes a variety ofnetwork models such as Faster R-CNN, Mask R-CNN,RetinaNet, Panoptic FPN, TensorMask, etc. Models built usingDetecron2 can be exported in TorchScript format or in Caffe2format for the later use in production deployment. The facedetection mask machine learning experiment described in thispaper was based on the adaptation of the official demonstrationscripts for Detectron2 software library [15].

Figure 2. Visualization of the model training process
D. Installation and System Configuration

Conceptualized as an AI/IoT edge device, the Jetson Nanocan compute multiple neural networks in parallel for AIapplications such as image classification, object detection,object segmentation, and speech processing. It is designed toprovide powerful computing resources in a small package. Incomparison with other similar devices, it has shown far morebetter results, for example, the comparison with a well-knownRaspberry Pi platform is shown in Table 1 [16]. Here, the JetsonNano is compared with Raspberry Pi3 based on how manyframes per second (FPS) can each device compute usingdifferent types of machine learning models.
In order for everything to run on the edge devices, it isneeded to make sure that all of the required software componentsare installed properly. In addition to the operating system andPython, we needed Detectron2 software library. As Detectron2was released recently, the process of installation on Jetson Nanowas not as straightforward as on the other platforms. JetsonNano CPU is a quad-core ARM A57 64-bit CPU (aarch64) andmost of the software needs to be built from the source. The firststep is to make sure that the latest version of JetPack SDK isinstalled with adequate CUDA version. After that, it is neededto install PyTorch, TorchVision and Cython, and these toolsneed to be installed in that order. TorchVision has to becompatible with Pytorch aarch64 version. Next step is toinstallation of PyCoco tools and pyyaml. PyCoco tools andPyYaml are needed for importing the input images andvisualizing the output image. With all the previously mentionedsoftware components installed, the installation of Detectron2can take place. Detectron2 can be cloned and installed from itsofficial GitHub repository. This process can take up to 3 hoursdepending on Internet speed. There is a suggestion to install

everything inside virtual environment in case of something hasgone wrong during the installation. Detailed information aboutversions can be found in [17]. Another way of installingDetectron2 on Jetson Nano is by pulling and configuring Dockercontainer provided by Detectron2 official page. Since both,Jetson Nano and Detectron2 are relatively new, there are notmany documented projects that involve both of these toolstogether, and this is the reason why the installation can bechallenging.
TABLE I. COMPARISON JETSON NANO VS. RASPBERRY PI 3

Model Application Framework Jetson Nano RPi 3ResNet50(224x224) Classification TensorFlow 36 FPS 1.4 FPS
MobileNet-v2(300x300) Classification TensorFlow 64 FPS 2.5 FPS
SSD ResNet(960x544) Objectdetection TensorFlow 5 FPS DNR
SSD ResNet(480x272) Objectdetection TensorFlow 16 FPS DNR
SSD ResNet(300x300) Objectdetection TensorFlow 18 FPS DNR
SSD MNet(960x544) Objectdetection TensorFlow 8 FPS DNR
SSD MNet(480x272) Objectdetection TensorFlow 27 FPS DNR
SSD MNet(300x300) Objectdetection TensorFlow 39 FPS 1 FPS
Inception 4(299x299) Classification PyTorch 11 FPS DNR
Tiny Yolo(416x416) Objectdetection Darknet 25 FPS 0.5 FPS
VGG-19(224x224) Classification MXNet 10 FPS 0.5 FPS

III. RESULTS AND DISCUSSION
In this study, the focus of the experimentation was to createinference models and then port them into the AI edge platformin order to integrate everything into the proposedimplementation architecture. Such a system could be furtherdeveloped into a production level for the use in face maskdetection alert system. The evaluation of the accuracy of theinference model was not in the focus as it can be improved byusing enhanced and additional datasets. The experimental setupwas evaluated using an actual video stream recording at theuniversity entrance (University of Donja Gorica, Podgorica),and the initial results and performance of the model wassatisfactory. As illustrated in the example shown in Fig. 4, itcan be seen that model managed to detect 80% of peoplewearing masks with accuracy of 70-90%. Such accuracy wasexpected, having in mind the size and quality of the dataset,and the accuracy of the model could be improved.
As for the timings, we tested the end-to-end script on thesystem several times in a row, and during these tests weobtained the similar results. It took around 52 seconds onaverage to process the predict function based on the createdinference model using Detectron2. It took a bit more time thenexpected to process the script from the start to the end, around2 minutes in each test. The main reason for this additional timeand difference between computing prediction function andexecution of the complete script is that the end-to-end script



was programmed to draw the boundary boxes around detectedfaces/masks, and then save output picture, as illustrated in Fig.3. This functionality can be optimized in the future.

Figure 3. An example output from the proposed system (UDG, Podgorica)
The other way of evaluation of the performance is inmeasuring and representing behavior of different hardware partsof Jetson Nano as illustrated in Table 2. The hardware partsinclude CPU and GPU in this case. Since the model was basedon GPU computation completely, the result of 98% GPU usagewas as expected, while CPU was used only around 40% duringthe time our model was working. The temperature of the devicewas around 45°C degrees during the execution of the testingscript. These results were acquired using Jetson Nano statisticsoftware. The results from similar project on Jetson Nano weremore-less like our results, but in this case, author used YOLOv4for detection. [18].

TABLE II. PERFORMANCE RESULTS
Test 1 Test 2 Test 3CPU [%] 42 39 41GPU [%] 98 98 98Temperature [C] 44 46 45RAM 2.1 2.1 2.1Power [W] 6.2 6.1 6.3

IV. CONCLUSIONS
This paper describes experimentation with AI edge platformand proposes a solution for computer vision system aimed atface mask detection and prevention of infectious diseasespreading. Such a system could be used in health careinstitutions, but also in public spaces, shopping malls, schoolsand universities, etc. The paper discusses the selection of theIoT/AI edge device platform based on the Jetson Nanoembedded system on module board, and all of the software toolsneeded to create and implement such a system. The inferencemodel was created using publicly available dataset, Detectron2

software library and Faster R-CNN network model. The initialresults are promising and such an approach to implementing aface mask detection system based on the proposed architectureand selected tools is possible.
The next steps for future research will include selection ofadditional datasets, experimentation with various machinelearning parameters, aiming for better accuracy of the predictionmodel. We foresee the use of Google Colab and HPC resourcesfor these experiments. As for the system implementation andIoT/AI edge platform, the solution needs a better powermanagement and the script for image pre- and post- processingcan be optimized. The device will need better cooling usingadditional heat sink and adding a fan. The combination of acamera sensor and this edge device with well-trained inferencemodel, can result in a new AI edge computer vision sensor thatcan be integrated into various IoT and disease preventionsolutions.

REFERENCES
[1] K. Ashton, “That ‘internet of thing’ thing,” RFiD journal, vol. 22, no. 7,pp. 97-114, 2009.[2] H. Sundmaeket, P. Guillemin, P. Friess and S. Woelffie, “Vision andchallenges for realising the Internet of Things,” 2010.[3] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things(iot): A vision, architectural elements, and future directions,” FutureGeneration Computer systems, vol. 29, no. 7, pp. 1645- 1660, 2013.[4] S. Kemp, “60% of the world’s population is now online”, We are Social,April 2021.[5] R. Cheruvu, “Big data Applications in Self-Driving cars”, HarvardUniversity, pp. 1-4, 2016.[6] Jie Cao, Quan Zhang, Weisong Shi, “Edge computing- a primer”,Springer Intermational Publishing, pp. 5-8, 2018.[7] M.Merenda, C.Porcaro, D.Iero, “Edge machine learining for AI-enabledIoT devices: A review”,pp. 2-5, 2021.[8] Shijun Lio, Bedir Tekinerdogan, Mikio Aoyama, Liang-Jie Zhang, “EdgeComputing- EDGE 2018”, Springer International Conference, pp. 7-9,2018.[9] A. Kurniawan, “IoT projects with Nvidia Jetson Nano”, pp. 4-12, 2021[10] Jetson Nano Developer Kit, [Online] Available:https://developer.nvidia.com/embedded/jetson-nano-developer-kit[11] ISO file, [Online] Available:https://developer.nvidia.com/embedded/develop/software[12] Face-Mask dataset”, [Online]Available: ,https://www.kaggle.com/andrewmvd/face-mask-detection.[13] Ren Shaoqing, “Faster r-cnn: Towards realtime object detection withregion proposal networks”,pp. 2-4, 2015[14] Girshick Ross, “Fast r-cnn”, Proceedings of the IEEE internationalconference on computer vision,2015.[15] “How to train detectron2 with custom dataset”, [Online] Available:https://colab.research.google.com/github/Tony607/detectron2_instance_segmentation_demo/blob/master/Detectron2_custom_coco_data_segmentation.ipynb[16] “Jetson Nano Deep learning inference benchmarks”, [Online] Available:https://developer.nvidia.com/embedded/jetson-nano-dl-inference-benchmarks[17] “Install and run Detectron2 on Nvidia Jetson Nano”, [Online] Available:https://che-adrian.medium.com/install-and-run-detectron2-on-nvidia-jetson-nano-1c66b522598d[18] S. Valladares, M.Toscano, R. Tufino, D. Vallejo, “PerformanceEvaluation of the Nvidia Jetson Nano through a real-time machinelearing algorithm”, pp. 4-5, 2021.


