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ABSTRACT
Internet access is a special resource of which needs has become
universal across the public whereas the service is operated in the
private sector. Mobile Network Operators (MNOs) put efforts for
management, planning, and optimization; however, they do not
link such activities to socioeconomic fairness. In this paper, we make
a first step towards understanding the relation between socioeco-
nomic status of customers and network performance, and inves-
tigate potential discrimination in network deployment and man-
agement. The scope of our study spans various aspects, including
urban geography, network resource deployment, data consumption,
and device distribution. A novel methodology that enables a geo-
socioeconomic perspective to mobile network is developed for the
study. The results are based on an actual infrastructure in multiple
cities, covering millions of users densely covering the socioeco-
nomic scale. We report a thorough examination of the fairness
status, its relationship with various structural factors, and potential
class specific solutions.
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1 INTRODUCTION
The debate on net neutrality [34], often framed as “internet as
a utility”, highlights the conflicting public/private aspects of the
Internet. Regardless of the position towards the issue, there is a
common agreement that quality Internet access is crucial and its
necessity is universal across all people. However, ensuring such a
universal quality access is a challenging goal that requires constant
investments, e.g., infrastructural planning, deployment, operation
and maintenance. As most Internet service provides are private
entities operating in a competitive market, their objective might
not be perfectly aligned with the needs of the general public. Thus,
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questions could be raised about whether there is any unfairness
and discrimination in the service quality.

In this paper, we put forward the topic of socioeconomic fairness,
and report our examination on a major UK Mobile Network Opera-
tor (MNO). 1 We believe socioeconomic fairness will be a compelling
issue in mobile network operation as mobile Internet access be-
come a primary means of information access for the general public.
Socioeconomic fairness is also closely related to the recent digi-
tal inclusion initiatives of many government bodies (e.g.,[44, 45]),
which emphasize quality Internet access to all people. Many MNOs
also recognize the initiative and are making efforts accordingly
(e.g., [25, 42, 46], for example, by extending coverage. While the
initiative highlights the importance of eliminating marginaliza-
tion and exclusion, detailed efforts so far have not deeply explored
the socioeconomic dimension. For example, the current practices
of MNOs are agnostic from the socioeconomic status of the cus-
tomers. The management and optimization practices are based on
Key Performance Indicators (KPIs), such as coverage monitoring,
and voice/data service metrics, of each radio sector2. Furthermore,
this KPI driven network management may create socioeconomic
discrimination as a side effect. For instance, if users or areas of a
certain socioeconomic class generates more traffic, MNOs could
in turn deploy more resources and this could potentially further
incentivise users to generate more traffic.

Exploring socioeconomic fairness involves multiple challenges,
not only requiring a large-scale population but also detailed mea-
surements at the level of individuals (e.g., byte consumption of every
TCP flow of a user). In addition, the scope of an analysis needs to
cover various aspects, including network resource deployment, data
consumption behaviors, and urban geography.

To the best of our knowledge, our work is the first to explore
socioeconomic fairness in mobile networks. Our study thoroughly
examines the fairness status based on millions of users densely
covering the socioeconomic scale in multiple cities and their data
spanning over multiple years. We take benefit of the MNO’s actual
network infrastructure, and the UK census which measures the
socioeconomic status at a very fine geospatial granularity. A novel
methodology that combines these two datasets is developed. The
methodology enables a geo-socioeconomic perspective to mobile
networks, which can be replicated and facilitate follow up works.

In addition to understanding the current fairness status, we ex-
plore the underlying factors and provide various lessons about the

1As a precise definition or a measure of fairness does not exist, we use this term in a
broader sense.
2A radio sector is the minimum unit of network deployment and to which the end
users’ devices connect for voice and data services
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relationships, e.g., with population density, sector deployment den-
sity, data consumption patterns, and device distribution. We further
make efforts to generalize the findings to other MNO’s through an
open dataset. Based upon the lessons, possible approaches to better
fairness are also discussed.

2 RELATEDWORK
The broader literature on inequality has observed structural unfair-
ness in the access to social capital or scarce resources, and its nega-
tive consequences to the society. Studies have revealed unfairness in
various areas: access to health care, quality jobs, housing, education,
public safety, and wider social networks [2, 6, 15, 22, 32, 39], gener-
ally disfavouring the poor and minorities and escalating their social
isolation. In parallel, diverse policy efforts and social programs are
being made to level the playing-field (for example, through direct
aids [43] and infrastructural investment [26]).

As mobile Internet access has become a vital resource for a large
population, we believe it is imperative to examine potential unfair-
ness or discrimination. While many works are made on large scale
mobile network performance analysis (e.g.,, user mobility [12, 30],
network KPIs and planning [23, 36], network performance metrics
[9, 41], and user Quality-of-Experience [3, 31]), the body of litera-
ture does not employ the socioeconomic perspective. The literature
on digital divide puts much emphasis on the topic. However, the
studies primarily take the users’ perspective [28], and assess the
inequality in terms of technology access, skills, and benefits from
the technology. The literature has explored digital divide depend-
ing on country, race, gender, and various sociodemographic factors
[4, 5, 13].

In contrast, we view the problem from the service providers’
perspective. In fact, there has been a number of works from the
mobile computing community that share a similar perspective of
serving a wider public. Perino et al. [29] reports the effort of bring-
ing affordable Internet access to under-served, remote communities.
A recent work by Sen et al. looks into Free Basics, an initiative of
Facebook to provide zero-rated web services in developing coun-
tries, and study the performance impairments [35]. Elmokashfi et
al.[7] specifically focus on availability of mobile broadband, and
examine the status across Norway.

There is a related branch of works that show correlations be-
tween socioeconomic level of customers and traditional phone
usages (i.e., calls and SMSs). For example, [10, 40] show that socioe-
conomic status can be inferred with good precision using a large
number of Call Detail Records (CDR) features for a 500,000 habi-
tants city. Similarly, [18, 38] argue that, by targeting large regions
of developing countries rather than individuals, good classification
precision can be achieved with only a few properties (e.g., volume of
outgoing calls). While we explore a different dimension from these
works, our work also focuses on the data traffic, which dominates
today’s mobile network usage [8] instead of CDRs.

3 DATA
We use two main data sources: (i) passive data usage traces of the
MNO; (ii) Index of Multiple Deprevation (IMD), a socioeconomic
segmentation of the geographic spaces of the UK.

Our study covers three cities in the UK: London, Birmingham
and Liverpool. The selection of the cities was made by taking the
top 3 cities by population to achieve scale of the analysis. As our
investigation involves city-specific aspects (e.g., sector deployment
and urban geography), it is inherently challenging to extend it
to many cities. For the main findings, we present the results for
the three cities and examine their consistency. However, we often
focus our presentation on London as the city hosts a more diverse
population of different classes than the other two.

Our study is conducted over a three year time-span and the
data was extracted from various periods. The main analysis of
socioeconomic fairness uses the data from three periods: Oct.-Nov.
of 2018, Feb.-Mar. of 2019 and Jan. of 2020. The results of all the
periods are highly similar and the findings hold consistently. We
thus often focus on the results from a particular year in the paper.

In addition, we examine the consistency of the findings in two
more ways. First, we check seasonal consistency by sampling a
month of each season from Spring, 2019 to Winter, 2020. Second,
considering the deep impact of the COVID-19 pandemic, we add
the corresponding period, February to Mid April of 2020 and re-
examine the main findings.

3.1 Network performance logs
We analyze data collected at a middlebox used by the MNO to
optimize traffic and to log performance metrics about each user’s
transactions. The dataset was filtered to include only mobile phones,
not M2M or IoT devices. A transaction is an entry in the monitoring
logs generated by the middlebox, and corresponds to an individual
flow handling encrypted or non-encrypted traffic generated by an
app of a mobile phone. Specifically, for every flow, the middlebox
stores the following layer four (L4) information: average Round
Trip Time (RTT), number of packet retransmission, and total bytes
transferred. The monitoring system then aggregates these metrics
at the user-level (i.e.,, across all transactions of a given user).

Note that latency and packet retransmission are among the key
metrics used to assess network quality. For instance, excessive RTT
can hurt real time applications as streaming or VoIP, and gener-
ally impacts flow throughput. Also, a high number of packet re-
transmissions are caused by network congestion, poor connectivity
with weak signal or signal distortion. The middlebox is located at
the PGw (packet network data gateway) /GGSN (GPRS gateway
service node) in the packet core, hence the metrics reflect the per-
formance within the MNO network (i.e., between the user device
and the egress point towards the Internet). In order to view these
performance measures through the lens of urban geography, we
also analyze information stored at the Mobility Management Entity
(MME) that keeps track of the radio sector a mobile device is con-
nected to and the coordinate of the sector. The information is used
to identify the residence of users at a fine-grained level and their
socioeconomic status.

We clarify that some results are normalized to avoid reporting
raw values and respect the MNO dataset confidentiality policy (the
details of the normalization method is explained with the results).
In addition, the data used in the study does not include any per-
sonally identifiable information such as name or home address.
We also emphasize that the performance measures of the study
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Figure 1: Number of LSOAs per decile. (x-axis: IMD decile, y-axis: proportion).

are independent from the type of contracts/plans since the MNO
we examine does not perform any manipulation of the network
performance (e.g., throttling) by them.

3.2 Socioeconomic indicator: IMD
IMD is a statistical measure maintained by the UK government.
The measure quantifies the relative deprivation for the areas in
England at a very fine spatial granularity. This index combines
seven distinct dimensions of deprivation: (i) Income deprivation, (ii)
Employment deprivation, (iii) Health deprivation and disability, (iv)
Education, skills and training deprivation, (v) Crime, (vi) Barriers to
housing and services, and (vii) Living environment deprivation. By
combining the above seven dimensions, the overall IMD measure
takes a wider interpretation of deprivation and looks into how
much a group of people lacks of resources of various kinds, not
just income. As such, the IMD measure has been used in studies of
various domains (e.g., [19, 33]).

The index is maintained for all areas of the spatial division of
England, called Lower-layer Super Output Areas (LSOAs). LSOAs
are small areas divided to have similar population size and social
homogeneity. An LSOA has an average of approximately 1,500
residents or 650 households. There are 32,844 LSOAs in England,
4,835 in London, 639 in Birmingham, and 298 in Liverpool. IMD
is updated around every 5 years; the last three were published in
2010, 2015, and 2019.

Based on the deprivation score, a ranking is made with all LSOAs
in England. Beside the IMD scores, the government publishes also
the deciles, i.e., it splits the 32,844 LSOAs into 10 equal-sized groups,
from the most deprived (index 1) to the least deprived (index 10).
The LSOAs in decile 1 fall within the most deprived 10% nationally
and the LSOAs in decile 10 fall within the least deprived 10%. The
skyblue bars of Figure 1 shows the distribution of LSOAs of the
three cities over the IMD deciles. While London is not dominated
by a particular decile, the distribution of the other two cities is
heavily skewed to decile 1. We discuss the impact of this skewed
distribution throughout the paper.

4 SOCIOECONOMIC SEGMENTATION
As the MNO does not identify the socioeconomic status of its users,
we develop a method for a fine-grained socioeconomic segmenta-
tion. It first identifies the home sector of users, and then maps the
IMD decile score of LSOAs to the sectors.

4.1 Home sector estimation
While there are many methods for identifying home of people
from mobility traces, they commonly aim at finding regularity
during night time and/or weekends ([1, 16]). Likewise, we develop
a method for home sector detection specific to our dataset with the
same intuition.

We go through the MME data of all the days throughout a month
for each device, and identify the ones who connects to the same
sector at night time (midnight - 8AM) for a substantial number of
days. To ensure that the device is staying in the same area during the
night time window, we employ the radius of gyration to estimate
the spatial deviation of a device and filter out the days when the
estimated radius is larger than 2km. Finally, the method identifies
the home sector of a device as the one which was connected at
least two weeks during a month, and has the maximum connection
duration. The devices that do not have a home sector that satisfies
the criteria are excluded from the study. This method identifies the
home for a large set of users: 2M for London, 0.24M for Birmingham,
and 0.13M for Liverpool (≈10-20% of the population of each city) 3.

The purple bars of Figure 1 shows the distribution of the identi-
fied residents of the three cities. We believe the general similarity
of the distributions to that of the LSOAs (i.e., Purple vs. Skyblue
bars) supports the reliability of our sample and the home detec-
tion method. We also acknowledge the limitation of our data for
Birmingham and Liverpool, whose population is heavily skewed
to decile 1. As there are only a few LSOAs of higher deciles (e.g.,
above 7 in Birmingham), the user samples are very small for some
deciles. As for decile 8 of Birmingham and decile 9 of Liverpool
particularly, our dataset does not have a user sample, thus, we do
not have results for them.

4.2 Mapping IMD decile scores to sectors
While the IMD measure is available by LSOAs, the mobility data
only allows identifying the home of users by sectors. Thus, the
IMD decile score needs to be estimated for the sectors in order to
complete the socioeconomic segmentation. The challenge here is
the mismatch between the boundaries of LSOAs and the coverage
of the sectors.

Depending on the deployment of the sectors, their coverage
could be smaller than the boundary of one LSOA or it could span

3https://www.statista.com/statistics/294645/population-of-selected-cities-in-united-
kingdom-uk/
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Figure 2: Boundaries of LSOAs (red) and Polygons (blue).

over multiple LSOAs. Therefore, we create a mapping between
the sectors and the LSOAs by estimating the sectors’ coverage
and computing the overlap between the coverage and the LSOA
boundaries. A Voronoi tesselationwas used to estimate the coverage
of antennas, which has previously produced reasonable results
[17, 27]. Subsequently, it was observed that the Voronoi polygons
frequently have a finer granularity than the LSOAs (The average
size of the polygons is 0.33km2 and that of LSOAs is 0.37km2). Figure
2 depicts the boundaries of LSOAs and the Voronoi polygons for an
example area in London. This suggests that it is feasible to estimate
the IMD decile score of sector based on the LSOA it covers. In
addition, both LSOAs and sectors are based on population density,
such that small LSOAs are often associated with small Voronoi
polygons.

In some cases, a sector polygon overlaps with a single LSOA,
making it simple to link the two units. However, many polygons
span multiple LSOAs (examples can be found in Figure 2). In order
to examine the impact of such cases on the study, it was first verified
whether the LSOAs that overlap with a sector polygon are similar
in terms of their IMD decile. For each of the sector polygons, the
standard deviation of the IMD decile for the overlapping LSOAs was
computed. It is observed that for the majority of the cases, LSOAs
overlapping with a polygon tend to have similar levels of depriva-
tion: for 72% of the polygons of London, the standard deviation of
the IMD decile scores is less than 1.5, 73% for Birmingham, and 71%
for Liverpool. Thus the mapping is completed by simply taking the
IMD decile value of the LSOA which has the largest overlap with a
sector.

For the mapping of the IMD decile scores, we took the most re-
cent IMD survey at the moment of the analyses. The IMD survey of
2015 was used for the analysis of the years 2018 and 2019. Although
there is some time gap between the IMD survey and the analysis,
we believe the mapping is valid since the IMD decile scores do not
change much over time (e.g., the kendall rank correlation of the
IMD deciles is 0.89 between the census of 2010 and 2015, and 0.84
between 2007 and 2015). The analysis of the 2020 data took the 2019
IMD survey, as it was updated in September 2019.

5 OVERVIEW OF SOCIOECONOMIC
FAIRNESS

To get an overview, we first segment the population of each city into
10 groups by IMD deciles and compare various quality measures
described below.

Technology access: As for the technology access, we break down
mobile data consumption via technology, 4G LTE vs. others prior
to 4G. 5G is not included in the measurement since it was not
widely deployed during the study period, however, we discuss the
implications to 5G deployment in the discussion section.

For every user, we compute the ratio of data consumption made
via 4G to that made via the others. Figure 3(a) shows that, regardless
of the socioeconomic status, most of the consumption is made via
4G. The median of the ratio is above 90% for all classes, consistently
across all the three years and cities. The variance within the deciles
is also small, indicating that the 4G deployment covers most of
the users and area. The figure also shows that the ratio further
increases in 2020; the medians are slightly higher compared to the
previous years for all the deciles, and the variance is also smaller.
Network quality: The quality is examined as a next step, focusing
on 4G only as almost all consumption is made via 4G network. As
discussed in Sec. 3, we employ two key metrics: average packet
re-transmission frequency and average RTT. Fig 3(b) compares the
daily average packet re-transmission frequency across all deciles.
For every user, this metric is computed by taking the ratio of packet
re-transmitted over total number of packets of a flow, and then
averaging them across all flows of a day. Fig. 3(c) compares the
daily average latency (i.e., average RTT experienced by the user,
averaged across all flows of a day). Results are normalized over the
highest 90-percentile to preserve MNO confidentiality. The results
were simply re-scaled in order to preserve the trend in the data. The
normalization was done separately for each year since our focus
is inter-decile comparison within each year. Direct comparison
between the years is not possible accordingly.

Figure 3 shows the results for London throughout the studied
periods. The results do not reveal a clear evidence of unfairness, i.e.,
at the level of IMD decile, the performance is not particularly better
or worse among the 10 groups. Fig 3(b) and Fig 3(c) show that the
medians are very close and the central body of the distributions
largely overlap among all the deciles. This is also consistent across
the three years.

We examine the two measures across the deciles in more detail
by zooming into the data of one year, i.e., Feb.-Mar. of 2019. Two
methods are used. First, we examine if a statistical difference is
found among the deciles using ANOVA. While One-way ANOVA
detects a significant difference, the significance is likely due to
the scale of the samples, which is on the order of million. For
example, one-way ANOVA confirms significant difference of re-
transmission frequency among the deciles (F(9, 1024561) = 163.9, p
< .01); however, the effect size (eta-squared) of this ANOVA model
is .0016, which is far below the value (.01) that is considered as a
general rule of thumb of a small effect size [21]. The result is similar
for RTT as well, where the effect size is 0.0012.

Second, we also explore possible complicated associations that
might not have been detected by ANOVA using a number of pop-
ular machine learning methods (i.e., logistic regression, Gradient
Boosted Trees, and SVM). The task is to identify the IMD decile
of a user given the summary statistics of the user’s network per-
formance measures. While we omit the details, all three methods
produce a result similar to a random classification, indicating that as-
sociations between network performance and IMD decile is hardly
found.
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Figure 3: Network quality across socioeconomic classes and years in London
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Figure 4: Network quality across socioeconomic classes and cities

In summary, the analysis made at the level of IMD deciles overall
demonstrates negative results. However, visible trends appear in the
upper tail of the distributions. Fig 3(b) shows that the retransmission
frequency gradually reduces along the IMD deciles whereas Fig 3(c)
shows that the latency is slightly higher in some higher deciles. We
investigate these upper tail trends in the next section.
Network quality of other cities: The analysis on the other two
cities confirms general consistency of the findings (recall that the
data set does not have user samples for decile 8 of Birmingham and 9
of Liverpool, so the results are missing for them). Data consumption
is mostly made via 4G for all deciles (Fig. 4(a)), and the distributions
of the packet retransmission frequency and RTT largely overlaps
among all the deciles (Fig. 4(b) and Fig. 4(c)). One-way ANOVA de-
tects a significant difference among the deciles, but again only with
weak or negligible effect sizes (eta-squared below .01). Interestingly,
similarity to London is also found around the upper tail to some
extent although the trend is a bit more noisy possibly due to the
limited samples in the higher deciles.
Network quality across seasons & COVID-19: The plots are
omitted to avoid redundancy as the same trends are observed. One-
way ANOVA detects a significant difference among the deciles, but
again with negligible effect sizes (eta-squared below .01). During
the pandemic period (Apr. 2020), the difference among the deciles
became further negligible (eta-squared far below .01).

Network quality betweenweekdays andweekends: For all the
above analyses, we also separated weekends from weekdays and
examined if notable difference of network quality is found. The
results are omitted since all the trends described above were con-
sistent between the two. However, we believe an interesting future
direction is to further divide the hours at a finer-grained level and
focus on peak hours.

6 SOCIOECONOMIC SKEWS IN AREAS OF
WORSE PERFORMANCE

In this section, we move beyond understanding the average per-
formance and delve into the geographic areas of relatively worse
performance, and examine socioeconomic bias among them. For
a finer-grained view than the IMD decile segmentation, the popu-
lation is further segmented by LSOAs. This finer-grained division
allows exploring diverse factors that are potentially associated to
the performance, including urban geography, sector deployment,
and device type distribution.

We aggregate the performance measures of individuals by LSOA
and rank the LSOAs in the following two steps. First, for each of
the two measures, we identify the set of users who fall below the
third quartile (>75%), whom we refer to as the inferior experience
group. Second, the LSOAs are ranked by the ratio of residents who
are included in the inferior experience group. We only present the
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(a) Packet retransmission performance (b) RTT performance

Figure 5: IMD decile segmentation of LSOAs of worse performance.

results for the most recent period (Jan. 2020) of London since the
findings hold consistently across the years and cities.

Figure 5 shows the IMD decile distribution for the LSOAs of
worse performance, i.e., the LSOAs with the highest (top 30%) infe-
rior experience group ratio. For comparison, the figure also shows
the original IMD decile distribution of all the LSOAs of each city.
We make two findings: first, the existence of socioeconomic skews
in the areas of worse performance. For example, deprived LSOAs
show a greater share among the areas of worse packet retransmis-
sion performance compared to their share in the general population.
Second is the opposite trend between the performance measures.
In contrast to the packet retransmission, less deprived LSOAs show
a greater share among the areas of worse RTT performance. Both
findings consistently hold for all three cities. The trends are also
consistent with other LSOA percentile rank thresholds (e.g., 20%,
10%) for the highest inferior experience group ratio.

The factors below are explored to understand the skews.
• user & byte count: We count the number of residents and bytes
consumed for every LSOA in order to approximate the load gen-
erated from the area.

• distance to sectors: This feature aims at comparing the density
of the sectors deployed across LSOAs. However, the comparison
is challenging since accurately estimating the coverage of the
sectors and quantifying it by LSOA is difficult. Instead, for every
LSOA, we measure the distance to k nearest sectors from its
centroid and take the average.

• device type distribution: We identify and aggregate the device
types of residents (i.e., manufacturer, brand, and model name)
for every LSOA 4.

Weak association to user/byte count: A possible hypothesis for
understanding worse performance is the relationship with the load
of the LSOAs, i.e., too many users or much data consumption affects
the performance measures. However, we do not find support for
the hypothesis. First, the correlation between the number of resi-
dents and the ranking of LSOAs is very weak for both performance
measures (Table 1). Since correlation analyses are driven by general
trends, we also specifically examine if the LSOAs of worse perfor-
mance have a greater number of users or bytes than the others. A
Mann-Whitney U test rejects the hypothesis. In fact, the test for

4We use a commercial database provided by GSMA to identify the device properties

User cnt. -
Rank (retrans.)

User cnt.-
Rank (RTT)

Byte cnt.-
Rank (retrans.)

Byte cnt.-
Rank (RTT)

-0.128 -0.028 -0.024 -0.152

Table 1: Correlation between user&byte and LSOA ranking.

both measures confirms that the median of the LSOAs of worse
performance is lower than the median of other LSOAs.
Distance to sectors greater in LSOAs of worse RTT: One could
speculate that LSOAs with greater RTT may have sectors further
away than others. However, a correlation analysis does not show a
general trend that matches the speculation for both measures. We
vary k from 1 to 5 and compute the average distance to k-closest
sectors for all LSOAs. When k is set to 5, a Spearman correlation
analysis shows a weak correlation, 0.088, between the average dis-
tance and the RTT performance ranking of LSOAs. The coefficient is
-0.210 for the average distance and the retransmission performance
ranking. The values are similar for other k values.

As performance is affected by a variety of other factors than the
distance to sectors, the absence of a clear trend is not surprising.
However, when the question is framed specific to the LSOAs of
worse RTT performance, we indeed confirm that the average dis-
tance is greater than others (Mann-Whiteney U value: 317897.0, p <
.01) with a substantial effect size (Common-language effect size of
0.5825). We also examine the hypothesis ‘LSOAs of frequent packet
retransmission would show greater average distance’ but do not
find support.

Projecting the average distance with respect the dimensions
of population density and socioeconomic status provides insights
for understanding the socioeconomic skew in the areas of worse
RTT. In Figure 6, every LSOA is projected by their number of
residents/km2 according to the UK census and the average dis-
tance to sectors. The data points are colored by their IMD decile
and sized by their RTT percentile rank (greater dots for worse RTT).
We make three readings from the plot: first, the relationship be-
tween RTT and the distance to sectors, as bigger dots appear more
frequently in the upper area of the plot. Second, sectors are sparser
in the LSOAs of lower population density; the dots are centered in
the left part as y-axis increases. Third, LSOAs of lower population

5Common language effect size is defined as “the probability that a score sampled at
random from one distribution will be greater than a score sampled from some other
distribution." [20]

253



A Large-scale Examination of "Socioeconomic" Fairness
in Mobile Networks COMPASS ’22, June 29-July 1, 2022, Seattle, WA, USA

Figure 6: Average Distance to Sectors by Population Density

density and sparser sectors are usually less deprived. Blue dots are
increasingly frequent in the upper-left area.

In addition to the population density, we also find that the
amount of data consumption is associated to RTT. The number
of bytes consumed is lower for the LSOAs of worse RTT than the
rest (Mann-Whiteney U value: 215066.0, p < .01) with a substantial
effect size (Common-language effect size of 0.394). These observa-
tions altogether suggest that the socioeconomic skew against the
less deprived LSOAs is likely linked to the population density and
lower data demand rather that the socioeconomic status itself.
Device type difference and packet transmission perfor-
mance: As we do not observe a clear association between packet
retransmission frequency and the above infrastructural conditions,
we extend the analysis to the devices of users. It is likely that the
types of mobile devices vary between LSOAs of different socioeco-
nomic conditions, and the devices could show different networking
performance.

In order to explore the association, we compute the correlation
between the ratio of residents with a particular device and the
packet retransmission performance ranking of LSOAs. The corre-
lation is computed for the 20-most popular devices in the city. As
the distribution of devices follows a typical long tail distribution,
looking into the 20-most popular devices covers 64.5% of the whole
devices in London.

We find a significant (p < .01), moderate degree of correlation
for a number of models; for example, the most popular device
in London shows a Spearmann correlation coefficient of -0.346,
and the second most popular device shows -0.348. The negative
correlation between the share of a popular device and the LSOA
ranking suggests that minor models that are more prone to worse
performance could be more common in the LSOAs of greater packet
retransmission frequency. As we look into the top-20 models, the
correlation is negative in general: out of 15 models that show a
significant correlation, 14 show a negative correlation. Among the
14 models, five show a moderate degree of negative correlation (<-
0.25). We do not disclose the name of the models since the intention

of the analysis is not to identify under-performing devices but
rather to verify the existence of an association.

We also run the same correlation analysis with respect to RTT;
however, the correlation is unclear. The direction diverges (out of 18
models that show a significant coefficient, 9 are positive and 9 are
negative), and the correlation is weak (all coefficients lie between
-0.2 and 0.2).

7 GENERALIZABILITY ACROSS OPERATORS
We make effort to ensure high validity of the findings, by covering
a large sample of users, multiple cities, and multiple years. We also
explore the possibility to extend the validity of the findings across
other MNOs.

Without having a similar type of performance measures from
other MNOs, it is difficult to fully replicate the findings. However,
we find the possibility of comparing sector deployment of multiple
operators through open databases (e.g., OpenCellID). The compari-
son of sector deployment helps speculating on the socioeconomic
skew in the LSOAs of worse RTT performance, assuming that the
impact of the distance to sectors on RTT holds in general.

We extract the sector deployment of three other operators in
London from OpenCellID (https://opencellid.org/). Figure 7 plots
the result of each operator in the same way used in Figure 6 except
sizing the dots by RTT ranking as the performance measure is
missing. For comparison, we add a plot made with the data of
the MNO studied in our work (left-most). The same trends are
observed, implying the possibility of the same socioeconomic skew
against less deprived areas: sectors are sparser in the LSOAs of
lower population density that are often less deprived.

The consistency of the trends implies that the deployment prac-
tice could be similar between them. It also motivates future research
for extending the validity of the findings we made with actual per-
formance measures. The findings of our work could hold if the
distribution of socioeconomic status of users, device types and data
consumption behavior are not particularly different depending on
the operators.

8 LESSONS & CONCLUSION
In this section, we conclude the paper by summarizing the main
findings and discussing the implications.
Fair performance, on average: The first finding is the balance
of the average performance across the classes, which is relieving
considering that our work was motivated to examine possible un-
fairness. As discussed early on, this finding is compelling as mobile
network has become a crucial resource for the general public, and
understanding the fairness of it contributes to a broader range of
research areas including social inequality and digital divide. In addi-
tion, the finding addresses a possible concern that deprived classes
might be suffering from an infrastructural unfairness, which has
been observed in many inequality studies. In fact, we see that the in-
frastructure management practice of operators, which in principle
deploys more sectors in the areas of higher population density and
data consumption, is leading to a denser deployment in deprived
areas.
Two-sided socioeconomic skew: However, our study does raise
alarm for the LSOAs experiencing relatively worse performance as
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Figure 7: Sector distribution overview of four MNOs (x-axis: average distance to 5-closest sectors, y-axis: population density)

we see a socioeconomic skew among them. More importantly, we
find that the socioeconomic skew is two-sided: each of the two per-
formance measures we employ reveal opposing trends. Moreover,
the two-sided socioeconomic skew is observed consistently across
the three cities, which implies the existence of structural factors
behind it. In a broader context, the finding provides implications
to the research community and practitioners, highlighting the im-
portance of considering urban geography in mobile environments
and reflecting on subsequent socioeconomic impact. The opposing
trends also call for future research on multiple different approaches
towards addressing the skew.
Sparser sectors in less-deprived areas: One side of the socioeco-
nomic skew was associated to the sector deployment which could
be seen as disfavouring the less-deprived class: less-deprived LSOAs
more frequently show a sparser sector deployment and worse RTT
performance. We further found relationships of sector sparsity with
population density and data consumption, which shed light on pos-
sible solutions. For example, an MNO could pay special attention to
LSOAs of lower population density and consider additional deploy-
ment even if the demand is relatively low. We believe the finding is
timely as MNOs are progressively deploying 5G network: despite
the difference of the technology from 4G, our work put forwards a
new objective to consider in the deployment process, and provides
lessons through a retrospective view of the 4G deployment about
what geographical attributes could play a role and how.

Related to the lessons, the interplay between sector deployment
and diverse geo-socioeconomic factors is an interesting topic for
future research. For example, demographic and lifestyle factors
could be playing a role behind the data consumption behaviors.
The portion of greater age population gradually increases along the
IMD decile: people over 65 are 9% in decile 1, and 19% in decile 10;
people over 45 are 29% in decile 1, and 47% in decile 10 [24]. Existing
surveys have observed different degrees of engagement with tech-
nology, especially with smartphones, among different generations
[14]. In addition, the relationship with different connectivity condi-
tions (e.g., quality of home broadband and availability ofWiFi access
points) could be studied. A few prior articles already observed cases
where people employ different channels for data consumption due
to economic reasons [11, 37]. A deeper analysis of the traffic types
(e.g., content types, apps, etc.) by areas is another direction of future
work that will further expand the understanding of the performance
dynamics.
Effect of devices than the infrastructure: The analysis of the
other socioeconomic skew we see for the packet transmission per-
formance provides multiple interesting findings. First, we found

an opposing trend where the deprived LSOAs were more prone to
worse performance. Second, the skew did not show much associ-
ation to the infrastructural conditions. Third, a moderate degree
of correlation was observed between the share of popular devices
and the performance. We believe our results provide empirical evi-
dences that give guidance to future studies: whether to focus on the
infrastructure or end-user devices, and particularly on which de-
vices the focus should be. An immediate future work could conduct
a large-scale examination of end-devices and observe the perfor-
mance impact more directly, particularly by including the devices
that are more common in deprived LSOAs. Such a work would be
important especially as 5G phones are being increasingly available
in the market and adopted by people over time. The direction of
research could also lead to new device benchmarks tailored to net-
working performance and initiatives for informing the public about
the results, which can address the skew potentially.

ACKNOWLEDGMENTS
This work has been partly supported by the CHIST-ERA-17-BDSI-
003 FIREMAN project funded by the Spanish National Foundation
(under grant PCI2019-103780), and the European Union’s Horizon
2020 research and innovation programme under grant agreement
N◦ 101021808.

REFERENCES
[1] Iva Bojic, Emanuele Massaro, Alexander Belyi, Stanislav Sobolevsky, and Carlo

Ratti. 2015. Choosing the right home location definition method for the given
dataset. In International Conference on Social Informatics. Springer, 194–208.

[2] Camille Zubrinsky Charles. 2003. The Dynamics of Racial Residential Segregation.
Annual Review of Sociology 29 (2003), 167–207. http://www.jstor.org/stable/
30036965

[3] Qi Alfred Chen, Haokun Luo, Sanae Rosen, Z. Morley Mao, Karthik Iyer, Jie Hui,
Kranthi Sontineni, and Kevin Lau. 2014. QoE Doctor: Diagnosing Mobile App
QoE with Automated UI Control and Cross-layer Analysis. In Proceedings of the
2014 Conference on Internet Measurement Conference (IMC ’14). ACM, New York,
NY, USA, 151–164. https://doi.org/10.1145/2663716.2663726

[4] Alina M Chircu and Vijay Mahajan. 2009. Perspective: Revisiting the digital
divide: An analysis of mobile technology depth and service breadth in the BRIC
countries. Journal of Product Innovation Management 26, 4 (2009), 455–466.

[5] John Clayton and Stephen J Macdonald. 2013. The limits of technology: So-
cial class, occupation and digital inclusion in the city of Sunderland, England.
Information, Communication & Society 16, 6 (2013), 945–966.

[6] David M. Cutler and Edward L. Glaeser. 1997. Are Ghettos Good or Bad? The
Quarterly Journal of Economics 112, 3 (1997), 827–872.

[7] Ahmed Elmokashfi, Dong Zhou, and Džiugas Baltrünas. 2017. Adding the next
nine: An investigation of mobile broadband networks availability. In Proceedings
of the 23rd Annual International Conference on Mobile Computing and Networking.
88–100.

[8] Ericsson Mobility Visualizer. [n.d.]. Mobile data and voice traffic.
https://www.ericsson.com/en/mobility-report/mobility-visualizer?f=9&
ft=1&r=1&t=8&s=4&u=3&y=2013,2018&c=5.

255

http://www.jstor.org/stable/30036965
http://www.jstor.org/stable/30036965
https://doi.org/10.1145/2663716.2663726
https://www.ericsson.com/en/mobility-report/mobility-visualizer?f=9&ft=1&r=1&t=8&s=4&u=3&y=2013,2018&c=5
https://www.ericsson.com/en/mobility-report/mobility-visualizer?f=9&ft=1&r=1&t=8&s=4&u=3&y=2013,2018&c=5


A Large-scale Examination of "Socioeconomic" Fairness
in Mobile Networks COMPASS ’22, June 29-July 1, 2022, Seattle, WA, USA

[9] Hossein Falaki, Dimitrios Lymberopoulos, Ratul Mahajan, Srikanth Kandula, and
Deborah Estrin. 2010. A First Look at Traffic on Smartphones. In Proceedings of
the 10th ACM SIGCOMM Conference on Internet Measurement (IMC ’10). ACM,
New York, NY, USA, 281–287. https://doi.org/10.1145/1879141.1879176

[10] Vanessa Frias-martinez, Victor Soto, Jesus Virseda, and Enrique Frias-martinez.
2012. Computing cost-effective census maps from cell phone traces. In In Work-
shop on Pervasive Urban Applications.

[11] Graeme Hamilton. [n.d.]. CONNECTING THE UNCONNECTED. Scottish Pol-
icy Now ([n. d.]). http://www.scottishpolicynow.co.uk/article/connecting-the-
unconnected

[12] Sahar Hoteit, Stefano Secci, Stanislav Sobolevsky, Carlo Ratti, and Guy Pujolle.
2014. Estimating human trajectories and hotspots through mobile phone data.
Computer Networks 64 (2014), 296–307. https://doi.org/10.1016/j.comnet.2014.02.
011

[13] Linda A Jackson, Yong Zhao, Anthony Kolenic III, Hiram E Fitzgerald, Rena
Harold, and Alexander Von Eye. 2008. Race, gender, and information technology
use: The new digital divide. CyberPsychology & Behavior 11, 4 (2008), 437–442.

[14] Jingjing Jiang. 2018. Millennials stand out for their technology use, but older
generations also embrace digital life. Pew Research Center, May 2 (2018).

[15] Lauren J. Krivo and Ruth D. Peterson. 1996. Extremely Disadvantaged Neighbor-
hoods and Urban Crime. Social Forces 75, 2 (1996), 619–648. http://www.jstor.
org/stable/2580416

[16] Kevin S Kung, Kael Greco, Stanislav Sobolevsky, and Carlo Ratti. 2014. Exploring
universal patterns in human home-work commuting from mobile phone data.
PloS one 9, 6 (2014), e96180.

[17] Xingqin Lin, Radha Krishna Ganti, Philip J Fleming, and Jeffrey G Andrews. 2013.
Towards understanding the fundamentals of mobility in cellular networks. IEEE
Transactions on Wireless Communications 12, 4 (2013), 1686–1698.

[18] H Mao, H Shuai, Y Ahn, and J Bollen. 2013. Mobile Communications Reveal the
Regional Economy in Cote d’Ivoire. In In NetMob D4D Challenge.

[19] Michelle Mcgillion, Julian M Pine, Jane S Herbert, and Danielle Matthews. 2017.
A randomised controlled trial to test the effect of promoting caregiver contingent
talk on language development in infants from diverse socioeconomic status
backgrounds. Journal of Child Psychology and Psychiatry 58, 10 (2017), 1122–
1131.

[20] Kenneth O McGraw and Seok P Wong. 1992. A common language effect size
statistic. Psychological bulletin 111, 2 (1992), 361.

[21] Jeremy Miles and Mark Shevlin. 2001. Applying regression and correlation: A guide
for students and researchers. Sage.

[22] Sako Musterd. 2005. Social and Ethnic Segregation in Europe: Levels, Causes, and
Effects. Journal of Urban Affairs 27, 3 (2005), 331–348. https://doi.org/10.1111/j.
0735-2166.2005.00239.x arXiv:https://doi.org/10.1111/j.0735-2166.2005.00239.x

[23] A. Nika, A. Ismail, B. Y. Zhao, S. Gaito, G. P. Rossi, and H. Zheng. 2014. Under-
standing data hotspots in cellular networks. In 10th International Conference on
Heterogeneous Networking for Quality, Reliability, Security and Robustness. 70–76.
https://doi.org/10.1109/QSHINE.2014.6928662

[24] ONS. 2019. Lower layer Super Output Area population estimates (National
Statistics). https://www.ons.gov.uk/peoplepopulationandcommunity/
populationandmigration/populationestimates/datasets/
lowersuperoutputareamidyearpopulationestimatesnationalstatistics

[25] Orange. [n.d.]. Orange and connectivity: bringing everyone internet access.
https://www.orange.com/en/lets-talk-about-digital-inclusion

[26] OSCI. 2011. Why the Indices of Deprivation are still important in the open data
era. https://ocsi.uk/2011/03/24/why-the-imd-is-still-important-in-the-open-
data-age/

[27] Souneil Park, Joan Serra, Enrique Frias Martinez, and Nuria Oliver. 2018. Mobin-
sight: A framework using semantic neighborhood features for localized interpre-
tations of urban mobility. ACM Transactions on Interactive Intelligent Systems
(TiiS) 8, 3 (2018), 23.

[28] Katy E Pearce and Ronald E Rice. 2013. Digital divides from access to activities:
Comparing mobile and personal computer Internet users. Journal of communica-
tion 63, 4 (2013), 721–744.

[29] Diego Perino, Xiaoyuan Yang, Joan Serra, Andra Lutu, and Ilias Leontiadis. 2020.
Experience: advanced network operations in (Un)-connected remote communi-
ties. In Proceedings of the 26th Annual International Conference on Mobile Com-
puting and Networking. 1–10.

[30] A. Pyrgelis, N. Kourtellis, I. Leontiadis, J. Serrà, and C. Soriente. 2018. There
goes Wally: Anonymously sharing your location gives you away. In 2018 IEEE
International Conference on Big Data (Big Data). 1218–1227. https://doi.org/10.
1109/BigData.2018.8622184

[31] Mohammad Rajiullah, Andra Lutu, ali safari Khatouni, Mah-rukh Fida, marco
mellia, Anna Brunström, Özgü Alay, Stefan Alfredsson, and Vincenzo Mancuso.
2019. Web Experience in Operational Mobile Networks: Lessons from Two
Million Page Visits. ACM Web Performance (www).

[32] Sean F. Reardon and Kendra Bischoff. 2011. Income Inequality and Income
Segregation. Amer. J. Sociology 116, 4 (2011), 1092–1153. http://www.jstor.org/
stable/10.1086/657114

[33] Ioar Rivas, Prashant Kumar, and Alex Hagen-Zanker. 2017. Exposure to air
pollutants during commuting in London: are there inequalities among different
socio-economic groups? Environment international 101 (2017), 143–157.

[34] Rebecca R Ruiz and Steve Lohr. [n.d.]. F.C.C. Approves Net Neutrality Rules,
Classifying Broadband Internet Service as a Utility. The New York Times
([n. d.]). https://www.nytimes.com/2015/02/27/technology/net-neutrality-fcc-
vote-internet-utility.html

[35] Rijurekha Sen, Sohaib Ahmad, Amreesh Phokeer, Zaid Ahmed Farooq, Ih-
san Ayyub Qazi, David Choffnes, and Krishna P Gummadi. 2017. Inside the
walled garden: Deconstructing facebook’s free basics program. ACM SIGCOMM
Computer Communication Review 47, 5 (2017), 12–24.

[36] J. Serrà, I. Leontiadis, A. Karatzoglou, and K. Papagiannaki. 2017. Hot or Not?
Forecasting Cellular Network Hot Spots Using Sector Performance Indicators.
In 2017 IEEE 33rd International Conference on Data Engineering (ICDE). 259–270.
https://doi.org/10.1109/ICDE.2017.85

[37] Michael Sherman, Eric Peter, Shreshth Sharma, Maikel Wilms, Alexander Locke,
Derek Dahlke, Scott Stemberger, and Hitz Michael. 2015. Uncovering Real Mobile
Data Usage and the Drivers of Customer Satisfaction. Boston Consulting Group
report (2015).

[38] C Smith, AMashhadi, and L Capra. 2013. Ubiquitous Sensing forMapping Poverty
in Developing Countries. In In NetMob D4D Challenge.

[39] D. B. Smith, Z. Feng, M. L. Fennell, J. S. Zinn, and V. Mor. 2007. Separate and
unequal: racial segregation and disparities in quality across U.S. nursing homes.
Health Aff (Millwood) 26, 5 (2007), 1448–1458.

[40] Victor Soto, Vanessa Frias-Martinez, Jesus Virseda, and Enrique Frias-Martinez.
2011. Prediction of Socioeconomic Levels Using Cell Phone Records. In User
Modeling, Adaption and Personalization, Joseph A. Konstan, Ricardo Conejo, José L.
Marzo, and Nuria Oliver (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
377–388.

[41] Gioacchino Tangari, Diego Perino, Alessandro Finamore, Marinos Charalambides,
and George Pavlou. 2019. Tackling Mobile Traffic Critical Path Analysis With
Passive and ActiveMeasurements. In of the IEEE/IFIP Network TrafficMeasurement
and Analysis Conference (TMA ’19).

[42] Telefónica. [n.d.]. Digital inclusion. https://www.telefonica.com/en/
sustainability-innovation/society/digital-inclusion/

[43] The Scout Association. 2020. HQ Start-Up Grants for new sections in deprived
areas. https://members.scouts.org.uk/supportresources/4733

[44] European Union. [n.d.]. Digital inclusion. https://digital-strategy.ec.europa.eu/
en/policies/digital-inclusion

[45] USAID. [n.d.]. Digital inclusion. https://www.usaid.gov/digital-development/
digital-inclusion

[46] Verizon. [n.d.]. Closing the digital divide. https://www.verizon.com/about/
responsibility/digital-inclusion

256

https://doi.org/10.1145/1879141.1879176
http://www.scottishpolicynow.co.uk/article/connecting-the-unconnected
http://www.scottishpolicynow.co.uk/article/connecting-the-unconnected
https://doi.org/10.1016/j.comnet.2014.02.011
https://doi.org/10.1016/j.comnet.2014.02.011
http://www.jstor.org/stable/2580416
http://www.jstor.org/stable/2580416
https://doi.org/10.1111/j.0735-2166.2005.00239.x
https://doi.org/10.1111/j.0735-2166.2005.00239.x
https://arxiv.org/abs/https://doi.org/10.1111/j.0735-2166.2005.00239.x
https://doi.org/10.1109/QSHINE.2014.6928662
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/lowersuperoutputareamidyearpopulationestimatesnationalstatistics
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/lowersuperoutputareamidyearpopulationestimatesnationalstatistics
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/lowersuperoutputareamidyearpopulationestimatesnationalstatistics
https://www.orange.com/en/lets-talk-about-digital-inclusion
https://ocsi.uk/2011/03/24/why-the-imd-is-still-important-in-the-open-data-age/
https://ocsi.uk/2011/03/24/why-the-imd-is-still-important-in-the-open-data-age/
https://doi.org/10.1109/BigData.2018.8622184
https://doi.org/10.1109/BigData.2018.8622184
http://www.jstor.org/stable/10.1086/657114
http://www.jstor.org/stable/10.1086/657114
https://www.nytimes.com/2015/02/27/technology/net-neutrality-fcc-vote-internet-utility.html
https://www.nytimes.com/2015/02/27/technology/net-neutrality-fcc-vote-internet-utility.html
https://doi.org/10.1109/ICDE.2017.85
https://www.telefonica.com/en/sustainability-innovation/society/digital-inclusion/
https://www.telefonica.com/en/sustainability-innovation/society/digital-inclusion/
https://members.scouts.org.uk/supportresources/4733
https://digital-strategy.ec.europa.eu/en/policies/digital-inclusion
https://digital-strategy.ec.europa.eu/en/policies/digital-inclusion
https://www.usaid.gov/digital-development/digital-inclusion
https://www.usaid.gov/digital-development/digital-inclusion
https://www.verizon.com/about/responsibility/digital-inclusion
https://www.verizon.com/about/responsibility/digital-inclusion

	Abstract
	1 Introduction
	2 Related Work
	3 Data
	3.1 Network performance logs
	3.2 Socioeconomic indicator: IMD

	4 Socioeconomic Segmentation
	4.1 Home sector estimation
	4.2 Mapping IMD decile scores to sectors

	5 Overview of socioeconomic fairness
	6 Socioeconomic Skews in Areas of Worse Performance
	7 Generalizability across Operators
	8 Lessons & Conclusion
	Acknowledgments
	References

