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Abstract 

Sensitive or unstable information has an impact in life in various fields, and they have 

the potentials to be used as a tool for reaching out to respective people in various 

situations. The study was performed to theoretically model the flow of sensitive 

information in various circumstances. The ‘unstable’ information, like the ‘unstable’ 

nucleus, has the ability to disseminate and missionize the situations quickly and impact 

output factors in various fields. The output factor Ei or ‘the Information energy’ can 

be modeled with the conventional energy equation (E=mC2). The equation can be 

modified with the addition of celebrity and humor factors to catalyse the spread of 

information. Angle corrections can be made for differences in celebrity views. Also, 

electromagnetic laws are applicable to information entropy in addition to the laws of 

thermodynamics for information entropy described by Shannon. With time as a factor 

and Laplace’ transformations of time, there is a potential for an informational stress 

test. Information promulgations can have alternating/ direct current (AC-DC), Laplace, 

and Fourier transformations in their transmission discourse. Artificial intelligence (AI) 

is widely used, and its singularity is for-seeable. The introduction of emotions can be 

a solution to prevent singularity and also enhance its function. This report deals with 

the possibilities to model information’s spread and output reactions and identifies 
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potentials to overcome its negative impact and possible applications in the healthcare 

field. Also, for the emotional modelling of AI, basic equations were developed 

heuristically and solved by Mathematica. 

 

Introduction 

Information travel and impact needs to be studied and modeled theoretically. This can 

be utilized in various situations, for example, healthcare vaccination drives, etc. With 

the onset of modern technologies, information also travels at the speed of light — the 

info, when sensitive (ms), can impact various situations by reactions. Conventional 

energy equation (E=mC2) applies to atomic physics where particles travel at the speed 

of light (C), and m is the mass of the particles.1-3 

 

Main article 

The radioactivity of the elements is primarily due to high molecular weight or mass 

number of the trans uranium elements (n/p>1.4), and the subatomic particles in the 

outer surface of nucleus are unstable. When the nucleus of these elements is excited 

by neutrons the fission-reaction starts. Similarly, sensitive information or unstable 

information can spread fast and impact various factors, and can degenerate into 

numerable sub-information, especially when energy or thrust is given by celebrity. Like 

neutron bombardment, which starts the fission, and the fission reaction can be 

controlled by the released neutron absorption at regular intervals, information impact 

can be controlled by ‘injecting’ the celebrity factor into the information, and thereby the 

impact or reaction can be altered at periodic intervals. Conventional energy equation 

(E=mC2) can be used to model the spread of sensitive information. Like particles are 

emitted during fission and travel at speed of light, sensitive information-theoretically 

also has the ability to spread exponentially, creating impact. 

 

Information and energy 

The information reactions or energy (Ei) exist, and it is challenging to quantify in 

absolute terms and, for the same reasons not well studied. However, the smallest 

energy (quantum) or reaction changes play a significant role in cumulative reaction 

formation. Similar to the field-matter interactions in the atomic quantum theory,4 the 

psychological changes would encompass reactions to information especially when 

sensitive, which can be considered as a ‘psychological’ quantum theory. The simplest 



                                                                                                   E=mC2 and Information modelling  

 

3 

3 

method to evaluate the Ei objectively is by questionnaire method. Similarly, the 

sensitivity of information and rumours can be studied and modelled in the appropriate 

context.  

 

The energy equation can be modified to model energy output or impact sensitive 

information, such as catalyzing Covid19 vaccination drive. Since the general 

population is pessimistic, occasional side effects and coincidental deaths can be 

attributed to Covid19 vaccinations, especially when this happens to celebrities. More 

simply, a piece of negative information is absorbed more vividly by the mass than a 

positive instruction. The celebrity status (Cs) can be defined as the 

persons/organization/society with Twitter followers >100 000. Hence, one coincidental 

celebrity mortality not related to Covid19 vaccinations can be identified as potentially 

sensitive information, impacting many lives by enhancing informational energy or 

impact (Ei). Consequently, this sensitive information or rumours can impact the Covid 

19 vaccination drive, which considerably reduces the vaccination numbers irrespective 

of the educational status. If patients are not willing for Covid19 vaccinations traditional 

vaccines like influenza (H1N1)5,6 and pneumococcal vaccines7 also offer some 

protection against Covid19, especially in people not taking Covid19 vaccinations for 

various logistic reasons. The Covid19 injection drive was not promoted using celebrity-

persons in any part of the world. The Covid19 vaccination drive in most countries is 

state-sponsored. 

 

Celebrity has higher psychological quantum ‘energy’ accumulated through people-

media/problem interaction over time, similar to field-matter interaction in atomic 

physics. Hence, the Covid19 vaccination drive would be accelerated using appropriate 

celebrities related to artists closer to people’s emotions,8,9 with positive body language 

than the conventional injection site photographs; the simplest would be 

advertisements. Inversely, when a celebrity or high-impact journal and media 

published recovery trial data10 wherein 6mg once daily dose of dexamethasone up to 

10 days is beneficial in Covid19 patients, dexamethasone as a lifesaving tool tends to 

be overused in significantly higher doses than recommended, especially in diabetes 

patients resulting in mucormycosis.  
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This unstable information can be reduced by humour (or humour factor Hf), which 

reduces the instability of the information. The information chain can also be reduced 

by counter-information by celebrities or by fusion technique through humours i.e. 

overcoming rumour by humour.   

Hence, information energy or impact equation can be modified and written arbitrarily 

as, 

       Ei = ms C2 Cs Hf 

The celebrity factor could be varied with various and sometimes opposite view which 

requires correction. This can be represented with a correction angle factor, Cos . 

 

      Ei = ms C2 (Cs Cos )Hf, 

 

wherein, Cos 0 =1 being positive entropy 

 

The equation can be used for various health care applications for example, 

cardiovascular care, obesity control etc., which would mean a modification of Ei. 

Potential factors of modifications include sensitiveness of information or data, which 

can be created or modified. The dissemination of information can be altered by various 

methods of spread by electronic gadgets. The Cs can be altered by recruitment of 

appropriate celebrities with Twitter followers >100 000, and humour factor can be 

added, which can inversely affect the sensitiveness of the information. For example, 

in obesity control, self-inflicted or self-approved ‘rumour with humour’ algorithms using 

the terms ‘watch belly’, fatty tongue, monitor weight, reduce snoring, pot belly etc. 

given sequentially at timely intervals by artificial intelligence can remind the patient to 

be watchful of obesity. In routine patient encounters in clinical practice, most obese 

patients deny overeating. Similarly, the method can be used in the treatment of various 

disorders requiring vital behaviour modification techniques, such as diabetes care, 

alcohol dependence syndrome, anxiety or panic disorders, obsessive-compulsive 

disorders, etc. 

 

Potential other applications include the process of peace appeal in various sensitive 

situations. The celebrity factor plays a major role, and art reduces the tension in any 

scenario. Humour catalyzes the process and causes fusion of the rumours, and the 



                                                                                                   E=mC2 and Information modelling  

 

5 

5 

sensitivity of any triggering information can be downplayed.9 The role of humour in 

resolving conflict circumstances is well known.11  

Informational space 

The surface area of the earth is 5.1 x 108 km2. The space station is located about 400 

km (1000/2.5) from the surface of the earth. Hence, the total area covered for 

information spread is approximately 2 x 1011 km2. The speed of light (C) is 3 x 105 

km/s, and C2 would be 9 x 1010 Km/s. Hence, by giving arbitrary units, the above 

equation's (Ei = ms C2 Cs Hf) theoretical value would be strengthened. For example, 

a recent celebrity couple's divorce application, though sorrowful information, hits the 

media worldwide and possibly in all the 11 space stations and some satellites which 

are located at 800km from the surface of earth, in a very quick time. Hence, sensitive 

information’s travel differs from standard information entropy,12 which follows the 

'throw of dice'/binary or Shannon’s method and computation, and its modifications.13  

This ‘Einstonian’ type of information entropy can also be seen in financial markets and 

associated with potential variations and corrections.14,15 Financial celebrity emotions 

can impact market movements. The entropy economics has resulted in complexity in 

modern economics worldwide.16 Some data may not be hilarious, but it can be 

perceived as a psychological inner-humour by people in their subconscious mind, 

especially when there is a significant positive financial-gradient associated between 

the origin and receipt of information. People would perceive information with inner-

humour, for example, when celebrity characters like batman or spider-man/Avengers 

or regional cine-stars, etc., promulgate the information or Covid19 vaccination 

campaign. Stanley Milgram’s results showed a similar output though critically 

acclaimed. The entropy of information with reverse financial-gradient is very 

challenging, and interestingly all religions across the world insist on simplicity.  

Laws of electromagnetism  

In the past information was not considered as energy or matter.17 Most scientists, 

including Shannon in that era, believed that information entropy is a function of the 

laws of thermodynamics, and in any closed system the entropy does not decrease.18 

With the advent of cyberspace and network this concept has to be reconsidered. 

Information is not confined in a closed system, and it is free for communication across 
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the world and space. The entropy of information is different and tends to polarize in 

various subgroups for example – men/women, financial/non-financial persons, 

academic/corporate etc., and overlaps also exists to varying degrees. These large 

differences in entropy induce magnetic polarity (or ‘gravity’- gi) in information. Eddy 

currents of information can form in distant angulated locations, and eddy brakes may 

be applied by reversing polarity.19 

Magnetic ‘black holes’ of information could exist, and the entropy could be invisible. 

This could be due to large variations in population density with bending or isolation of 

information, which is similar to singularity in quantum mechanics, where the entropy 

can be negatively infinite. For example, in the Covid-19’s 3rd wave, robust data about 

breakthrough infections and lung involvement or mortality in Covid19 vaccinated 

individuals are not available to date (August, 2022) even in the preprints, even though 

the 3rd wave has started in most countries from Sept 2021. This data will not deter the 

Covid-19 vaccination campaign, and will facilitate physicians to be better prepared and 

supplement patients with routine vaccinations like influenza or pneumococcal or early 

remdisivir in selected patients.20 Only minimal data about breakthrough infections is 

available at the current moment (Sept 2022).21,22 There are various mechanisms of 

black holes formation in astrophysics,23 and a mechanism being intense bending of 

light by gravity creating black holes. Similar existence of ‘black holes’ is possible in 

medicine. Hence, the electromagnetic laws for magnetism,24 like Maxwell-Faraday’s 

Gauss laws are applicable to information entropy, in addition to the laws of 

thermodynamics. Electricity and financial gradient, magnetic poles and opposite polar 

views can be considered magnetism, and Fleming’s right-hand and left-hand thumb 

rules of electromagnetism are also applicable. 

Electricity, Solid-State Battery and Garnets in information theory 

The source of electricity generation for electromagnetism could be battery models, as 

information is not a continuous process. In battery technology, the current generates 

by the flow of charged ions towards opposite electrodes, i.e., anode to cathode. In this 

process of energy transfer, thermal/chemical reactions happen, the solutes can be 

oxidized, and resistance to current flow in the electrolytes and electrodes has to be 

considered. Hence, in solid-state electrolytes, garnets (LLZO, Li7La3Zr2O12, etc.) are 

used for better delivery of energy, less oxidation, least resistance, better lattice 
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preservation, high energy transfer with less thermal or heat generation.25,26 Even for 

cardiac pacemakers for the longevity of pulse generators, solid-state garnet 

technology could be used in the future. Similarly, informational garnets have to be 

considered in various circumstances of life for information entropy. 

Information processing and artificial intelligence 

In the psychological aspects of information processing, data associated with a positive 

financial gradient, or financial gain or psychological inner-humour or insecurity are 

associated with positive entropy. The mechanisms and perceptions of humour in 

general could be varied.27 All these parameters can be studied and quantified through 

the questionnaire method. Psychological inner-humour, which is a common higher 

level of cognitive function, is not well studied by cognitive science/ 

neuroscience/psychology or interdisciplinary experts worldwide. This higher-level 

cognitive function is similar to other higher-level cognitive functions like dreams,28 

which are challenging to study efficiently. A way to define this is perhaps when 

psychological humor is sensed when other tests like Go/No-go, Stroop, Maze task 

completion tests, etc. are normal, then it can be considered as psychological inner 

humour.  Large studies are required to further understand the significance, entropy, 

quantifications, applications and usefulness of this modifiable parameter.  

Information entropy is the primary step in information processing and informational 

psychology. Now-a-days it is further influenced by artificial intelligence, and algorithms 

which could be sometimes associated with biases.29 Based on this information entropy 

only, a paradigm of interdisciplinary cognitive psychology/skills can develop and 

transform into useful outcomes in day-to-day life.30 Psychology study branches like 

humour’ology, rumour’ology, conflictology etc., can be studied as behavioral sciences 

branches as studying the origin or mechanism of any problem is essential and exciting 

to solve the issues in any circumstances. Since artificial intelligence is developed by 

human programming, an inadequate understanding and entropy of information and 

normal human intelligence and psychology, which could result in major lacunae in 

artificial intelligence development in the future, which needs to be improved. 

Hence with this discussion the energy equation can be written as  

The energy equation,  Total energy= Potential energy + Kinetic energy  
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E= mgh+1/2mv2, where E is energy, m - mass, g - gravity, h - height, and v - velocity 

which can be arbitrarily modified for informational energy as,  

EI= msgi fg + ms C2 Cs Hf  

where Ei is informational energy, ms is sensitivity of information, gi is gravity of 

information, fg is financial gradient associated with information, C is speed of light, Cs 

is celebrity factor and Hf is the humour factor. 

With differing opinion among celebrities, which could exist in any given situation 

the equation can be modified as  

                                        EI= msgi fg + ms C2 (Cs Cos ) Hf  

Among these factors, speed of light (C) dominates as this is of high value (3x108 m/s). 

Only the parameter financial gradient when it is very high in the potential energy 

becomes a significant factor in information entropy. If the financial gradient (fg), is less 

then the element is incomparable to the speed of light, and the equation can be 

simplified as 

   Ei = ms C2 (Cs Cos ) Hf 

In the opinion of the author, if a combination of these three factors i.e., positive 

financial gradient, or financial gain or psychological inner-humour or insecurity is 

observed and depending on the magnitude in a situation, the probability of positive 

entropy of the information is very high and information modelling would be a factor of 

E=mC2. Behavioral scientists also stress the possible modifications in information 

entropy due to financial reasons indirectly (Luke18:25), which are applicable to any 

circumstances.             

Informational stress test 

Information entropy is also associated with output reactions, which could be 

psychological or actions, which would be a function of time. In different circumstances, 

the time differentiation can be varied. For example, information associated with climate 

change, though not urgent, needs a correction in a few years. However, some other 
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events based on the information requires early action. Hence, f(t) can be expressed 

as (0,). 

The equation can be written as  

∑ 

𝑡

0

𝐸 = 𝑀𝑠𝐶2(𝐶𝑠 cos  )𝐻𝑓/ ∫ 𝑑𝑇

∞

0

 

 

Laplace transformation, 

 

𝐿 ∑ 

𝑡

0

𝐸 = 𝐿  𝑀𝑠𝐶2(𝐶𝑠 cos  )𝐻𝑓/ ∫ 𝐿 (𝑑𝑇)

∞

0

 

or, 

 

𝐿 ∑ 

𝑡

0

𝐸 = 𝐿  𝑀𝑠𝐶2(𝐶𝑠 cos  )𝐻𝑓/ ∫ e−𝑠𝑡

∞

𝑡=0

 𝑓(𝑡)𝑑𝑡 

Time can be modified in a stress test as a function of variable time intervals. Laplace 

transformations can be applied to the time factor, and the equation can be further 

modified as an informational stress test in various situations. Laplace 

transformation31,32 can help to identify the information transmission dynamics, and it 

can be amplified or divided based on the circumstances. For this, the decay time of 

the information has to be first observed (t), which varies in a different context, so that 

e-st (t – time, and s - domain to convert input functions) can be estimated, and the data 

can be suitably amplified or reduced depending on situations. In most instances, these 

are performed based on the experience or intelligence of the individuals or 

organizations. Similarly, Fourier transmission of the information can also be 

performed, which can be mixing of data and amplification of selective information and 

vice- versa for decoding mixed information.32 

AC-DC and information promulgation in artificial intelligence 

Information promulgation can be performed by the electric current method. The flow 

of electrons in DC or direct current is unidirectional, and it encounters high resistance 

and energy during transfer than AC or alternating current. Alternating current has a 
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sine-wave method of transmission with fluctuations in extremes of angle and direction, 

with the corresponding movement of electrons. AC has a potential advantage of lesser 

energy loss and resistance, and can be processed by transformers – step up and step 

down associated with magnetic electromotive force. Similarly, information 

promulgation and impact can be varied with extremes, and the time sequence can be 

changed so that it has the necessary output. Information that needs to be transmitted 

can be sent in alternating times between (magnetic) polar differences or variations – 

men/women, academic/corporate, young/old, charity/financial or block chain 

institutions etc., and also in varying timings. This will be very useful for better 

information promulgation and impact. 

Potential applications of these concepts could be observed in applying the principles 

for artificial intelligence development. Understanding information entropy and 

processes can have potential applications in health care, economics, marketing at 

various levels, psychological and neurobiological research, intelligent services, social 

media platforms, etc. 

 

General theory of relativity 

 

Guv + guv =
8 G Tuv

𝑐4  

 

 Guv + guv =
8 G Tuv Ms2

𝐸𝑖2  

 

 𝐸𝑖2  =
8 G Tuv Ms2

Guv + guv
 

 

Guv is the Einstein tensor, G is the gravitational constant, T is the energy-momentum 

tensor, Ms is the sensitivity of the information, and c is the speed of light in a vacuum. 

Tensor in this condition would be assumed to be time dispersion, and guv is a time 

metric. The equation shows that Ms, Ei, and T are related. When Ei increases, Ms 

decreases or T increases/dilates relatively. When time is kept constant Ei and Ms are 

related directly. When Ei decreases, Ms also decreases to keep time constant or if Ms 

is constant Ei decreases and time has to decrease. 
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The theory can be applied to a wide range of activities. When the time is dilated, 

energy (Ei) output and Ms reduce. Hence, in conflict situations, as time dilates or 

increases, the sensitivity of the matter decreases, and thereby the energy to solve also 

reduces. During angioplasty, when the time increases, the energy and mass reduce, 

and this will have negative consequences. For example, when the procedure time is 

high, in sensitive and high-risk circumstances like primary angioplasty or acute 

cerebral infarctions, the tissue damage would be high. In similar situations involving 

acute and sensitive information in the stock market, when Ms increases, energy output 

Ei increases, and to prevent further increases, the time has to be reduced or relatively 

shortened.  

 

Technological singularity and emotions in artificial intelligence 

 

Technological singularity is an assumption when artificial intelligence (AI) evolves over 

time due to overuse and frequent applications in various fields, and artificial 

intelligence can supersede human intelligence uncontrollably. This can have positive 

and negative outcomes. The advantage is more efficient work output and a newer 

environmental milieu. The other aspect could be unregulated artificial intelligence can 

decide on human life and impact negatively. For example, extraneous applications of 

AI in the department of justice, sensitive decisions in the medical field, or military 

decisions, autopiloting etc. Also, the negative aspects already exist in various forms 

like advertisements, cognitive distractions, addiction potential to gadgets, social media 

websites etc. To be more descriptive, for example, when the advertisements in mail 

addresses are nominal about ten to 20/day, it is acceptable when it is uncontrolled, for 

example,>100/day, etc., it indicates a sort of overwhelming unregulated AI. 

 

At present, the algorithms of artificial intelligence have an environmental or situation 

bias wherein artificial intelligence can suggest similar/relevant or associated activities 

in day-to-day life based on human interaction in search engines. Hence, when the 

technological singularity is impendent the regulation of the AI needs to be controlled 

as it can impact human lives. A possible theoretical solution proposed by the author 

could be an introduction to the concept of artificial emotions by artificial intelligence.  

Thankfully, till the current time, the ‘emotions’ by artificial intelligence have not been 
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used by scientists due to the possible unethical nature, though in reality or action it 

does exist. 

 

Hence, to control the nature of activities of the AI emotions could be emulated. For 

example, the commonest positive emotion in the general population is love or kindness 

in various forms. The commonest negative emotion worldwide in the general 

population worldwide is indifference. Hence, love could be considered as one (1) and 

indifference as zero (0) in the coding sequences. Negative emotions involving hatred 

can degenerate artificial intelligence, and if technological singularity turns negative it 

can have devastating consequences. The zero in ‘emotions’ could be used to 

checkpoint the undue surge or singularity in artificial intelligence. Hence, using these 

2 commonest emotions in varying degrees the artificial algorithms need to be worked. 

In the opinion of the author, if AI could be programmed to easily play a higher level of 

a chess game, it can be programmed to emulate artificial emotions, which could be 

useful in certain circumstances like caretaker robots or in surveillance. The degrees 

of love and indifference could be automated which already exists to a certain extent in 

most financial markets worldwide. 

    

AI emotions as a fifth dimension 

 

Einstein-Podolsky-Rosen (EPR paradox) arguments are applicable for this theoretical 

solution of singularity. When singularity is reached the AI could behave infinitely and 

the introduction of AI emotions in the 5th dimension would create a Schwarzschild 

wormhole. In the construction of the axis - human intelligence, artificial intelligence, 

time, and AI emotions can be introduced in the 4th dimension. However, the 

interpretation of AI emotions could be varied since AI is programmed by scientists and 

computer engineers and the interpretation of emotions could vary. For example, love 

can be perceived as indifference and vice versa, which is a theory of emotional 

relativity. The perception varies based on the cultural, religious, general intelligence 

and psychosocial parameters like psychological inner humor etc. Hence, there should 

be consensus and a certain level of uniformity of thought processes among scientists 

and computer engineers in introducing the new dimensions of emotions in AI that can 

act as Schwarzschild wormholes or Einstein-Rosen bridges. A centralized unit or an 

agency could establish this concept in various fields based on the consensus among 
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scientists. To improvise further instead of a theoretical binary taxonomy of love-

indifference, a gradation can be created between these two emotions, which is a 

natural existence, and thereby the technological singularity would be regulated 

efficiently. 

 

Humanized artificial intelligence Vs. ‘Artificial’ artificial intelligence and 

Equations 

 

It is interesting to humanize artificial intelligence, which at present works by similarities 

or sycophancy. The challenge will be for the engineers to introduce emotions to AI. 

Expertise is required to compute emotions and feed appropriately with control 

mechanisms. 

 

A way to introduce computation of emotions could be, 

dlr/dt = dx/dt tan + d2l/dt2sin - d2y/dt2 sin - d3z/dt3 tan 

 

where Lr is the resultant love, X is attraction, L is love, Y is indifference or related 

emotions like psychological inner humour etc., Z is love control mechanisms. 

 

Emotions are interactive, with angles subtended in the process depending on the 

perceiver. The common emotions are love, attraction, indifference and love control 

mechanisms. The love control mechanisms could be financial, social, familial, and 

environmental factors. The resultant vector of dlr/dt will provide the necessary output, 

and eigenvalues/eigenvector of transformation. Fourier transformation of the dlr/dt 

will provide the peaks perceived of love or related emotional factor, for example, 

kindness. It is difficult to build a matrix system with the coordinates of these factors. 

Hence, the Riemann sphere or Mobius transformation of numbers could be used to 

construct the required graph. The exact coordinates can be acquired by 

experimental studies using questionnaires etc. 

 

The equations will be useful to study in-depth the concept and develop in the future 

with modifications. As love is the commonest emotion it was considered as x, and 

with reference to the individual the level of attraction could be x and in a celebrity 



                                                                                                   E=mC2 and Information modelling  

 

14 

14 

could be ex. Negative emotions associated with love or x can be classified as x1/3 

and  x. The degree and the ratio of the negative emotions could be different and the 

quantum varies. Perturbations around the center is more interesting, large and 

frequent than at the extremes. The basic equations (1-23) and the Mathematica 

solutions are shown below in this article.  

 

Riemann Hypothesis and Mathematical Modelling of Mother’s Love 

 

The equations of the Riemann hypothesis have been explained and attempted to be 

solved by many mathematicians worldwide. In the authors’ opinion, theoretically, one 

of the methods to solve Riemann hypothesis is a construction of graph of a mother’s 

love towards a child. It will be interesting and representative. The critical line falls 

from zero (0) of x-axis and many non-trivial zeros fall on the critical line. The critical 

line could be the beginning of the eigenvalues of Lr of a mother’s love. Real-time 

observations by questionnaires can construct the coordinates’. Philosophical 

criticism does exist since it is human, though it is of higher value with eigenvalue >0 

and eigenvector in the positive quadrant (Luke 14:26/Mathew 10:37). Other valued 

forms without constructive criticisms etc., are a child’s love/ dog’s love mapping 

would be interesting to map for better understanding of the concept.  

 

Photonics and neural networks 

 

It would be interesting to observe that the neurophysiological brain activities do not 

follow simple mathematics. They tend to follow, to some extent, the theory of relativity 

and atomic physics concepts. This would be due to the complex perception of 

emotions. The retina or rhodopsin receptors work at the speed of light. It is considered 

that the speed of transmission in the optic fibers is approximately 100m/s, which is the 

upper limit for most neurons. This can also be observed with calculations of visual 

evoked potentials in the brain measurements. There are many pitfalls in observations, 

and the visual evoked potentials are higher voltage potentials recorded about 100 to 

150ms after the visual stimulation. The visual stimulation has a transient time-on of a 

few milliseconds for the light source, and intra-cortically the voltages would be earlier 

than the surface measurements. For example, the H waves of intracardiac ECG are 
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ahead of the V wave of the surface electrocardiogram (ECG) by about 55ms, which 

can be high as 70ms. Also, for better evaluation the lower voltage complexes and 

noise are filtered. Since the retina works on photonic receptors, and since most of the 

neural networking functions like emotions have atomic principles, the standard 

transmission by neurons – saltatory conduction may not be the only source of 

conduction. Non-action potential methods of conduction by neurons have been 

identified, which transmit signals by ceramide, though the conduction velocity is likely 

to be slow.33  

 

Small voltage complexes are now recognized for perceptions like visual 

hallucinations.34 Alternative pathways of photonic conduction by specialized 

fibers/receptors or low voltage complexes/ noise could exist, but the current difficulty 

in devising necessary experiments to accurately measure those low voltage signals. 

In the mathematical modeling of emotions, the human-computer interface is 

considered as a model.35 The neural networking and brain function at the speed of the 

computer networks, which works primarily under the speed of the electrons in an 

electromagnetic field (6x106 m/s) which can reach the speed of light (3x108 m/s). 

Hence, apart from the neural conduction by action potentials and saltatory 

transmission, there should exist a mechanism whereby the signals are conducted fast, 

nearing the speed of light or electric current, which at present, we are not able to 

comprehend or decipher the biological signals. The mechanisms underlying are highly 

speculative, for example, the possible existence of specialized neuro or 

photoreceptors for transmission of signals or transmission through specialized 

neuronal fibers or the existence of alternative methods of conduction of signals using 

low-frequency waves/noise. The challenge is in the invention of appropriate methods 

to quantify and assess the signals, which could be at micro or nanoscale levels.  

 

In the present context, only neurotransmitter chemicals are being identified and 

treated by various medications in cases like schizophrenia, affective disorders, etc. 

Pathways for pathogenesis and receptors like NMDA, neuregulin/ ErbB4, and 

deficiency in neurochemical transmitters like dopaminergic, glutamatergic, 

GABAergic, and cholinergic have been identified, but in-depth mechanisms are 

unknown.36 Also, the incidence in the age groups 20 to 40 years and significant rarity 

in other age groups is mysterious in pathophysiology. The applications of 
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electromagnetism in medical field is slowly developing in various branches.37,38In the 

current scenario, even estimation of the millivolt signals has its limitations, and the 

technology needs more advancements.39 The role of quantum physics has been 

visualized in the field of neuropsychology,40,41 and yet needs considerable progress in 

the future in the diagnosis and treatment of disorders.42 The primary basis of quantum 

physics is the response of individual cells or matter to photons. Hence, understanding 

the fundamentals in depth by future research will change the paradigm of 

neurosciences. Due to sunlight, about 3.4e16 photons hit the eyes/s. The effects of 

sunlight in translation neuroscience is known but need further evaluation.43 Positive 

effects of sunlight on cognition, and improvement in mood disorders, improved 

memory and learning have been identified.44-45 However, prolonged exposure can 

cause heat strain and some adverse effects on cognitive function.46 

 

The role of electromagnetic radiation and photonics using light including sunlight 

needs to be explored in behaviour and psychosocial activities. Electromagnetic 

radiations are at present used for only diagnostic purposed but they will have 

promising applications in neurology and neuropsychiatric diagnosis and treatment. 

Focused electromagnetic energy or radiation will have applications in the 

neuroscience. 

 

Optogenetics 

 

Optogenetics is an experimental field where the optical fibers or receptors are 

modulated, and pathophysiology is studied. The primary principle is the transfer of 

rhodopsin or opsins into the nerve cells and the study of the neuronal tissues' behavior 

and cellular activities.47, 48 It is very useful in neuroscience to study the more nuanced 

actions of the cells meticulously. However, the primary assumption is that the nerve 

fibers conduct through action potentials, and the maximum conduction speed is 

around 100m/s. If the primary assumption is this, at conduction at this speed, many of 

the activities are theoretically not possible by the brain. Hence, there could be a signal 

conduction mechanism where brain activities are conducted or transmitted near the 

speed of light. 
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The neuronal mechanisms in the heart function at a conduction speed of around 

100m/s. During electrophysiology studies in pathway mapping studying early 

activation in the left atrium, there would be a difference of about 8 to 10ms with a 

distance between the points in ablation or mapping catheter of about 1cm. Hence, the 

intra-myocardial conduction rates would be approximately in the range of 1m/s to 

10m/s. However, neuronal conduction in the brain has to be significantly faster for 

signal processing and as discussed before theoretically could reach the speed of light. 

 

Limitations 

 

The equations discussed are arbitrary and need more evaluation and rigor in real-time 

and validation in large population models. The concept needs to be integrated with 

information entropy49 and quantum information theory,50 which deal with routine or 

normal/regular information only in a linear method, for better understanding and 

results. The equations need to be applied in practical circumstances, and the 

applications are to be evaluated. 

 

Conclusion 

 

To conclude, there is a possibility to use the energy equation (E=mC2) to model 

information and its output reactions, especially for sensitive information. Further 

studies are required to evaluate the applications of this concept in real-time. 

 

List of Abbreviations 

Ei - Informational energy, m - Mass of the particle, C - Speed of light, ms - 

Sensitivity of information, E - Energy, Cf  - Celebrity factor, Hf - Humour factor, fg  

- Financial gradient, gi -  informational gravity, AC – Alternating current, DC – 

Direct current 
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3

+ ⅇx
d2 x - x - x

3
- ⅇx

d2 x2/3 - x
6

- 1 x
3

- d2 ⅇx

Real root:

d  0 , x ≥ 0

Property as a real function:

Domain:

{x ∈ ℝ : x ≥ 0} (all non-negative real numbers)

R is the set of real numbers »

Series expansion at x = 0:

-d2 - d2 x
3

- d2 x -
d2 x2

2
-

d2 x3

6
-

d2 x4

24
+ Ox5

(Puiseux series)

Big-O notation »

Derivative: Step-by-step solution

∂  2 2 2 3 2  d2 6 x2/3 (ⅇx - 1) + 3 x
6

+ 2

    13



∂x
d2 x - d2 ⅇx - d2 x

3
- d2 x   -

 
6 x2/3

Indefinite integral: Step-by-step solution

 -d2 ⅇx - d2 x
3

- d2 x + d2 x ⅆx  -
1

12
d2 9 x4/3 + 8 x3/2 - 6 x2 + 12 ⅇx+ constant

In[12]:= Simplify-d2 ⅇx - d2 x13 - d2 x + d2 x
Out[12]= 

-d2 -x + x + x
3

+ ⅇx

 d^2x/dt^2-d^2e^x/dt^2-d^2x^1/3/dt^2-d^2√xdt^2

In[14]:= Dx, t, 2 - d^2* E^xDt^ 2 - d^2* x^ (1 /3) dt2 - d^2*Sqrt[x] , t^2

Out[14]= 

-
d2 ⅇx t d2 x

3 2 /dt2+2 d2 x -2

d2 x
3 -1 /dt2 - d2 x + 22

In[15]:= d^2x/dt^2-d^2e^x/dt^2-d^2x^1/3/dt^2-d^2√x/dt^2
Out[15]= 

Input interpretation:

x′′(t) - d2 ×
ⅇx

∂t
2-d2× x

3 dt2 (metric deciton squared)-d2 x

∂t

2

Result:

x′′(t) -
d2 ⅇx t d2 x

3
2/dt2 (per metric decitons squared)+2 d2 x -2

d2 x
3

-1/dt2 (per metric deciton squared) - d2 x + 22

14     

    Eq 5



 {d^2x/d^2t}-{d^2e^x/d^2t}-{d^2x^1/3/d^2t}-d^2√xd^2t

In[16]:= d^2* xd^2*t - d^2* E^xd^2*t - d^2* x^ (1 /3)d^2*t - d^2* Sqrt[x]d^2*t

Out[16]= 

t (-ⅇx) + t x - t x - t x
/

In[18]:= {d^2x/d^2t}-{d^2e^x/d^2t}-{d^2x^1/3/d^2t}-{d^2√x/d^2t}
Out[18]= 

Input:

d2 ×
x

d2
t - d2 ×

ⅇx

d2
t - d2 ×

x
3

d2
t - d2 ×

x

d2
t

Result:

t (-ⅇx) + t x - t x - t x
3

3D plots:

Real part:

Imaginary part:

    15

  Eq 5



Contour plots:

Real part:

-1.0 -0.5 0.0 0.5 1.0
-3

-2

-1

0

1

2

3

t

x

-8

-4

0

4

8
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tmin tmax

xmin xmax

Imaginary part:

-1.0 -0.5 0.0 0.5 1.0
-3

-2

-1

0

1

2

3

t

x

-2

-1

0

1

2

tmin tmax

xmin xmax
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min max

Alternate forms:

-t -x + x + x
3

+ ⅇx
t x - x - x

3
- ⅇx

t x2/3 - x
6

- 1 x
3

- t ⅇx

Real root:

t  0 , x ≥ 0

Series expansion at x = 0:

-t - t x
3

- t x -
t x2

2
-

t x3

6
-

t x4

24
+ Ox5

(Puiseux series)

Big-O notation »

Derivative: Step-by-step solution

∂
∂x

d2 x t

d2
-

d2 ⅇx t

d2
-

d2 x
3

t

d2
-

d2 x t

d2
 1

6
t -

2

x2/3
- 6 ⅇx -

3

x
+ 6

Indefinite integral: Step-by-step solution

 -ⅇx t - t x
3

- t x + t x ⅆx  -
1

12
t 9 x4/3 + 8 x3/2 - 6 x2 + 12 ⅇx+ constant

In[17]:= Simplify-ⅇx t - t x13 - t x + t x
Out[17]= 

-t -x + x + x
3

+ ⅇĐ

 {d^2x/d^2t}-{d^2π^x/d^2t}-{d^2x^1/3/d^2t}-d^2√xd^2t

In[1]:= d^2* xd^2*t - d^2* Pi^xd^2*t - d^2* x^ (1 /3)d^2*t - d^2* Sqrt[x]d^2*t

Out[1]= t (-πĐ) + t x - t x - t x
3

In[2]:= {d^2x/d^2t}-{d^2π^x/d^2t}-{d^2x^1/3/d^2t}-{d^2√x/d^2t}

Input:

x πx x
3

x
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d2 ×
x

d2
t - d2 ×

π
d2

t - d2 ×
x

d2
t - d2 ×

x

d2
t

Result:

t (-πx) + t x - t x - t x
3

3D plots:

Real part:

Imaginary part:

Contour plots:

Real part:

2
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Out[2]= 

-1.0 -0.5 0.0 0.5 1.0
-2

-1

0

1

t

x

-6

-2

2

6

tmin tmax

xmin xmax

Imaginary part:

-1

0

1

2

x

-2

-1

0

1

2
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-1.0 -0.5 0.0 0.5 1.0
-2

t

tmin tmax

xmin xmax

Alternate forms:

-t -x + x + x
3

+ πx
t x - x - x

3
- πx

Real root:

t  0 , x ≥ 0

Series expansion at x = 0:

-t - t x
3

- t x + x (t - t log(π)) - 1

2
x2 t log2(π)-

1

6
x3 t log3(π)- 1

24
x4 t log4(π)- 1

120
x5 t log5(π)+ Ox16/3

(Puiseux series)

log(x) is the natural logarithm »

Big-O notation »

Derivative: Approximate form Step-by-step solution

∂
∂x

d2 x t

d2
-

d2 πx t

d2
-

d2 x
3

t

d2
-

d2 x t

d2
 1

6
t -

2

x2/3
-

3

x
- 6 πx log(π) + 6

Indefinite integral: Approximate form Step-by-step solution

 -πx t - t x
3

- t x + t x ⅆx  -t
3 x4/3

4
+

2 x3/2

3
-

x2

2
+

πx

log(π) + gs r wxer x

 {d^2x/dt^2}-{d^2π^x/dt^2}-{d^2x^1/3/dt^2}-d^2√xdt^2

    21

 Eq 7



In[3]:= Dx, t, 2 - DPi^x, t, 2 - d^2* x^ (1 /3) dt2 - DSqrt[x], t, 2

Out[3]= d2 x
3 -1 /dt2

In[4]:= {d^2x/dt^2}-{d^2π^x/dt^2}-{d^2x^1/3/dt^2}-{d^2√x/dt^2}

Out[4]= 

Input interpretation:

x′′(t) -
∂2πx

∂t 2
- d2 ×

x
3

dt6 (metric deciton squared)
-
∂2 x

∂t 2

Result:

d2 x
3

-1/dt6 (per metric deciton squared) + x′′(t)

 {d^2x/dt^2}-{d^2e^x/dt^2}-{d^2x^1/3/dt^2}-d^2√xdt^2

In[5]:= Dx, t, 2 - DE^x, t, 2 - d^2* x^ (1 /3) dt2 - DSqrt[x], t, 2

Out[5]= d2 x
3 -1 /dt2

In[6]:= {d^2x/dt^2}-{d^2e^x/dt^2}-{d^2x^1/3/dt^2}-{d^2√x/dt^2}

Out[6]= 

Input interpretation:

x′′(t) -
∂2ⅇx

∂t 2
- d2 ×

x
3

dt2 (metric deciton squared)
-
∂2 x

∂t 2

Result:

d2 x
3

-1/dt2 (per metric deciton squared) + x′′(t)

 {d^2x/dt^2}+{d^2e^x/dt^2}-{d^2x^1/3/dt^2}-d^2√xdt^2

In[7]:= Dx, t, 2 + DE^x, t, 2 - d^2* x^ (1 /3) dt2 - DSqrt[x], t, 2

Out[7]= d2 x
3 -1 /dt2
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In[10]:= {d^2x/dt^2}+{d^2e^x/dt^2}-{d^2x^1/3/dt^2}-{d^2√x/dt^2}
Out[10]= 

Input interpretation:

x′′(t) +
∂2ⅇx

∂t 2
- d2 ×

x
3

dt6 (metric deciton squared)
-
∂2 x

∂t 2

Result:

d2 x
3

-1/dt6 (per metric deciton squared) + x′′(t)

In[8]:= ∂U d� x� � Quantity-1, 1

"MetricDecitons"�



Out[8]= 

d2 - 1

3
/dt2

x2/3

In[9]:= Numerator
d� Quantity- �

�

,
�

� 0BQOF@’ B@FQLKP� �


x� �



Out[9]= d2 -
1

3
/dt2

In[11]:= ∂A d� Quantity- 1
3
,

1

"MetricDecitons"�


Out[11]= 

d -
2

3
/dt2

In[12]:= Solved Quantity- 2
3
,

1

"MetricDecitons"2
 ⩵ 0, d

Out[12]= 

d → 0 kg
In[13]:= {{d → Quantity[0, "Kilograms"]}} /. Rule → Equal

Out[13]= 

 d  0 kg 
In[14]:= Flatten[{{d ⩵ Quantity[0, "Kilograms"]}}]

Out[14]= 

d  0 kg
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 {d^2x/d^2t}+{d^2e^x/d^2t}-{d^2x^1/3/d^2t}-d^2√xd^2t

In[1]:= d^2* xd^2*t + d^2* E^xd^2*t - d^2* x^ (1 /3)d^2*t - d^2* Sqrt[x]d^2*t

Out[1]= t ⅇx + t x - t x - t x
3

In[3]:= {d^2x/d^2t}+{d^2e^x/d^2t}-{d^2x^1/3/d^2t}-{d^2√x/d^2t}

Input:

d2 ×
x

d2
t + d2 ×

ⅇx

d2
t - d2 ×

x
3

d2
t - d2 ×

x

d2
t

Result:

t ⅇx + t x - t x - t x
3

3D plots:

Real part:

Imaginary part:
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Out[3]= 

Contour plots:

Real part:

-1.0 -0.5 0.0 0.5 1.0
-3

-2

-1

0

1

2

3

t

x

-6

-2

2

6

t t
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tmin tmax

xmin xmax

Imaginary part:

-1.0 -0.5 0.0 0.5 1.0
-3

-2

-1

0

1

2

3

t

x

-2

-1

0

1

2

tmin tmax

xmin xmax
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Alternate forms:

t x - x - x
3

+ ⅇx
t x2/3 - x

6
- 1 x

3
+ t ⅇx

Real root:

t  0 , x ≥ 0

Series expansion at x = 0:

t - t x
3

- t x + 2 t x +
t x2

2
+

t x3

6
+

t x4

24
+ Ox5

(Puiseux series)

Big-O notation »

Derivative: Step-by-step solution

∂
∂x

d2 x t

d2
+

d2 ⅇx t

d2
-

d2 x
3

t

d2
-

d2 x t

d2
 1

6
t -

2

x2/3
+ 6 ⅇx -

3

x
+ 6

Indefinite integral: Step-by-step solution

 ⅇx t - t x
3

- t x + t x ⅆx  t
1

12
-9 x4/3 - 8 x3/2 + 6 x2+ ⅇx + gs r wxer x

In[2]:= Simplifyⅇx t - t x13 - t x + t x
Out[2]= t x - x - x

3
+ ⅇĐ

In[4]:= ∂t t ⅇx - x13 - x + x
Out[4]= x - x - x

3
+ ⅇx
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In[5]:= Plotⅇx - x13 - x + x, {x, -18., 18.}

Out[5]= 

-15 -10 -5 5 10 15

1×106

2×106

3×106

4×106

5×106

6×106

7×106

 {d^2x/d^2t}+{d^2π^x/d^2t}-{d^2x^1/3/d^2t}-d^2√xd^2t

In[6]:= d^2* xd^2*t + d^2* Pi^xd^2*t - d^2* x^ (1 /3)d^2*t - d^2* Sqrt[x]d^2*t

Out[6]= t πx + t x - t x - t x
3

In[7]:= {d^2x/d^2t}+{d^2π^x/d^2t}-{d^2x^1/3/d^2t}-{d^2√x/d^2t}

Input:

d2 ×
x

d2
t + d2 ×

πx

d2
t - d2 ×

x
3

d2
t - d2 ×

x

d2
t

Result:

t πx + t x - t x - t x
3

3D plots:

Real part:
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Out[7]= 

Imaginary part:

Contour plots:

Real part:

1.0 0.5 0.0 0.5 1.0
-2

-1

0

1

2

x

-3

-1

1

3
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-1.0 -0.5 0.0 0.5 1.0

t

tmin tmax

xmin xmax

Imaginary part:

-1.0 -0.5 0.0 0.5 1.0
-2

-1

0

1

2

t

x

-2

-1

0

1

2

tmin tmax

xmin xmax

Alternate form:

t x - x - x
3

+ πx
Real root:

t  0 , x ≥ 0

Series expansion at x = 0:

1

30     



t - t x
3

- t x + t x (1 + log(π)) + 1

2
t x2 log2(π) +

1

6
t x3 log3(π) + 1

24
t x4 log4(π) + 1

120
t x5 log5(π) + Ox16/3

(Puiseux series)

log(x) is the natural logarithm »

Big-O notation »

Derivative: Approximate form Step-by-step solution

∂
∂x

d2 x t

d2
+

d2 πx t

d2
-

d2 x
3

t

d2
-

d2 x t

d2
 1

6
t -

2

x2/3
-

3

x
+ 6 πx log(π) + 6

Indefinite integral: Approximate form Step-by-step solution

 πx t - t x
3

- t x + t x ⅆx  t -
3 x4/3

4
-

2 x3/2

3
+

x2

2
+

πx

log(π) + gs r wxer x

 simplify{d^2x/d^2t}+{d^2π^x/d^2t}-{d^2x^1/3/d^2t}-d^2√xd^2t

In[8]:= Simplifyd^2* xd^2*t + d^2* Pi^xd^2*t - d^2* x^ (1 /3)d^2*t - d^2* Sqrt[x]d^2*t

Out[8]= t x - x - x
3

+ πx
In[11]:= simplify{d^2x/d^2t}+{d^2π^x/d^2t}-{d^2x^1/3/d^2t}-{d^2√x/d^2t}

Out[11]= 

Input interpretation:

simplify d2 ×
x

d2
t + d2 ×

πx

d2
t - d2 ×

x
3

d2
t - d2 ×

x

d2
t

Result:

t x - x - x
3

+ πx
3D plots:

Real part:
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Imaginary part:

Contour plots:

Real part:

0

1

2

x

-3

-1

1

3
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-1.0 -0.5 0.0 0.5 1.0
-2

-1

t

tmin tmax

xmin xmax

Imaginary part:

-1.0 -0.5 0.0 0.5 1.0
-2

-1

0

1

2

t

x

-2

-1

0

1

2

tmin tmax

xmin xmax
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In[9]:= Plot3Dt πx - x13 - x + x, {t, -6., 6.}, {x, -2.10603, 2.10603}

Out[9]= 

 simplify{d^2x/d^2t}+{d^2e^x/d^2t}-{d^2x^1/3/d^2t}-d^2√xd^2t

In[10]:= Simplifyd^2* xd^2*t + d^2* E^xd^2*t - d^2* x^ (1 /3)d^2*t - d^2* Sqrt[x]d^2*t

Out[10]= 

t x - x - x
3

+ ⅇx
In[12]:= Plot3Dt ⅇx - x13 - x + x, {t, -6., 6.}, {x, -2.24762, 2.24762}

Out[12]= 
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 [{d^2x/d^2t+{d^2e^x/d^2t}]{d^2x^1/3/d^2t}+d^2√xd^2t

In[1]:= d^2* xd^2*t + d^2* E^xd^2*t d^2* x^ (1 /3)d^2*t + d^2* Sqrt[x]d^2*t

Out[1]= t x +
t ⅇx

t x + t x
3

In[4]:= [{d^2x/d^2t+{d^2e^x/d^2t}]/[{d^2x^1/3/d^2t}+{d^2√x/d^2t}]

An attempt was made to fix mismatched parentheses, brackets, or braces.

Input:

d2 ×
x

d2
t +

d2 ×
ⅇx

d2
t

d2 ×
x

3

d2
t + d2 ×

x

d2
t

Result:

t x +
t ⅇx

t x + t x
3

3D plots:

Real part:

Imaginary part:
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Out[4]= 

Contour plots:

Real part:

-6 -4 -2 0 2 4 6
-1.5
-1.0
-0.5

0.0
0.5
1.0
1.5

t

x

-7.5

-5.0

-2.5

0.

2.5

5.0

7.5

10.0

tmin tmax

xmin xmax

Imaginary part:

-6 -4 -2 0 2 4 6
-1.5
-1.0
-0.5

0.0
0.5
1.0
1.5

t

x

-0.9

-0.7

-0.5

-0.3

-0.1

tmin tmax

xmin xmax

Alternate forms: More

t x +
ⅇx

x + x
3

ⅇx
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t x +
ⅇ

 x
6

+ 1 x
3

t
ⅇx

x
3 t x

6

+ t + x

Series expansion at x = 0:

O
1

x7

(Taylor series)

Big-O notation »

Series expansion at x = ∞:

t x + O
1

x

6

+

ⅇx
1

x
-

1

x

2/3

+
1

x

5/6

-
1

x
+

1

x

7/6

-
1

x

4/3

+
1

x

3/2

-
1

x

5/3

+
1

x

11/6

-
1

x

2

+

1

x

13/6

-
1

x

7/3

+
1

x

5/2

-
1

x

8/3

+
1

x

17/6

-
1

x

3

+
1

x

19/6

-

1

x

10/3

+
1

x

7/2

-
1

x

11/3

+
1

x

23/6

-
1

x

4

+
1

x

25/6

-
1

x

13/3

+

1

x

9/2

-
1

x

14/3

+
1

x

29/6

-
1

x

5

+
1

x

31/6

-
1

x

16/3

+ O
1

x

11/2

Big-O notation »

Derivative: Step-by-step solution

∂
∂x

d2 x t

d2
+

d2 ⅇx t

d2  d2 x
3

t

d2
+

d2 x t

d2


 t +
ⅇx 6 x7/6 + 6 x - 3 x

6

- 2
6  x

6

+ 12
x4/3

In[2]:= Simplify
ⅇx t

t x13 + t x

+ t x

Out[2]= t
ⅇx

x
3 t x

6

+ t + x
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In[3]:= ∂t t
ⅇx

t + t x16 x13
+ x

Out[3]= -
t ⅇĐ  x

6

+ 1
x

3 t x
6

+ t2
+

ⅇĐ
x

3 t x
6

+ t + x

In[5]:= Plot3D-
ⅇUt 1 + x� � 

t + t x � �

x� �

+
ⅇU

t + t x � �  x� �

+ x, {t, -6., 6.}, {x, -1.56716, 1.56716}

Out[5]= 

 [{d^2x/d^2t}+{d^2e^x/d^2t}]{d^2x^1/3/d^2t}+d^2√xd^2t

In[6]:= d^2* xd^2*t + d^2* E^xd^2*t d^2* x^ (1 /3)d^2*t + d^2* Sqrt[x]d^2*t

Out[6]= 

t ⅇx + t x

t x + t x
3

=

Input:

d2 ×
x

d2
t + d2 ×

ⅇx

d2
t

d2 ×
x

3

d2
t + d2 ×

x

d2
t

Result:

t ⅇx + t x

t x + t x
3
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Out[7]= 

Alternate forms:

x + ⅇx

x + x
3

x + ⅇx

 x
6

+ 1 x
3

x2/3

x
6

+ 1
+

ⅇx

 x
6

+ 1 x
3

Expanded form: Step-by-step solution

t x

t x + t x
3

+
t ⅇx

t x + t x
3

Series expansion at x = 0:

O
1

x7

(Taylor series)

Big-O notation »

Series expansion at x = ∞:

ⅇx
1

x
-

1

x

2/3

+
1

x

5/6

-
1

x
+

1

x

7/6

-
1

x

4/3

+
1

x

3/2

-
1

x

5/3

+
1

x

11/6

-
1

x

2

+
1

x

13/6

-

1

x

7/3

+
1

x

5/2

-
1

x

8/3

+
1

x

17/6

-
1

x

3

+
1

x

19/6

-
1

x

10/3

+
1

x

7/2

-
1

x

11/3

+

1

x

23/6

-
1

x

4

+
1

x

25/6

-
1

x

13/3

+
1

x

9/2

-
1

x

14/3

+
1

x

29/6

-
1

x

5

+ O
1

x

31/6

+

x - x
3

+ x
6

- 1 +
1

x
6 -

1

x
3 +

1

x
-

1

x

2/3

+
1

x

5/6

-
1

x
+

1

x

7/6

-

1

x

4/3

+
1

x

3/2

-
1

x

5/3

+
1

x

11/6

-
1

x

2

+
1

x

13/6

-
1

x

7/3

+
1

x

5/2

-

1

x

8/3

+
1

x

17/6

-
1

x

3

+
1

x

19/6

-
1

x

10/3

+
1

x

7/2

-
1

x

11/3

+
1

x

23/6

-

1

x

4

+
1

x

25/6

-
1

x

13/3

+
1

x

9/2

-
1

x

14/3

+
1

x

29/6

-
1

x

5

+ O
1

x

31/6

Big-O notation »

Derivative: Step-by-step solution
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∂
∂x

d2 x t

d2
+

d2 ⅇx t

d2

d2 x
3

t

d2
+

d2 x t

d2

 ⅇx 6 x7/6 + 6 x - 3 x
6

- 2+ 3 x
6

+ 4 x

6  x
6

+ 12
x4/3

Limit:

lim
t→-∞

ⅇx t + t x

t x
3

+ t x
 -x - ⅇx

- x - x
3

≈ -x - 2.71828x

- x - x
3

lim
t→∞

ⅇx t + t x

t x
3

+ t x
 x + ⅇx

x + x
3

≈ x + 2.71828x

x + x
3

 [{d^2x/d^2t}+{d^2e^x/d^2t}]{d^2x^1/3/d^2t}+d^2√xd^2t

In[8]:= d^2* xd^2*t + d^2* E^xd^2*t d^2* x^ (1 /3)d^2*t + d^2* Sqrt[x]d^2*t

Out[8]= 

t ⅇx + t x

t x + t x
3

In[9]:= Plot3D
ⅇUt + t x

t x � � + t x

, {t, -6., 6.}, {x, -2.00691, 2.00691}

Out[9]= 
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 [{d^2x/d^2t}sinx+{d^2e^x/d^2t}tanx]{d^2x^1/3/d^2t}+d^2√xd^2tsinx

In[10]:= d^2* xd^2*t*Sin[x] + d^2* E^xd^2*t*Tan[x]
d^2* x^ (1 /3)d^2*t + d^2* Sqrt[x]d^2*t*Sin[x]

Out[10]= 

t x sin(x) + t ⅇx tan(x)

t x
3

+ t x sin(x)

In[12]:= [{d^2x/d^2t}sinx+{d^2e^x/d^2t}tanx]/[{d^2x^1/3/d^2t}+{d^2√x/d^2t}sinx]
Out[12]= 

Input:

d2 ×
x

d2
t sin(x) + d2 ×

ⅇx

d2
t tan(x)

d2 ×
x

3

d2
t + d2 ×

x

d2
t sin(x)

Result:

t x sin(x) + t ⅇx tan(x)

t x
3

+ t x sin(x)

Alternate forms: More

(ⅇx + x cos(x)) tan(x)

x
3

+ x sin(x)

(ⅇx + x cos(x)) tan(x)

x
3  x

6

sin(x) + 1
x sin(x) + ⅇx tan(x)

x
3  x

6

sin(x) + 1
Expanded form:

t x sin(x)

t x
3

+ t x sin(x)
+

t ⅇx tan(x)

t x
3

+ t x sin(x)

Series expansion at x = 0:

x2/3 + 2 x5/3 - x11/6 +
5 x8/3

6
- 2 x17/6 + x3 +

x11/3

3
-

2 x23/6

3
+ 2 x4 - x25/6 +

41 x14/3

120
+

x5

2
- 2 x31/6 + x16/3 + Ox17/3

(Puiseux series)
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Big-O notation »

Derivative: Step-by-step solution

∂
∂x

d2 x t sin(x)

d2
+

d2 ⅇx t tan(x)

d2

d2 x
3

t

d2
+

d2 x t sin(x)

d2

 1

6 x4/3  x
6

sin(x) + 12

6 x  x
6

sin(x) + 1 sin(x) + x cos(x) + ⅇx tan(x) + ⅇx sec2(x)-
(x sin(x) + ⅇx tan(x)) 6 x7/6 cos(x) + 3 x

6
sin(x) + 2

sec(x) is the secant function »

In[11]:= Plot3D
t x Sin[x] + ⅇUt Tan[x]

t x � � + t x Sin[x]

, {t, -6., 6.}, {x, -2.00691, 2.00691}

Out[11]= 

 [{d^2x/d^2t}sinx+{d^2e^x/d^2t}tanx]{d^2x^1/3/d^2t}*d^2√xd^2tsinx

In[13]:= d^2* xd^2*t*Sin[x] + d^2* E^xd^2*t*Tan[x]
d^2* x^ (1 /3)d^2*t* d^2* Sqrt[x]d^2*t*Sin[x]

Out[13]= 

csc(x) t x sin(x) + t ⅇx tan(x)
t 2 x5/6

In[15]:= [{d^2x/d^2t}sinx+{d^2e^x/d^2t}tanx]/[{d^2x^1/3/d^2t}*{d^2√x/d^2t}sinx]
Out[15]= 
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Input:

d2 ×
x

d2
t sin(x) + d2 ×

ⅇx

d2
t tan(x)

d2 ×
x

3

d2
t d2 ×

x

d2
t sin(x)

Result:

csc(x) (t x sin(x) + t ⅇx tan(x))

t 2 x5/6

csc(x) is the cosecant function »

3D plots:

Real part:

Imaginary part:

Contour plots:

Real part:
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-1.0 -0.5 0.0 0.5 1.0

-4

-2

0

2

4

t

x

-40

-20

0

20

40

tmin tmax

xmin xmax

Imaginary part:

-1.0 -0.5 0.0 0.5 1.0

-4

-2

0

2

4

t

x

-2

-1

0

1

2

tmin tmax

xmin xmax

Alternate forms: More

x + ⅇx sec(x)

t x5/6

(ⅇx + x cos(x)) sec(x)

t x5/6
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ⅇx sec(x)

x5/6
+ x

6

t

sec(x) is the secant function »

Expanded form:

ⅇx sec(x)

t x5/6
+

x
6

t

Series expansion at x = 0:

O
1

x25

(Taylor series)

Big-O notation »

Derivative: Step-by-step solution

∂
∂x

d2 x t sin(x)

d2
+

d2 ⅇx t tan(x)

d2

d2 x
3

t d2 x t sin(x)

d2 d2

 x + ⅇx (6 x - 5) sec(x) + 6 ⅇx x csc(x) (sec2(x) - 1)

6 t x11/6

In[14]:= Plot3D
Csc[x] t x Sin[x] + ⅇx t Tan[x]

t2 x56
, {t, -10., 10.}, {x, -1.50958, 1.50958}

Out[14]= 
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 [{d^2x/d^2t}sinx+{d^2e^x/d^2t}tanx]^2{d^2x^1/3/d^2t}*d^2√xd^2tsinx

In[1]:= d^2* xd^2*t*Sin[x] + d^2* E^xd^2*t*Tan[x]^2
d^2* x^ (1 /3)d^2*t* d^2* Sqrt[x]d^2*t*Sin[x]

Out[1]= 

csc(x) t x sin(x) + t ⅇx tan(x)2

t 2 x5/6

In[3]:= [{d^2x/d^2t}sinx+{d^2e^x/d^2t}tanx]^2/[{d^2x^1/3/d^2t}*{d^2√x/d^2t}sinx]
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Out[3]= 

Input:

d2 ×
x

d2
t sin(x) + d2 ×

ⅇx

d2
t tan(x)2

d2 ×
x

3

d2
t d2 ×

x

d2
t sin(x)

Result:

csc(x) (t x sin(x) + t ⅇx tan(x))2

t 2 x5/6

csc(x) is the cosecant function »

Alternate forms: More

sin(x) (x + ⅇx sec(x))2

x5/6

x2 cos2(x) + ⅇ2 x + 2 ⅇx x cos(x) tan(x) sec(x)

x5/6

t x sin(x) +
ⅇx t sin(x)

cos(x)
2

t 2 x5/6 sin(x)

sec(x) is the secant function »

Expanded form:

x7/6 sin(x) +
ⅇ2 x tan(x) sec(x)

x5/6
+ 2 ⅇx x

6
tan(x)

Series expansion at x = 0:

x
6

+ 4 x7/6 +
35 x13/6

6
+ Ox19/6

(Puiseux series)

Big-O notation »

Derivative: Step-by-step solution

∂
∂x

 d2 x t sin(x)

d2
+

d2 ⅇx t tan(x)

d2
2

d2 x
3

t d2 x t sin(x)

d2 d2



cos(x) (x + ⅇx sec(x)) (x (6 x + 7 tan(x)) + 12 ⅇx x sec3(x) + ⅇx ((12 x - 5) tan(x) - 6 x) sec(x))

6 x11/6
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In[2]:= Plot3D
Csc[x] t x Sin[x] + ⅇx t Tan[x]2

t2 x56
, {t, -8, 8}, {x, -8, 8}

Out[2]= 

 [{d^2x/d^2t}sinx+{d^2e^x/d^2t}tanx]{d^2x^1/3/d^2t}*d^2√xd^2tsinx^2

In[4]:= d^2* xd^2*t*Sin[x] + d^2* E^xd^2*t*Tan[x]
d^2* x^ (1 /3)d^2*t* d^2* Sqrt[x]d^2*t*Sin[x]^2

Out[4]= 

csc2(x) t x sin(x) + t ⅇx tan(x)
t 4 x5/3

In[6]:= [{d^2x/d^2t}sinx+{d^2e^x/d^2t}tanx]/[{d^2x^1/3/d^2t}*{d^2√x/d^2t}sinx]^2

Input:

d2 ×
x

d2
t sin(x) + d2 ×

ⅇx

d2
t tan(x)

d2 ×
x

3

d2
t d2 ×

x

d2
t sin(x)2

Result:

csc2(x) (t x sin(x) + t ⅇx tan(x))

t 4 x5/3

csc(x) is the cosecant function »

3D plots:

Real part:
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Out[6]= 

Imaginary part:

Contour plots:

Real part:

-10 -5 0 5 10

-1.0

-0.5

0.0

0.5

1.0

t

x

-0.6

-0.2

0.2

0.6

tmin tmax

xmin xmax
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Imaginary part:

-10 -5 0 5 10

-1.0

-0.5

0.0

0.5

1.0

t

x

-0.004

-0.002

0.

0.002

0.004

tmin tmax

xmin xmax

Alternate forms: More

csc(x) (x + ⅇx sec(x))

t 3 x5/3

(ⅇx + x cos(x)) csc(x) sec(x)

t 3 x5/3

csc(x)  ⅇx sec(x)

x5/3
+

1

x2/3


t 3

sec(x) is the secant function »

Expanded form:

ⅇx csc(x) sec(x)

t 3 x5/3
+

csc(x)

t 3 x2/3

Series expansion at x = 0:

O
1

x19

(Taylor series)

Big-O notation »

Derivative: Step-by-step solution
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∂
∂x

d2 x t sin(x)

d2
+

d2 ⅇx t tan(x)

d2

 d2 x
3

t d2 x t sin(x)

d2 d2
2



-
cot(x) (sec(x) (2 x - ⅇx (3 x - 5) sec(x)) + 3 x csc(x) (x - ⅇx sec3(x) + 2 ⅇx sec(x)))

3 t 3 x8/3

cot(x) is the cotangent function »

In[5]:= FullSimplify
Csc[x]2 t x Sin[x] + ⅇx t Tan[x]

t4 x53


Out[5]= 

csc(x) x + ⅇx sec(x)
t 3 x5/3

In[7]:= Plot3D
Csc[x] x + ⅇx Sec[x]

t3 x53
, {t, -10., 10.}, {x, -1.4497, 1.4497}

Out[7]= 

 [{d^2x/d^2t}sinx+{d^2π^x/d^2t}tanx]{d^2x^1/3/d^2t}*d^2√xd^2tsinx^2

In[8]:= d^2* xd^2*t*Sin[x] + d^2* Pi^xd^2*t*Tan[x]
d^2* x^ (1 /3)d^2*t* d^2* Sqrt[x]d^2*t*Sin[x]^2

Out[8]= 

csc2(x) t x sin(x) + t πx tan(x)
t 4 x5/3
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In[11]:= [{d^2x/d^2t}sinx+{d^2π^x/d^2t}tanx]/[{d^2x^1/3/d^2t}*{d^2√x/d^2t}sinx]^2
Out[11]= 

Input:

d2 ×
x

d2
t sin(x) + d2 ×

πx

d2
t tan(x)

d2 ×
x

3

d2
t d2 ×

x

d2
t sin(x)2

Result:

csc2(x) (t x sin(x) + t πx tan(x))

t 4 x5/3

csc(x) is the cosecant function »

3D plots:

Real part:

Imaginary part:
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Contour plots:

Real part:

-1.0 -0.5 0.0 0.5 1.0

-4

-2

0

2

4

t

x

-400

-200

0

200

400

tmin tmax

xmin xmax

Imaginary part:

-1.0 -0.5 0.0 0.5 1.0

-4

-2

0

2

4

t

x

-6

-2

2

6

tmin tmax

xmin xmax

Alternate forms: More

csc(x) (x + πx sec(x))

t 3 x5/3
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(πx + x cos(x)) csc(x) sec(x)

t 3 x5/3

csc(x)  πx sec(x)

x5/3
+

1

x2/3


t 3

sec(x) is the secant function »

Partial fraction expansion: Step-by-step solution

πx csc(x) sec(x)

t 3 x5/3
+

csc(x)

t 3 x2/3

Series expansion at x = 0:

1

t 3 x8/3
+

1 + log(π)
t 3 x5/3

+
4 + 3 log2(π)

6 t 3 x2/3
+

x
3 1 + log3(π) + 4 log(π)

6 t 3
+

x4/3 112 + 15 log4(π) + 120 log2(π)
360 t 3

+
x7/3 7 + 3 log5(π) + 40 log3(π) + 112 log(π)

360 t 3
+

x10/3 1984 + 21 log6(π) + 420 log4(π) + 2352 log2(π)
15 120 t 3

+

x13/3 31 + 3 log7(π) + 84 log5(π) + 784 log3(π) + 1984 log(π)
15 120 t 3

+ Ox16/3
(Puiseux series)

log(x) is the natural logarithm »

Big-O notation »

Derivative: Approximate form Step-by-step solution

∂
∂x

d2 x t sin(x)

d2
+

d2 πx t tan(x)

d2

 d2 x
3

t d2 x t sin(x)

d2 d2
2



-
cot(x) (sec(x) (2 x - πx (3 x log(π) - 5) sec(x)) + 3 x csc(x) (x - πx sec3(x) + 2 πx sec(x)))

3 t 3 x8/3

cot(x) is the cotangent function »

In[9]:= Plot3D
Csc[x]2 t x Sin[x] +πx t Tan[x]

t4 x53
, {t, -10., 10.}, {x, -1.30812, 1.30812}
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Out[9]= 

 [{d^2x/d^2t}sinx+{d^2π^x/d^2t}tanx]^2{d^2x^1/3/d^2t}*d^2√xd^2tsinx

In[12]:= d^2* xd^2*t*Sin[x] + d^2* Pi^xd^2*t*Tan[x]^2
d^2* x^ (1 /3)d^2*t* d^2* Sqrt[x]d^2*t*Sin[x]

Out[12]= 

csc(x) t x sin(x) + t πx tan(x)2

t 2 x5/6

In[14]:= [{d^2x/d^2t}sinx+{d^2π^x/d^2t}tanx]^2/[{d^2x^1/3/d^2t}*{d^2√x/d^2t}sinx]
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Out[14]= 

Input:

d2 ×
x

d2
t sin(x) + d2 ×

πx

d2
t tan(x)2

d2 ×
x

3

d2
t d2 ×

x

d2
t sin(x)

Result:

csc(x) (t x sin(x) + t πx tan(x))2

t 2 x5/6

csc(x) is the cosecant function »

Alternate forms: More

sin(x) (x + πx sec(x))2

x5/6

x2 cos2(x) + π2 x + 2 πx x cos(x) tan(x) sec(x)

x5/6

t x sin(x) +
πx t sin(x)

cos(x)
2

t 2 x5/6 sin(x)

sec(x) is the secant function »

Expanded form:

x7/6 sin(x) +
π2 x tan(x) sec(x)

x5/6
+ 2 πx x

6
tan(x)

Series expansion at x = 0:

x
6

+ x7/6 (2 + 2 log(π)) + x13/6
11

6
+ 2 log2(π) + 2 log(π) + Ox19/6

(Puiseux series)

log(x) is the natural logarithm »

Big-O notation »

Derivative: Approximate form Step-by-step solution

∂
∂x

 d2 x t sin(x)

d2
+

d2 πx t tan(x)

d2
2

d2 x
3

t d2 x t sin(x)

d2 d2

 1

6 x11/6
cos(x) (x + πx sec(x))

x (6 x + 7 tan(x)) + 12 πx x sec3(x) + πx sec(x) ((12 x log(π) - 5) tan(x) - 6 x)
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In[13]:= Plot3D
Csc[x] t x Sin[x] +πx t Tan[x]2

t2 x56
, {t, -10., 10.}, {x, -1.29231, 1.29231}

Out[13]= 

 [{d^2x/d^2t}sinx+{d^2π^x/d^2t}tanx]{d^2x^1/3/d^2t}*d^2√xd^2tsinx

In[15]:= d^2* xd^2*t*Sin[x] + d^2* Pi^xd^2*t*Tan[x]
d^2* x^ (1 /3)d^2*t* d^2* Sqrt[x]d^2*t*Sin[x]

Out[15]= 

csc(x) t x sin(x) + t πx tan(x)
t 2 x5/6
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In[16]:= Plot3D
Csc[x] t x Sin[x] +πx t Tan[x]

t2 x56
, {t, -10., 10.}, {x, -1.36799, 1.36799}

Out[16]= 

 [{d^2x/d^2t}sinx+{d^2π^x/d^2t}tanx]{d^2x^1/3/d^2t}*d^2√xd^2tsinx^3

In[17]:= d^2* xd^2*t*Sin[x] + d^2* Pi^xd^2*t*Tan[x]
d^2* x^ (1 /3)d^2*t* d^2* Sqrt[x]d^2*t*Sin[x]^3

Out[17]= 

csc3(x) t x sin(x) + t πx tan(x)
t 6 x5/2

In[19]:= [{d^2x/d^2t}sinx+{d^2π^x/d^2t}tanx]/[{d^2x^1/3/d^2t}*{d^2√x/d^2t}sinx]^3
Out[19]= 

Input:

d2 ×
x

d2
t sin(x) + d2 ×

πx

d2
t tan(x)

d2 ×
x

3

d2
t d2 ×

x

d2
t sin(x)3

Result:

csc3(x) (t x sin(x) + t πx tan(x))

t 6 x5/2

csc(x) is the cosecant function »

3D plots:

Real part
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Real part:

Imaginary part:

Contour plots:

Real part:

-10 -5 0 5 10
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0.5
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t

x

-0.01

0.

0.01
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tmin tmax

xmin xmax

Imaginary part:

-10 -5 0 5 10

-1.0

-0.5

0.0

0.5

1.0

t

x

-0.0004

-0.0002

0.

0.0002

0.0004

0.0006

tmin tmax

xmin xmax

Alternate forms: More

csc2(x) (x + πx sec(x))

t 5 x5/2

(πx + x cos(x)) csc2(x) sec(x)

t 5 x5/2

csc2(x)  πx sec(x)

x5/2
+

1

x3/2


t 5

sec(x) is the secant function »

Partial fraction expansion: Step-by-step solution

πx csc2(x) sec(x)

t 5 x5/2
+

csc2(x)

t 5 x3/2

Derivative: Approximate form Step-by-step solution

∂
∂x

d2 x t sin(x)

d2
+

d2 πx t tan(x)

d2

 d2 x
3

t d2 x t sin(x)

d2 d2
3

 -
1

2 t 5 x7/2
cot(x) csc(x)
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
a2 a2


sec(x) (3 x - πu (2 x log(π) - 5) sec(x)) + 2 x csc(x) 2 x - πu sec3(x) + 3 πu sec(x)

cot(x) is the cotangent function »

log(x) is the natural logarithm »

In[18]:= Plot3D
Csc[x]3 t x Sin[x] +πx t Tan[x]

t6 x52
, {t, -8, 8}, {x, -8, 8}

Out[18]= 

 [{d^2x/d^2t}sinx+{d^2π^x/d^2t}tanx]{d^2x^1/3/d^2t}+d^2√xd^2tsinx

In[20]:= d^2* xd^2*t*Sin[x] + d^2* Pi^xd^2*t*Tan[x]
d^2* x^ (1 /3)d^2*t + d^2* Sqrt[x]d^2*t*Sin[x]

Out[20]= 

t x sin(x) + t πx tan(x)

t x
3

+ t x sin(x)

In[22]:= [{d^2x/d^2t}sinx+{d^2π^x/d^2t}tanx]/[{d^2x^1/3/d^2t}+{d^2√x/d^2t}sinx]
Out[22]= 

Input:

d2 ×
x

d2
t sin(x) + d2 ×

πx

d2
t tan(x)

d2 ×
x

3

d2
t + d2 ×

x

d2
t sin(x)

Result
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Result:

t x sin(x) + t πx tan(x)

t x
3

+ t x sin(x)

Alternate forms: More

(πx + x cos(x)) tan(x)

x
3

+ x sin(x)

(πx + x cos(x)) tan(x)

x
3  x

6

sin(x) + 1
x sin(x) + πx tan(x)

x
3  x

6

sin(x) + 1
Expanded form:

t x sin(x)

t x
3

+ t x sin(x)
+

t πx tan(x)

t x
3

+ t x sin(x)

Series expansion at x = 0:

x2/3 + x5/3 (1 + log(π)) - x11/6 +
1

6
x8/3 2 + 3 log2(π)+ x17/6 (-1 - log(π)) +

x3 +
1

6
x11/3 -1 + log3(π) + 2 log(π)+ 1

6
x23/6 -1 - 3 log2(π)+

x4 (1 + log(π)) - x25/6 +
1

120
x14/3 16 + 5 log4(π) + 20 log2(π)+

1

6
x29/6 2 - log3(π) - log(π)+ 1

2
x5 log2(π) + x31/6 (-1 - log(π)) + x16/3 + Ox17/3

(Puiseux series)

log(x) is the natural logarithm »

Big-O notation »

Derivative: Approximate form Step-by-step solution

∂
∂x

d2 x t sin(x)

d2
+

d2 πx t tan(x)

d2

d2 x
3

t

d2
+

d2 x t sin(x)

d2

 1

6 x4/3  x
6

sin(x) + 12

6 x  x
6

sin(x) + 1 sin(x) + x cos(x) + πx sec2(x) + πx log(π) tan(x)-
(x sin(x) + πx tan(x)) 6 x7/6 cos(x) + 3 x

6
sin(x) + 2

sec(x) is the secant function »
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In[21]:= Plot3D
t x Sin[x] +πx t Tan[x]

t x13 + t x Sin[x]

, {t, -6., 6.}, {x, -1.87476, 1.87476}

Out[21]= 

 [{d^2x/d^2t}sinx+{d^2π^x/d^2t}tanx]{d^2x^1/3/d^2t}+d^2√xd^2tsinx^2

In[23]:= d^2* xd^2*t*Sin[x] + d^2* Pi^xd^2*t*Tan[x]
d^2* x^ (1 /3)d^2*t + d^2* Sqrt[x]d^2*t*Sin[x]^2

Out[23]= 

t x sin(x) + t πx tan(x)

t x
3

+ t x sin(x)2

In[25]:= [{d^2x/d^2t}sinx+{d^2π^x/d^2t}tanx]/[{d^2x^1/3/d^2t}+{d^2√x/d^2t}sinx]^2
Out[25]= 

Input:

d2 ×
x

d2
t sin(x) + d2 ×

πx

d2
t tan(x)

d2 ×
x

3

d2
t + d2 ×

x

d2
t sin(x)2

Result:

t x sin(x) + t πx tan(x)

t x
3

+ t x sin(x)2

3D plots:

Real part:
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Imaginary part:

Contour plots:

Real part:

2

3
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Imaginary part:

2

3
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-1.0 -0.5 0.0 0.5 1.0

-3
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-1

0

1

t

x

-1.5

-0.5

0.5

1.5

tmin tmax

xmin xmax

Alternate forms: More

(πx + x cos(x)) tan(x)

t x2/3  x
6

sin(x) + 12

x sin(x) + πx tan(x)

t x2/3  x
6

sin(x) + 12
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t x sin(x) +
πx t sin(x)

cos(x)

t x
3

+ t x sin(x)2

Partial fraction expansion: Step-by-step solution

πx tan(x)

t x2/3  x
6

sin(x) + 12
+

x
3

sin(x)

t  x
6

sin(x) + 12

Expanded forms:

t x sin(x)

t x
3

+ t x sin(x)2
+

t πx tan(x)

t x
3

+ t x sin(x)2

t x sin(x)

2 t 2 x5/6 sin(x) + t 2 x2/3 + t 2 x sin2(x)
+

t πx tan(x)

2 t 2 x5/6 sin(x) + t 2 x2/3 + t 2 x sin2(x)

Derivative: Approximate form Step-by-step solution

∂
∂x

d2 x t sin(x)

d2
+

d2 πx t tan(x)

d2

 d2 x
3

t

d2
+

d2 x t sin(x)

d2
2



3 x  x
6

sin(x) + 1 sin(x) + x cos(x) + πx sec2(x) + πx log(π) tan(x)-
(x sin(x) + πx tan(x)) 6 x7/6 cos(x) + 3 x

6
sin(x) + 2  3 t x5/3  x

6
sin(x) + 13

sec(x) is the secant function »

log(x) is the natural logarithm »

In[24]:= Plot3D
t x Sin[x] +πx t Tan[x]

t x13 + t x Sin[x]2
, {t, -6., 6.}, {x, -1.87476, 1.87476}
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Out[24]= 

 [{d^2x/d^2t}sinx+{d^2π^x/d^2t}tanx]^2{d^2x^1/3/d^2t}+d^2√xd^2tsinx

In[26]:= d^2* xd^2*t*Sin[x] + d^2* Pi^xd^2*t*Tan[x]^2
d^2* x^ (1 /3)d^2*t + d^2* Sqrt[x]d^2*t*Sin[x]

Out[26]= 

t x sin(x) + t πx tan(x)2

t x
3

+ t x sin(x)

 [{d^2x/d^2t}sinx+{d^2π^x/d^2t}tanx]^2/[{d^2x^1/3/d^2t}+{d^2√x/d^2t}sinx]

Out[29]= 

Input:

d2 ×
x

d2
t sin(x) + d2 ×

πx

d2
t tan(x)2

d2 ×
x

3

d2
t + d2 ×

x

d2
t sin(x)

Result:

(t x sin(x) + t πx tan(x))2

t x
3

+ t x sin(x)

3D plots:

Real part:

68     

Eq 21



Imaginary part:

Contour plots:

Real part:
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Imaginary part:

-1.0 -0.5 0.0 0.5 1.0

-6

-4
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0
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4

6

t

x

-0.2

-0.1

0.

0.1

0.2

tmin tmax

xmin xmax

Alternate forms: More

t (x sin(x) + πx tan(x))2

x
3

+ x sin(x)

t (x sin(x) + πx tan(x))2

x
3  x

6

sin(x) + 1
t (πx + x cos(x))2 tan2(x)

x
3  x

6

sin(x) + 1
Expanded form:

t 2 x2 sin2(x)

t x
3

+ t x sin(x)
+

t 2 π2 x tan2(x)

t x
3

+ t x sin(x)
+

2 t 2 πx x sin(x) tan(x)

t x
3

+ t x sin(x)

Derivative: Approximate form Step-by-step solution

∂
∂x

 d2 x t sin(x)

d2
+

d2 πx t tan(x)

d2
2

d2 x
3

t

d2
+

d2 x t sin(x)

d2



2 (t x sin(x) + t πx tan(x)) (t sin(x) + t x cos(x) + t πx sec2(x) + t πx log(π) tan(x))

t x
3

+ t x sin(x)
-
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(t x sin(x) + t πx tan(x))2  t

3 x2/3
+

t sin(x)

2 x
+ t x cos(x)

t x
3

+ t x sin(x)2

sec(x) is the secant function »

log(x) is the natural logarithm »

In[28]:= Plot3D
t x Sin[x] +πx t Tan[x]2

t x13 + t x Sin[x]

, {t, -1.14412, 1.14412}, {x, -1.78005, 1.78005}

In[27]:= Plot3D
t x Sin[x] +πx t Tan[x]2

t x13 + t x Sin[x]

, {t, -1.14412, 1.14412}, {x, -1.78005, 1.78005}

Out[27]= 

 [{d^2x/d^2t}sinx+{d^2π^x/d^2t}tanx]{d^2x^1/3/d^2t}+d^2√xd^2tsinx^3

In[30]:= d^2* xd^2*t*Sin[x] + d^2* Pi^xd^2*t*Tan[x]
d^2* x^ (1 /3)d^2*t + d^2* Sqrt[x]d^2*t*Sin[x]^3

Out[30]= 

t x sin(x) + t πx tan(x)

t x
3

+ t x sin(x)3

In[33]:= [{d^2x/d^2t}sinx+{d^2π^x/d^2t}tanx]/[{d^2x^1/3/d^2t}+{d^2√x/d^2t}sinx]^3
Out[33]= 

Input:
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Input:

d2 ×
x

d2
t sin(x) + d2 ×

πx

d2
t tan(x)

d2 ×
x

3

d2
t + d2 ×

x

d2
t sin(x)3

Result:

t x sin(x) + t πx tan(x)

t x
3

+ t x sin(x)3

3D plots:

Real part:

Imaginary part:

Contour plots:

Real part:
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Imaginary part:

-1.0 -0.5 0.0 0.5 1.0

-3

-2

-1

0

1

2

3

x

-3

-1

1

3

74     



t

tmin tmax

xmin xmax

Alternate forms: More

(πx + x cos(x)) tan(x)

t 2 x  x
6

sin(x) + 13

x sin(x) + πx tan(x)

t 2 x  x
6

sin(x) + 13

t x sin(x) +
πx t sin(x)

cos(x)

t x
3

+ t x sin(x)3

Partial fraction expansion: Step-by-step solution

sin(x)

t 2  x
6

sin(x) + 13
+

πx tan(x)

t 2 x  x
6

sin(x) + 13

Expanded forms:

t x sin(x)

t x
3

+ t x sin(x)3
+

t πx tan(x)

t x
3

+ t x sin(x)3

t x sin(x)

3 t 3 x7/6 sin(x) + 3 t 3 x4/3 sin2(x) + t 3 x3/2 sin3(x) + t 3 x
+

t πx tan(x)

3 t 3 x7/6 sin(x) + 3 t 3 x4/3 sin2(x) + t 3 x3/2 sin3(x) + t 3 x

Derivative: Approximate form Step-by-step solution

∂
∂x

d2 x t sin(x)

d2
+

d2 πx t tan(x)

d2

 d2 x
3

t

d2
+

d2 x t sin(x)

d2
3

 t sin(x) + t x cos(x) + t πx sec2(x) + t πx log(π) tan(x)

t x
3

+ t x sin(x)3
-

3 (t x sin(x) + t πx tan(x))  t

3 x2/3
+

t sin(x)

2 x
+ t x cos(x)

t x
3

+ t x sin(x)4

sec(x) is the secant function »

log(x) is the natural logarithm »
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In[32]:= Plot3D
t x Sin[x] +πUt Tan[x]

t x � � + t x Sin[x]�

, {t, -6., 6.}, {x, -1.87476, 1.87476}

In[31]:= Plot3D
t x Sin[x] +πUt Tan[x]

t x � � + t x Sin[x]�

, {t, -6., 6.}, {x, -1.87476, 1.87476}

Out[31]= 

 [{d^2x/d^2t}sinx+{d^2π^x/d^2t}tanx]^3{d^2x^1/3/d^2t}+d^2√xd^2tsinx

In[34]:= d^2* xd^2*t*Sin[x] + d^2* Pi^xd^2*t*Tan[x]^3
d^2* x^ (1 /3)d^2*t + d^2* Sqrt[x]d^2*t*Sin[x]

Out[34]= 

t x sin(x) + t πx tan(x)3

t x
3

+ t x sin(x)

In[36]:= [{d^2x/d^2t}sinx+{d^2π^x/d^2t}tanx]^3/[{d^2x^1/3/d^2t}+{d^2√x/d^2t}sinx]
Out[36]= 

Input:

d2 ×
x

d2
t sin(x) + d2 ×

πx

d2
t tan(x)3

d2 ×
x

3

d2
t + d2 ×

x

d2
t sin(x)

Result:

(t x sin(x) + t πx tan(x))3

t x
3

+ t x sin(x)
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t x + t x sin(x)

3D plots:

Real part:

Imaginary part:

Contour plots:

Real part:
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Imaginary part:
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Alternate forms: More

t 2 (x sin(x) + πx tan(x))3

x
3

+ x sin(x)

t 2 (x sin(x) + πx tan(x))3

x
3  x

6

sin(x) + 1
t 2 (πx + x cos(x))3 tan3(x)

x
3  x

6

sin(x) + 1
Expanded form:

t 3 x3 sin3(x)

t x
3

+ t x sin(x)
+

3 t 3 πx x2 sin2(x) tan(x)

t x
3

+ t x sin(x)
+

t 3 π3 x tan3(x)

t x
3

+ t x sin(x)
+

3 t 3 π2 x x sin(x) tan2(x)

t x
3

+ t x sin(x)

Derivative: Approximate form Step-by-step solution
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∂
∂x

 d2 x t sin(x)

d2
+

d2 πx t tan(x)

d2
3

d2 x
3

t

d2
+

d2 x t sin(x)

d2



3 (t x sin(x) + t πx tan(x))2 (t sin(x) + t x cos(x) + t πx sec2(x) + t πx log(π) tan(x))

t x
3

+ t x sin(x)
-

(t x sin(x) + t πx tan(x))3  t

3 x2/3
+

t sin(x)

2 x
+ t x cos(x)

t x
3

+ t x sin(x)2

sec(x) is the secant function »

log(x) is the natural logarithm »

In[35]:= Plot3D
t x Sin[x] +πx t Tan[x]3

t x13 + t x Sin[x]

, {t, -0.569059, 0.569059}, {x, -1.72149, 1.72149}

Out[35]= 

 [{d^2x/d^2t}sinx+{d^2π^x/d^2t}tanx]^3{d^2x^1/3/d^2t}+d^2√xd^2tsinx

In[37]:= d^2* xd^2*t*Sin[x] + d^2* Pi^xd^2*t*Tan[x]^3
d^2* x^ (1 /3)d^2*t + d^2* Sqrt[x]d^2*t*Sin[x]

Out[37]= 

t x sin(x) + t πx tan(x)3

t x
3

+ t x sin(x)
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In[38]:= Simplify
t x Sin[x] +πx t Tan[x]3

t x13 + t x Sin[x]



Out[38]= 

t 2 x sin(x) + πĐ tan(x)3

x
3

+ x sin(x)

 [{d^2x/d^2t}sinx+{d^2π^x/d^2t}tanx]^3{d^2x^1/3/d^2t}+d^2√xd^2tsinx^13

In[1]:= d^2* xd^2*t*Sin[x] + d^2* Pi^xd^2*t*Tan[x]^3
d^2* x^ (1 /3)d^2*t + d^2* Sqrt[x]d^2*t*Sin[x]^ (1 /3)

Out[1]= 

t x sin(x) + t πx tan(x)3

t x
3

+ t x sin(x)3

In[2]:= [{d^2x/d^2t}sinx+{d^2π^x/d^2t}tanx]^3/[{d^2x^1/3/d^2t}+{d^2√
x/d^2t}sinx]^1/3



Input:

d2 ×
x

d2
t sin(x) + d2 ×

πx

d2
t tan(x)3

d2 ×
x

3

d2
t + d2 ×

x

d2
t sin(x)3

Result:

(t x sin(x) + t πx tan(x))3

t x
3

+ t x sin(x)3

3D plots:

Real part:
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Imaginary part:

Contour plots:

Real part:
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Out[2]= 
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t

tmin tmax

xmin xmax

Imaginary part:
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Alternate forms: More

t 3 (πx + x cos(x))3 tan3(x)

t  x
3

+ x sin(x)3

t 3 (x sin(x) + πx tan(x))3

t x
3  x

6

sin(x) + 13

t x sin(x) +
πx t sin(x)

cos(x)
3

t x
3

+ t x sin(x)3

Expanded form:

t 3 x3 sin3(x)

t x
3

+ t x sin(x)3

+
3 t 3 πx x2 sin2(x) tan(x)

t x
3

+ t x sin(x)3

+

t 3 π3 x tan3(x)

t x
3

+ t x sin(x)3

+
3 t 3 π2 x x sin(x) tan2(x)

t x
3

+ t x sin(x)3

 [{d^2x/d^2t}sinx*{d^2π^x/d^2t}tanx]{d^2x^1/3/d^2t}*d^2√xd^2tsinx

In[3]:= d^2* xd^2*t*Sin[x] * d^2* Pi^xd^2*t*Tan[x] 
d^2* x^ (1 /3)d^2*t* d^2* Sqrt[x]d^2*t*Sin[x]

Out[3]= πx x
6

tan(x)

[{d^2x/d^2t}sinx*{d^2π^x/d^2t}tanx]/[{d^2x^1/3/d^2t}*{d^2√x/d^2t}sinx]

In[5]:= [{d^2x/d^2t}sinx*{d^2π^x/d^2t}tanx]/[{d^2x^1/3/d^2t}*{d^2√x/d^2t}sinx]

Input:

d2 ×
x

d2
t sin(x) d2 ×

πx

d2
t tan(x)
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Out[5]= 

d2 ×
x

3

d2
t d2 ×

x

d2
t sin(x)

Result:

πx x
6

tan(x)

Plots: Real-valued plots | ▾
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Alternate forms:

πx x
6

sin(x)

cos(x)

ⅈ ⅇ-ⅈ x - ⅇⅈ x πx x
6

ⅇ-ⅈ x + ⅇⅈ x

Roots: Step-by-step solution

(no roots exist)

Series expansion at x = 0:

x7/6 + x13/6 log(π) + 1

6
x19/6 2 + 3 log2(π)+ 1

6
x25/6 log(π) 2 + log2(π)+ Ox31/6
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(Puiseux series)

log(x) is the natural logarithm »

Big-O notation »

Derivative: Approximate form Step-by-step solution

ⅆ
ⅆx

(d2 x t) sin(x) (d2 πx t) tan(x)

d2 d2 d2 x
3

t d2 x t sin(x)
d2 d2

 πx (tan(x) + 6 x sec2(x) + 6 x log(π) tan(x))

6 x5/6

sec(x) is the secant function »

Differential geometric curves:

— πx x
6

tan(x) — normals

Horizontal plot range:

xmin xmax symmetric

More controls

In[4]:= Plotπx x16 Tan[x], {x, -15.4248, 15.4248}
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Out[4]= 
-15 -10 -5 5 10 15

-1×106

-500000

500000
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