

INTELCOMP PROJECT

A COMPETITIVE INTELLIGENCE CLOUD/HPC PLATFORM FOR AI-BASED STI

POLICY MAKING

(GRANT AGREEMENT NUMBER 101004870)

D3.7. Graph Analysis Toolbox

Deliverable information

Deliverable number and name D3.7. Graph Analysis Toolbox

Due date Dec 31, 2022

Delivery date Mar 31, 2023

Work Package WP3

Lead Partner for deliverable Universidad Carlos III de Madrid

Author Jesús Cid-Sueiro

Reviewers
Aurélien Leynet (HCERES)
George Kakaletris (CITE)

Approved by Jerónimo Arenas García (UC3M)

Dissemination level Public

Version 1.0

mailto:gkakas@gmail.com

2

D3.7 Graph Analysis Toolbox

Document revision history

Issue Date Version Comments

Feb 28, 2023 0.1 Submitted to internal review

March 08, 2023 0.2
Revised according to
reviewers’ comments.

March 31, 2023 1.0 Version ready for submission

3

D3.7 Graph Analysis Toolbox

DISCLAIMER

This document contains a description of the IntelComp project findings, work and products.

Certain parts of it might be under partner Intellectual Property Right (IPR) rules so, prior to using

its content please contact the consortium coordinator for approval.

In case you believe that this document harms in any way IPR held by you as a person or as a

representative of an entity, please do notify us immediately.

The authors of this document have taken any available measure in order for its content to be

accurate, consistent and lawful. However, neither the project consortium as a whole nor the

individual partners that implicitly or explicitly participated in the creation and publication of this

document hold any sort of responsibility that might occur as a result of using its content.

The content of this publication is the sole responsibility of IntelComp consortium and can in no

way be taken to reflect the views of the European Union.

The European Union is established in accordance with the Treaty on European Union

(Maastricht). There are currently 27 Member States

of the Union. It is based on the European

Communities and the member states cooperation in

the fields of Common Foreign and Security Policy and

Justice and Home Affairs. The five main institutions of

the European Union are the European Parliament,

the Council of Ministers, the European Commission,

the Court of Justice and the Court of Auditors.

(http://europa.eu.int/)

This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No. 101004870.

http://europa.eu.int/

4

D3.7 Graph Analysis Toolbox

CONTENTS

Disclaimer 3

Figures 6

Tables 8

Acronyms 9

Executive Summary 10

1. Introduction 12

1.1. General view of the Architecture 12

1.2. General view of the functionality 13

1.3. Basic definitions and notation 15

2. Data structures 15

2.1. Data sources 15

2.2. Output data 15

2.3. Entities 17

3. Functionality 17

3.1. Generation of Graphs 17

3.1.1. Generation of Similarity Graphs 17

3.1.1.1. Similarity measures 18

Similarity measures from node embeddings 18

Similarities based on distances. 18

Similarities based on categorical attributes. 19

3.1.1.2. Similarity threshold 19

3.1.1.3. Graph computation 20

3.1.1.4. Equivalent graphs 20

3.1.1.5. Bipartite graphs 20

3.1.2. Secondary graphs 21

3.1.2.1. Bipartite graphs from attributes 21

3.1.2.2. Transductive graphs 22

3.1.2.3. Transitive graphs 22

3.2. Graph Analysis 23

3.2.1. Community Detection Algorithms 23

3.2.2. Comparison of graphs 24

3.2.3. Impact indicators 25

5

D3.7 Graph Analysis Toolbox

3.2.4. Disambiguation 25

3.2.5. Agent profiling 27

3.2.6. Example: combination of transformations 27

3.3. Layout algorithms and visualization 28

3.4. Summary of algorithms 30

4. Software 31

4.1. Software structure 31

4.1.1. Graph processing classes 32

4.1.2. Task control classes 35

4.1.3. Input / output classes 37

4.2. Software prerequisites 37

4.2.1. Python prerequisite packages 37

4.3. Running the application 37

4.3.1. Execution commands 37

4.3.2. Startup 39

4.3.3. Menu navigation 39

4.4. Project folder structure 42

4.4.1. Graph folders 42

4.4.2. Bipartite Graph folders 43

4.4.3. Metagraph folder 44

5. Conclusions 45

6. References 45

7. Annexes 47

A. Default Configuration File. 47

6

D3.7 Graph Analysis Toolbox

FIGURES

Figure 1: General Structure of the Graph Analysis Toolbox .. 12

Figure 2: A supergraph is a structure of graphs. It consists of supernodes and superedges, where

each supernode is itself a graph, and each superedge is a bipartite graph. The figure shows a

supergraph with 5 supernodes and 4 superedges. ... 16

Figure 3: A supergraph structure connecting scientific documents and some of their agents

(researchers and organizations). Note that each node represents a graph (supernode) and each

edge represents a bipartite graph (superedge). Each supernode or superedge may 16

Figure 4: Generation of similarity graph from embeddings. Starting from a collection of nodes,

where each node represents a document or any other entity, and each document or entity is

represented by a vector in some embedding space (e.g., by means of a transfor 17

Figure 5: Generation of a similarity bipartite graph connecting patents and publications that are

similar, according to some configurable similarity measure. ... 21

Figure 6: Generation of a new bipartite graph from attributes. Initially, a graph of (A)uthors

exists, where each node represents a researcher, and a node attribute contains the organization

(research institution) associated with the researcher. The attribute 21

Figure 7: Example of an Author transductive graph. Starting from a similarity graph of papers

and a bipartite graph connecting each paper to its authors, an author similarity graph is inferred.

 ... 22

Figure 8: Transitive graph: the concatenation of a bipartite graph papers-authors and an

affiliation graph authors-organizations, a bipartite graph associating papers to organizations is

derived. ... 23

Figure 9: Example of a graph-based disambiguation: a graph B connects authors to their

publications. Graph G is a similarity graph of publications. The subgraph of G given by all nodes

connected to n through B form two separate clusters that can be detected thr 26

Figure 10: Similarity graph for a collection of projects from the CORDIS database (left). In color,

the largest connected component of the graph. On the right, the 20 largest communities,

according to the Louvain algorithm .. 28

Figure 11: Result of applying the transduction of the similarity graph and detecting communities

on the resulting graph, again with the Louvain algorithm. The new super communities add

connected communities in the graph of Figure 10 (right). ... 28

Figure 12: Communities of papers on a co-citation graph rendered with Gephi. 29

Figure 13: Visualization of a bipartite graph of research projects and thematic communities. . 29

Figure 14: Snapshots of the software documentation. (Left): Main page. (Right) Sample page of

the documentation of one of the main classes. .. 31

Figure 15: UML diagram of classes from the graph tool. .. 33

Figure 16: Diagram of classes related to the generation, analysis and processing of graphs. ... 34

Figure 17: Diagram of classes related to task control. .. 36

Figure 18: Startup menu. No options are available but the activation of the config file. 39

Figure 19: Main menu of the command-line application. .. 39

Figure 20: (Left) Sample metadata file of a similarity graph with 42069 nodes with 2 node

attributes computed from community detection algorithms. (Right) Sample metadata of a

bipartite graph. Source nodes are Semantic Scholar paper, target nodes are the Louvain 43

7

D3.7 Graph Analysis Toolbox

Figure 21: Sample file of nodes (metagraph_nodes.csv) from a supergraph. Each node of the

supergraph represents a graph. .. 44

Figure 22: Sample file of edges (metagraph_edges.csv) from a supergraph. Each edge of the

supergraph represents a bipartite graph. In the example, all bipartite graphs were computed by

connecting each node to its community, according to a community detection algorithm. 44

8

D3.7 Graph Analysis Toolbox

TABLES

Table 1: Main graph processing methods and the external libraries used in the graph tool 30

Table 2: Python prerequisite packages. .. 38

Table 3: Complete list of available options from the hierarchy of menus in mainRDIgraphs.py.

Shaded labels correspond to the methods in the task manager that runs the corresponding task.

 ... 40

Table 4: Default configuration file. Comments explain the meaning of each parameter. 47

9

D3.7 Graph Analysis Toolbox

ACRONYMS

BC Bhattacharyya Coefficient

CSV Comma Separated Values

EWB Evaluation WorkBench

GEXF Graph Exchange XML Format

GPU Graphic Processing Unit

IMT Interactive Model Trainer

LDA Latent Dirichlet Allocation

NLP Natural Language Processing

STI Science, Technology, and Innovation

10

D3.7 Graph Analysis Toolbox

EXECUTIVE SUMMARY

The Graph Analysis toolbox is a collection of software components for the computation,

processing and analysis of graph collections. It is specifically oriented to graphs associated with

the research production (publications, patents, project proposals, etc.) of a community or an

organization, or their agents (authors, organizations, etc.), but it can also be used for other

purposes.

The graph tool relies on powerful Python libraries for data analysis and graph processing (iGraph,

NetworkX, Scikit-learn, fa2, etc.), but also includes some ad hoc implementations for the

synthesis of similarity graphs that have turned out to be more efficient than other available

options.

The key modules of the toolbox and their respective most relevant characteristics are as follows:

1. Data import modules, from files or SQL / Neo4J databases.

2. Graph processing module, which includes functionality for:

a. Graph creation.

b. Graph editing.

c. Generation of similarity graphs.

d. Application of community detection algorithms.

e. Extraction of local parameters of the nodes of a graph based on centrality

measures.

f. Comparison of community structures.

g. Calculation of community metrics.

h. Computation and visualization of graph layout.

3. Module for managing and processing collections of graphs (that we name supergraphs),

which includes functionality for:

a. Editing the collection.

b. Memory efficient management of the collection at runtime: activation and

deactivation of supernodes and superlinks.

c. Extraction of information (metadata) from supernodes and superlinks.

d. Inference of new graphs (supernodes and superlinks) by:

i. Subsampling.

ii. Conversion of node attributes into new nodes.

iii. Graph transduction (inference of a similarity graph based on a bipartite

auxiliary graph that connects the nodes of the target graph with the

nodes of another similarity graph), that can be used, for instance, to

generate a graph of similarities between authors based on their

research products (articles, patents).

iv. Transitivity, which allows, for example, the generation of a bipartite

graph: documents-organizations from two bipartite graphs documents-

authors and authors-organizations.

e. Comparison of graphs, using cosine distance type metrics.

4. Graph export modules to save graphs in different formats.

11

D3.7 Graph Analysis Toolbox

5. Module for direct visualization of bipartite graphs based on the Halo library.

Likewise, the toolbox includes several Python scripts that facilitate the use of all the software

functionalities, by a non-expert user, through a terminal-based menu utility.

The graph toolbox can be applied to different types of data sources. In the context of IntelComp,

the following are some examples:

● Graphs of relationships between research results:

○ Directed graphs of bibliographic citations between scientific documents, or

undirected graphs of co-citations.

○ Undirected thematic graphs of research results: these are graphs connecting

research papers, projects, patents, etc. They are built by metrics based on

document embeddings or topic models.

● Collaboration graphs between agents:

○ From collaboration in projects or co-authorship of articles/patents.

○ From articles that include acknowledgments funding projects or institutions.

● Bipartite graphs of linkage relations:

○ Between the results of the research and its authors.

○ Between authors and their organizations.

The combination of all these graphs allows, in turn, to build new derived graphs that provide

additional information for the analysis. For example, thematic relationships between the activity

of researchers can be inferred from the thematic relationship between their publications and

the authorship relationships between researchers and publications.

The toolbox facilitates the generation, management, and processing of all these related graphs

efficiently, both in terms of the calculation and storage of the graphs themselves, and in terms

of the implementation of algorithms:

● Inference of similarity graphs.

● Detection of communities.

● Inference of graphs by combining other graphs (transitive graphs, graph transduction).

● Extraction of statistical information from the graph.

● Characterization of graph nodes: centrality parameters, PageRank.

● Calculation of connected components.

● Calculation of layouts for visualization.

The results of the analysis can be stored in formats that facilitate their visualization through

applications such as the IntelComp-native graph visualization component developed by WP4,

and other external applications like Gephi or software modules like Halo.

12

D3.7 Graph Analysis Toolbox

1. INTRODUCTION

The Graph Analysis toolbox1 is a software library for the computation, processing and analysis

of graph collections. It is specifically oriented to graphs associated with the research production

(publications, patents, project proposals, etc.) of a community or an organization, or their agents

(authors, organizations, etc.), but it can be used for other general purposes.

This tool relies on powerful Python libraries for data analysis and graph processing (iGraph,

NetworkX, Scikit-learn, Fa2, etc.), but also includes some ad hoc implementations for the

synthesis of similarity graphs that have turned out to be more efficient than other available

options.

The work carried out for this deliverable implies, on the one hand, developing the software

components that provide the necessary functionality for the treatment of graphs and, on the

other hand, applying the toolbox to the data sources of the project, also outlined.

1.1. General view of the Architecture

The general scheme of the architecture is shown in Figure 1, and its main components are the

following:

Figure 1: General Structure of the Graph Analysis Toolbox

1. Data sources: the graph tool is specifically oriented to graphs associated with the

research production. In general, the data sources are expected to contain collections of

documents (publications, patents, project proposals, etc.) with associated metadata

(authors, organizations, citations, etc.).

2. NLP services. The natural language processing (NLP) services enrich the text corpora

with the embedding of the documents in a vector space (bag of words, BM25, topic

models, transformers, etc.). This layer is not part of the Graph Analysis toolbox: the

1 https://github.com/IntelCompH2020/GraphAnalysisToolbox

13

D3.7 Graph Analysis Toolbox

document embeddings will be provided by the NLP tools implemented in WP3 tasks T3.1

and T3.5.

3. Graph synthesis: A collection of methods to compute different types of graphs based

on document embeddings or metadata (citations, authors, organizations, etc.).

4. Graph processing: a collection of modules for the processing of existing graphs: three

classes of modules have been implemented:

a. Graph inference: used to generate derivative graphs based on the processing of

another graph or the combination of several graphs.

b. Community detection: clustering algorithms over graphs, used to unveil the

internal structure of the graphs.

c. Impact indicators: a collection of metrics to evaluate the relevance or the role

of individual nodes in the graph.

d. Disambiguator: a module used to discriminate between different entities (e.g.

authors) with the same name, or associate an entity (e.g., authors) to all its

representations (e.g., names).

5. Graphs: a database of graphs generated by the platform, including the nodes, edges and

attributes of each graph, and metadata information about the relationships between all

graphs.

6. Layout: algorithms for deploying graphs on a two-dimensional space through the

visualization module

7. Visualization: methods for graph rendering included in the tool, though the visualization

task over the integrated web UI of IntelComp is carried out by specific components of

the STI Graph Visualizer, implemented in task T4.3 of the project.

1.2. General view of the functionality

We provide here a structured list, including a concise description, of all the functionalities that

are included in the toolbox:

1. Import data from files or SQL / Neo4J databases, for the generation or the enrichment

of graphs.

2. Generation and processing of graphs:

a. Creation of graphs.

b. Graph editing (single node/link edits, attribute management, node merging, link

filtering, graph sampling, node ordering, etc.).

c. Generation of similarity graphs from nodes and vector-space representations

(embeddings, transformers, topic models, bag-of-word models, etc.), or from

nodes and sets of attributes (keywords, citations, etc.). Several similarity

measures, including measures based on L1, L2, Jensen-Shannon, Hellinger or

cosine distances, with options for GPU execution, have been implemented.

d. Application of community detection algorithms: Louvain, FastGreedy,

Walktrap, InfoMap, label propagation, spectral clustering and Leiden.

e. Extraction of local parameters of the nodes of a graph: degree, eigenvector

centrality, betweenness, pageRank, clustering coefficient, closeness, Katz

centrality.

14

D3.7 Graph Analysis Toolbox

f. Comparison of community structures, using different metrics: information

variation, normalized mutual information, Rand index, adjusted Rand index,

split-join distance, asymmetric split-join distance.

g. Calculation of community metrics: coverage, performance and modularity.

h. Generation of graph layouts, based on the Force Atlas 2 and Fruchterman-

Reingold algorithms.

3. Creation, management and processing structured collections of graphs (named

supergraphs), which includes functionality for:

a. Editing of the collection: adding and removing generic graphs and bipartite

graphs.

b. Memory efficient management of the collection at runtime: activation and

deactivation of graphs and bipartite graphs.

c. Extraction of information (metadata) from graphs and bipartite graphs.

d. Inference of new graphs by:

i. Subsampling: this includes methods for computing subgraphs by

random sampling of nodes or filtering nodes by attribute values.

ii. Generation of bipartite graphs from attributes: conversion of node

attributes into new nodes (generating a new bipartite graph connecting

the original nodes with their attributes).

iii. Graph transduction, which consists of the generation of a similarity

graph using a bipartite graph that connects the nodes with the nodes of

another similarity graph. This is useful, for example, to generate a graph

of similarities between authors based on the similarity between their

research products (articles, patents).

iv. Transitivity, which consists of the generation of a bipartite graph A-C,

connecting supernodes A and C, by concatenation of two bipartite

graphs A-B and B-C, connecting A and C with an intermediate supernode

C. For example, the generation of a bipartite graph: documents-

organizations from two bipartite graphs documents- authors and

authors-organizations.

e. Comparison of graphs, using cosine distance type metrics.

4. Export of graphs:

a. Export to Neo4J databases.

b. Export to files in CSV formats (importable from Gephi2).

c. Export to GEXF (the standard Gephi format).

5. Visualization of graphs and bipartite graphs based on the NetworkX and Halo libraries.

Likewise, the toolbox includes a Python program that allows a non-expert user to access all the

functionality through a menu system.

The software has a modular structure, which facilitates its future expansion with further

functionality.

2 https://gephi.org/

https://gephi.org/

15

D3.7 Graph Analysis Toolbox

1.3. Basic definitions and notation

To read this document, no major background knowledge on graphs is required. However, to

avoid an ambiguous use of terms and clarify the mathematical notation, we start with some

basic definitions.

A graph G is a tuple (S, E, W), where S is an ordered set of nodes, E is a set of edges (also named

links) and W is the weight matrix (also named adjacency matrix). Each edge is an ordered pair

of nodes from S. Weight wij from W is the weight of the edge connecting the i-th and the j-th

nodes from S. If the weights of all edges are unity, the graph is said to be unweighted.

An undirected graph is a graph whose edges have no orientation: edge (u, v) in an undirected

graph is equivalent to edge (v, u). Otherwise, the graph is said to be directed, and the nodes

from each edge (u, v) are named source and target (or destination) nodes, respectively.

A bipartite graph G is a graph whose edges connect nodes from different sets. They can be

represented as tuples (S, T, E, WST) where S are the source nodes of the edge, T are the target

nodes, E is the list of edges, and WST is the weight matrix.

2. DATA STRUCTURES

In this and the following sections, we provide a general description of the main data structures

and python modules that provide the whole functionality.

2.1. Data sources

The input data sources must contain all the information required for the generation of the

graphs. This data can be stored in different formats. A Data Manager module oversees the

transport of the input corpora into the toolbox. It includes modules for the data import from csv

files, SQL databases or Neo4J graph databases.

2.2. Output data

The output data of the toolbox is a collection of graphs and their associated metadata. The graph

data contains information about the nodes, node attributes, edges, edge weights, and metadata

with information about the graph generation (graph synthesis algorithm, number of nodes and

edges, list of node and edge attributes and information about the processing algorithms applied

over the graph).

Since some graphs can be generated from other graphs, the collection of graphs is also organized

in another graph structure named supergraph in the toolbox.

In the context of this toolbox, a supergraph is a structured collection of graphs. It consists of

supernodes and superedges, where each supernode is itself a graph, and each superedge is a

bipartite graph connecting nodes from a supernode to nodes of another supernode. This is

illustrated in Figure 2.

16

D3.7 Graph Analysis Toolbox

Figure 2: A supergraph is a structure of graphs. It consists of supernodes and superedges,

where each supernode is itself a graph, and each superedge is a bipartite graph. The figure
shows a supergraph with 5 supernodes and 4 superedges.

The relations defined by each graph in the structure may be of different nature. As an example,
Figure 3 shows a supergraph structure linking (Pu)blications (supernode Pu), (Pa)tents and
(Pr)ojects through similarity graphs. Publications are connected to (A)uthors through a bipartite
directed graph and projects to (O)rganizations through an affiliation graph. The authors are
connected through a cooperation graph, and patents and publications are also connected to
themselves through a directed citation graph. The supergraph structure is a multigraph: some
superedges my represent directed graphs, others undirected. Furthermore, any pair of nodes
can be connected through several superedges, each one accounting for a different type of
relation.

Figure 3: A supergraph structure connecting scientific documents and some of their agents
(researchers and organizations). Note that each node represents a graph (supernode) and

each edge represents a bipartite graph (superedge). Each supernode or superedge may

The graph toolbox facilitates the successive generation of the supergraphs components starting

from the data sources, which are used to generate primary graphs, and generating secondary

graphs as a result of the processing and analysis of the primary graphs. The difference between

primary and secondary graphs is explained in the next subsection.

17

D3.7 Graph Analysis Toolbox

2.3. Entities

IntelComp’s natural data sources for the generation of graphs are corpora of documents

(patents, publications, etc.). Thus, the nodes of the primary graphs generated from the data

sources will represent documents (typically). However, the graph toolbox facilitates the

generation of secondary graphs whose nodes may represent other kinds of entities: authors,

organization, funding institutions, keywords, etc. Therefore, we will use the generic term

“entity” whenever the description can be applicable to arbitrary graphs, no matter what their

nodes are representing.

3. FUNCTIONALITY

In this section we describe in more detail the whole functionality of the software. Part of the

functionality is provided through external libraries for graph processing, and other has been

developed natively in the project in search of efficiency or a better adaptability to our data

structure. The main graph processing methods and the external libraries used in the graph will

be summarized later, in Section 3.4 and Table 1.

3.1. Generation of Graphs

3.1.1. Generation of Similarity Graphs

A similarity graph is a graph whose edge weights represent some similarity measure between

the corresponding nodes. We will use the term “similarity matrix” to refer to the adjacency

matrix of a similarity graph.

Similarity graphs can be constructed from any collection of nodes (representing documents or

any other entities), provided that a similarity measure between nodes can be computed. The

generation of similarity graphs of documents based on their embedding representations is an

important example. A symbolic representation of this process is shown in Figure 4

Figure 4: Generation of similarity graph from embeddings. Starting from a collection of

nodes, where each node represents a document or any other entity, and each document or
entity is represented by a vector in some embedding space (e.g., by means of a transfor

There are several challenges in the construction of a similarity graph:

1. Defining a similarity measure.

2. Setting the similarity threshold to keep just the most relevant edges.

3. Computing the graph for a large number of nodes.

18

D3.7 Graph Analysis Toolbox

3.1.1.1. Similarity measures

Similarity measures from node embeddings

Assume that the entities represented by the nodes n and m have a vector representation in

some embedding space, x and y, respectively. The similarity measure is a function s(x, y)

mapping pairs of vectors into a number in [0, 1].

We have implemented two similarity metrics:

● Cosine similarity: 𝑠(𝑥, 𝑦) =
𝑥𝑇𝑦

||𝑥||·||𝑦||

● Bhattacharyya Coefficient (BC): 𝑠(𝑥, 𝑦) = √𝑥
𝑇

√𝑦

The cosine similarity is defined for any vector representation. It has been used to compute

document similarity graphs from embeddings based on transformers.

The BC measure requires probabilistic embeddings: vectors x and y must have components in

[0, 1] summing up to one. The square roots of the vectors are computed component-wise. It has

been used to compute document similarities from embeddings based on topic models.

Similarities based on distances.

An alternative to the direct computation of a similarity measure is to transform a distance

between embeddings into a similarity metric. Three transformations have been included in the

graph tool:

● Linear: 𝑠(𝑥, 𝑦) = 1 −
𝑑(𝑥,𝑦)

𝐷𝑚𝑎𝑥

● Polynomial: 𝑠(𝑥, 𝑦) = 1 − (
𝑑(𝑥,𝑦)

𝐷𝑚𝑎𝑥
)

𝑎

● Exponential: 𝑠(𝑥, 𝑦) = 𝑒𝑥𝑝(−𝑎 · 𝑑(𝑥, 𝑦))

where Dmax is the maximum distance between embeddings and a > 0 is a free parameter. The

linear transformation is useful when the distance between embeddings can be bounded by an

upper limit (this is usually the case, for instance, for probabilistic embeddings). The exponential

transformation is useful because it translates the triangular inequality of the distance metric

into a similarity bound: for any embedding, z,

𝑠(𝑥, 𝑦) ≥ 𝑠(𝑥, 𝑧) · 𝑠(𝑧, 𝑦)

Thus, we can lower-bound the similarity between two nodes in the graph that have no direct

edge by multiplying the similarities of paths connecting them.

The graph tool implements the following distances:

● For arbitrary embeddings:

○ Euclidean: 𝑑(𝑥, 𝑦) = ||𝑥 − 𝑦||
2

○ L1 (absolute difference): 𝑑(𝑥, 𝑦) = ||𝑥 − 𝑦||
1

● For probabilistic embeddings:

19

D3.7 Graph Analysis Toolbox

○ Jensen-Shannon: 𝑑(𝑥, 𝑦) =
1

2
(𝑥𝑇 · 𝑙𝑜𝑔2 (

2𝑥

𝑥+𝑦
) + 𝑦𝑇 · 𝑙𝑜𝑔2 (

2𝑦

𝑥+𝑦
))

○ Hellinger: 𝑑(𝑥, 𝑦) = √1 − √𝑥
𝑇

√𝑦

In the expressions above, square roots, logs or fractions of vectors are computed component-

wise.

Similarities based on categorical attributes.

A similarity measure has been defined for situations where the entities are characterized by a

set of elements or categories. For instance, if nodes n and m are represented by sets 𝑋 and 𝑌,

respectively, the following similarity measure can be used:

● Categorical cosine similarity: 𝑠(𝑋, 𝑌) =
 |𝑋 ∩ 𝑌|

√|𝑋||𝑌|

where |·| represents the cardinality. This is named “categorical cosine similarity” because it is

equivalent to the cosine similarity of the binary representation of the category sets. This

similarity has been used because it allows a more efficient implementation than other measures,

like the Jaccard similarity.

This similarity metric can be used for very different purposes, depending on the nature of the

nodes and the type of sets. For instance:

● Citation graph of publications: 𝑋 is the set of papers related to a document (cited papers,

citing paper or co-citation, for example, depending on the type of citation graph).

● Collaboration graph of authors: 𝑋 is the set of papers from an author.

● Collaboration graph of papers: 𝑋 is the set of authors from a paper.

● Thematic graph of projects: 𝑋 is the set of keywords associated with a project.

3.1.1.2. Similarity threshold

The main goal of the similarity graphs is to identify the most similar nodes in the graph and also

to apply graph processing algorithms to unveil the internal structure of relations between the

nodes. For this reason, we are mainly interested in the highest similarity values, and not on the

small similarity relations. Thus, the weight matrix of the graph will be sparse, and only pairs of

nodes with a similarity above a threshold will be connected through an edge.

 The graph toolbox provides two ways to set the sparsity of the graph:

● Absolute threshold: the user sets a fixed threshold as a free parameter.

● Target number of edges per node: the user sets the target average number of edges per

node and the threshold is computed in such a way that this target is satisfied.

In general, setting the absolute threshold is difficult, because it may depend on the similarity

measure, the embedding and the corpus. Controlling the sparsity through the target number of

edges is in general more practical.

20

D3.7 Graph Analysis Toolbox

3.1.1.3. Graph computation

In general, the computation of the similarity graph from a matrix of m embeddings with d

dimensions requires O(m2d) computations. This can state some scalability problems for large m.

To alleviate this problem, the software includes two options:

● For similarities based on distance metrics, the similarity graph can be obtained without

computing all pairs of distances between nodes through special structures like balltrees

[1]. We have used the implementations of these methods from the sklearn.neighbors

module from the python library Scikit-learn.

● For similarities that can be computed from cross products (BC, cosine distance), a high

degree of parallelization is possible. Efficient methods have been implemented based

on the use of GPU processing.

For instance, given an input matrix of embeddings, 𝑋, the BC similarity matrix can be

computed as

 𝑆 = 𝜙𝑡 (√𝑋
𝑇

√𝑋)

where square roots are computed component-wise, and 𝜙𝑡 is the threshold function

with threshold t (that is 𝜙𝑡(𝑥) = 𝑥 · (𝑥 ≥ 𝑡), which is applied component-wise. The

matrix product is computed by blocks through a GPU unit, so that there is no need to

save in memory the whole product before thresholding.

3.1.1.4. Equivalent graphs

When different nodes have identical embedding representation, they form clusters of fully

connected nodes, and all nodes in a cluster are connected (by identical edges) to the same

neighbors in the graph. Thus, we can get a more compact representation of the graph by

collapsing all nodes of each cluster into a single node representing all of them. We call this

collapsed graph the equivalent graph.

These clusters of nodes are frequent when nodes are represented by categorical attributes from

a reduced set of categories. It may also arise from topic models based on the Latent Dirichlet

Allocation (LDA) algorithm, when the hyperparameters are chosen to get highly sparse

document-topic matrices.

Equivalent graphs are useful to reduce the cost of the graph computation. In general, for a graph

with an average cluster size of m nodes, the cost of computing the similarity graph reduces by a

factor of 𝑚2.

3.1.1.5. Bipartite graphs

The module for generating similarity graphs can be applied to the generation of bipartite

similarity graphs. Figure 5 illustrates the process with the generation of a similarity graph

between publications and patents. It is required from both sources of nodes to have vector

representations in the same embedding space.

21

D3.7 Graph Analysis Toolbox

Figure 5: Generation of a similarity bipartite graph connecting patents and publications that

are similar, according to some configurable similarity measure.

3.1.2. Secondary graphs

When the data sources for the graph generation contain tables of entities and attributes

(categorical data or vector representations in an embedding space), the graph toolbox can

construct primary graphs based on similarity. In addition, it includes methods for the

construction of secondary graphs, based on the primary graphs and / or attributes from the

source datasets. In this section, we describe the basic method to construct secondary graphs,

and how they can be combined.

3.1.2.1. Bipartite graphs from attributes

Any categorical attribute from the nodes of a graph can be used to construct a bipartite graph

connecting each node with its corresponding attribute values. As an example, if a table of

authors contains an attribute with their respective organizations, we can construct a bipartite

author-affiliation graph connecting each author to their organizations. This is illustrated in Figure

6.

Figure 6: Generation of a new bipartite graph from attributes. Initially, a graph of (A)uthors

exists, where each node represents a researcher, and a node attribute contains the
organization (research institution) associated with the researcher. The attribute

Some examples of the graphs that have been constructed by this method:

● Documents – authors.

● Authors – organizations.

● Documents – keywords.

● Documents – domain labels obtained from the domain classifier or the taxonomic

classifier (see deliverables D3.3 and D3.4).

● Nodes – community labels. This is a graph connecting each node to its community,

according to the assignment produced by a community detection algorithm.

● Patents – papers (based on citations).

The generation of these bipartite graphs is the primary step for the generation of transductive

graphs.

22

D3.7 Graph Analysis Toolbox

3.1.2.2. Transductive graphs

A transductive graph is a graph computed for some entities based on their relations with other

entities from another graph. A transductive graph is useful, for example, to construct a graph of

entities when no embedding representation is available. It has been used to generate similarity

graphs of authors based on similarity graphs of papers, as illustrated in Figure 7.

Figure 7: Example of an Author transductive graph. Starting from a similarity graph of papers

and a bipartite graph connecting each paper to its authors, an author similarity graph is
inferred.

Given two sets of nodes, S and T, a graph GS with nodes in S and weight matrix 𝑊𝑆 and an

bipartite graph GST connecting the nodes in S to those in T, with weight matrix WST, the weight

matrix 𝑊𝑇 of the transductive graph GT is computed as:

𝑊𝑇 = 𝑊𝑆𝑇
𝑇 · 𝑊𝑆 · 𝑊𝑆𝑇

According to this, the similarity between two nodes m and n from T is equal to a weighted sum

of all paths going from m to n through 1 or 2 nodes from S. The weight of a path is the product

of all its edge weights. This can be normalized to make sure that all self-edges in the output

graph GT have weight 1:

𝐷 = √𝑑𝑖𝑎𝑔(𝑊𝑇)
−1

𝑇 = 𝐷 · 𝑊𝑇 · 𝐷

3.1.2.3. Transitive graphs

Transitive graphs are useful to relate two sets of nodes based on a common attribute. This is

illustrated in Figure 8, where a bipartite graph connecting publications to their authors is

combined with another bipartite graph connecting authors to their current organizations to infer

a graph connecting publications to the current organization of their authors3.

Given three sets of nodes S, T and U and the bipartite graphs GST and GTU connecting S to T and

T to U, with weight matrices WST and WST, respectively, the weight matrix of the transitive graph

GSU connecting S to U is computed as

𝑊𝑆𝑈 = 𝑊𝑆𝑇 · 𝑊𝑇𝑈

3 Note that the current organization of the author could differ from the affiliation of the author in the

paper. We ignore this circumstance here for illustration purposes.

23

D3.7 Graph Analysis Toolbox

Figure 8: Transitive graph: the concatenation of a bipartite graph papers-authors and an

affiliation graph authors-organizations, a bipartite graph associating papers to organizations
is derived.

Thus, the similarity between node m from S and node n from T is computed as the sum of the

weights of all paths going from m to n through any node in T.

3.2. Graph Analysis

3.2.1. Community Detection Algorithms

Community detection algorithms provide a partition of the set of nodes in the graph, providing

useful information on the overall structure of the graph. The Community Detection module

includes several open-source implementations of graph clustering and community detection

algorithms, as well as some methods for further analysis of the graph partitions.

The clustering or community detection algorithms included in the Graph Analysis toolbox are

the following:

1. Connected components4

2. Spectral clustering

3. Louvain

4. FastGreedy

5. WalkTrap

6. Info Map

7. Label Propagation

8. Leiden

Most algorithm implementations are based on the iGraph5 python library, except for spectral

clustering, which is based on Scikit-learn6, and Louvain, which is based on the module

“communities” of NetworkX7.

4 Connected components are not usually interpreted as “communities”, but they can be taken as
a baseline. All the communities generated by the other algorithms are subsets of a connected
component.
5 https://python.igraph.org
6 https://Scikit-learn.org
7 https://NetworkX.org/

https://python.igraph.org/
https://scikit-learn.org/
https://networkx.org/

24

D3.7 Graph Analysis Toolbox

In order to facilitate the analysis and evaluation of the graph partitions obtained by community

detection algorithms (or by the same algorithm over two graphs with the same nodes) we have

integrated two types of metrics available from iGraph:

● Comparison of communities. These are metrics that, given two graph partitions, return

some metric of the divergence between them:

○ Variation of Information [2]. It is a distance metric between clusters commonly

used in information theory.

○ Split-Join distance [3]. It is the number of transformations (of the cut-paste

type) that must be done on one partition to obtain the other.

○ NMI: Normalized Mutual Information [4]. Similarity measure (takes maximum

value 1 when both communities are equal).

○ Rand index [5], which is based on the number of pairs of nodes that coincide in

the same or different community in the two partitions.

○ Adjusted Rand index [6], which is a measure of similarity between two data

partitions related to the precision with which the members of each element of

one partition are grouped into the same element of another.

● Community metrics. These are metrics that evaluate the quality of a community

structure with respect to a given graph. Three measures have been implemented:

○ Coverage: ratio between the number of intra-community links with respect to

the total number of links.

○ Performance: ratio between the number of intra-community links plus the

number of non-intra-community links with the total number of potential links.

○ Modularity. It is the performance metric optimized by the Louvain and other

community detection algorithms. It is the fraction of intra-community links

minus the expected value that would be obtained if the links were generated

randomly.

The community metrics can be used to evaluate the quality of a community detection algorithm,

but also to evaluate the quality of a single graph with respect to a reference graph. For instance,

they have been used to compare a similarity graph of papers with respect to a co-citation graph

used as reference: both graphs are said to be similar if the community structure obtained for

the similarity graph is also a good community structure (according to the community metrics)

for the reference graph. These community-based metrics are used to compare two graphs

avoiding a “edge-by-edge” comparison. Using these metrics, we can identify similarities

between graphs even though they had no common edges.

3.2.2. Comparison of graphs

The metrics for the comparison of two community structures can be used as an indirect measure

of the similarity between two graphs, which is grounded on the idea that two similar graphs

should have a similar community structure. A more direct comparison can be done using edge-

by-edge metrics. Thus, as an alternative to the comparison of communities, the cosine distance

between the adjacency matrices of the graphs has been implemented. It is defined as

25

D3.7 Graph Analysis Toolbox

𝑑(𝑉, 𝑊) =
𝑡𝑟𝑎𝑐𝑒(𝑉𝑇𝑊)

√𝑡𝑟𝑎𝑐𝑒(𝑉𝑇𝑉) · 𝑡𝑟𝑎𝑐𝑒(𝑊𝑇𝑊)

3.2.3. Impact indicators

A local analysis module has been implemented that allows calculating, from any directed graph,

different measures of graph centrality:

● Degree, defined by the number of neighbors of a node, normalized with respect to the

number of nodes. For directed graphs, it measures the number of outgoing neighbors,

also normalized with respect to the total number of nodes.

● Betweenness (Betweenness Centrality) [7]: quantifies the number of times that a node

is in the shortest path between any two nodes of the graph.

● Clustering coefficient [8], measures the proportion of neighbors of a node that are

neighbors among themselves.

● Closeness (Closeness Centrality). Inverse of the mean distance from a node to all nodes

in the network.

● Eigenvector Centrality (Eigenvector Centrality) [9], is a measure of the influence of a

node in a network based on the calculation of the principal eigenvalue of the adjacency

matrix of the graph.

● PageRank [10]: is a variant of eigenvector centrality, which measures the influence of a

node on the graph, based on the statistical analysis of the probability that certain

random walks on the graph pass through a node.

● Katz [11]: it is a measure of the influence of a node over all other nodes. The influence

of a node is higher over neighbor nodes and, also, over non-neighbor nodes that are

connected through multiple short paths.

The implementations of these measures available in the Python NetworkX library have been

used.

3.2.4. Disambiguation

A disambiguation algorithm may be required in situations where several entities may be

represented by the same name or identifiers. This is common for author graphs from large paper

collections because different authors may have the same name.

Remind that the Graph Analysis toolbox can be used to generate graphs of entities from a

document collection. For instance, if each document has a list of authors as an attribute, we can

convert all attribute values (authors) into nodes and create a bipartite documents-authors graph

by linking each document to their corresponding authors, and we can use these graphs to make

secondary graphs (e.g., cooperation graphs of authors, similarity graphs of authors, coauthor

graphs of documents, etc.). However, if two or more authors share the same name, they will be

merged into a single node, and the ambiguity will be propagated over all secondary graphs.

To alleviate this problem, we have included a generic disambiguation tool which, given a node,

runs a test to determine if the node may represent more than one entity. The tool is generic,

26

D3.7 Graph Analysis Toolbox

not necessarily linked to authors, and can be used to test if any node from any graph can be

eventually split into several nodes.

We can illustrate the behavior of the disambiguation module with the simplified example in

Figure 9: assume that the supergraph contains a similarity graph of papers, G, and a bipartite

graph, B, connecting each paper with the names of their authors. Node n is connected to a

subset of nodes in G that form two separate clusters that can be easily identified by a community

detection algorithm. This may be an indicator that node n represents two authors, and can be

split into two separate nodes, each one connected to the subcluster.

Figure 9: Example of a graph-based disambiguation: a graph B connects authors to their
publications. Graph G is a similarity graph of publications. The subgraph of G given by all

nodes connected to n through B form two separate clusters that can be detected thr

This clustering effect can be an indicator of an ambiguous node, but it is not conclusive, since it

can appear from authors with multidisciplinary works. Therefore, this indicator must be

combined with others to improve the identification of ambiguous nodes.

The disambiguation module works in the following steps:

1. For any given node n, identify all superedges, N-G (from the supergraph) that connect a

supernode N that contains n to another supernode G.

2. For every superedge N-G:

a. Select subgraph Gn from G that contains all nodes from G that are connected to

N by the superedge.

b. Apply the Louvain algorithm to find the best 2-community partition from Gn.

c. Compute the modularity of the given partition.

3. If the product of all modularities obtained for all graphs is above a given threshold,

disambiguate the node.

As an example, we can apply the disambiguation of authors from a collection of papers by

creating a supergraph with the following components:

1. A similarity graph of papers.

2. A coauthor graph, connecting all papers that share some authors (through the

categorical cosine similarity).

27

D3.7 Graph Analysis Toolbox

3. A graph connecting papers with close publication dates.

4. A graph connecting papers that share the same funding projects.

5. A bipartite graph (superedge) connecting the authors to their papers in each of the

above graphs.

A high modularity in all subgraphs corresponding to this graph is a strong indicator of an

ambiguous node.

3.2.5. Agent profiling

Since we can generate multiple graphs from a collection of documents, the information relative

to any particular entity (e.g., an author) may be spread over different graphs in the supergraph.

The graph tool includes a method to gather all information that is relevant to a particular node

n, which may include:

● The list of graphs containing n.

● The structure of neighbors from n in each graph.

● The impact indicators for n in each graph.

● All attributes of n in each graph, taken from metadata or derived from the graph tool

(like the communities associated to the node).

Since the agent profiling is part of the analysis of impact indicators, it will be described in more

detail in Deliverable D3.8.

3.2.6. Example: combination of transformations

As an illustration of how a single data source can be used to generate a structure of graphs,

Figure 10 shows a Gephi visualization of the Force Atlas 2 based display of the similarity graph

of the 77,990 projects in the CORDIS8 data set available at the IntelComp data space.

Each point of the graph represents a project, and the links between them their similarity value

calculated from the BC of their embeddings. The effect of applying the Louvain algorithm for

community detection (using the Python-louvain library) on the similarity graph is shown in the

colored regions of the right graph, which shows the 20 largest communities.

To obtain a representation at a lower resolution level, it is possible to convert the community

attribute associated with each project into a node and calculate similarities between

communities from the similarities between the members of each community. The result is the

cross-community similarity graph (Figure 11, left), on which community detection can be applied

again, providing a view of the corpus at an even lower resolution level.

8 The CORDIS corpus contains FP7 and H2020 projects funded by the European Commission. The
similarity graph was computed based on a document embedding obtained through an LDA topic
modeling algorithm with 50 topics, applied over the title and abstract of each project.

28

D3.7 Graph Analysis Toolbox

Figure 10: Similarity graph for a collection of projects from the CORDIS database (left). In

color, the largest connected component of the graph. On the right, the 20 largest
communities, according to the Louvain algorithm

Figure 11: Result of applying the transduction of the similarity graph and detecting

communities on the resulting graph, again with the Louvain algorithm. The new super
communities add connected communities in the graph of Figure 10 (right).

This process can be repeated iteratively, providing a representation of communities on the

original graph at different levels of resolution (Figure 11, right).

3.3. Layout algorithms and visualization

The visualization of graphs is not the focus of the toolbox described in this deliverable, and it is

provided by other components of the IntelComp platform (namely the Graph Visualization

component of WP4). However, two layout algorithms have been included, in charge of mapping

the nodes of the graph into a two-dimensional plane:

● FA2 (Force Atlas 2)

● FR (Fruchterman Reingold)

29

D3.7 Graph Analysis Toolbox

The coordinates of the nodes are saved as node attributes. The graphs are saved in csv files in a

format that facilitates the data importation from the visualization tool and, also, from other

open-source graph visualization software like Gephi. Also, graph data can be exported to GEXF,

which is the standard format of Gephi.

In addition, the Graph Analysis toolbox includes some visualization methods that can be used to

render small to medium size graphs, which are based on the NetworkX library. For bipartite

graphs, a visualization module based on Halo is also included.

As an illustrative example, Figure 12 shows the community structure of a citation graph from a

collection of papers, rendered with Gephi.

Figure 12: Communities of papers on a co-citation graph rendered with Gephi.

Figure 13 shows a visualization with Halo for a bipartite graph connecting research projects,

represented as short marks around a circumference, and the hierarchical structure of

communities obtained through the Louvain algorithm.

Figure 13: Visualization of a bipartite graph of research projects and thematic communities.

30

D3.7 Graph Analysis Toolbox

3.4. Summary of algorithms

Table 1 summarizes the main algorithms integrated into the tool, indicating the library and

version used, in the cases in which implementations of existing libraries have been imported,

and indicating the cases in which the GPU implementations have been tested.

Table 1: Main graph processing methods and the external libraries used in the graph tool

Type Algorithm External library Version GPU

Similarity graph

generation

Battacharyya coefficient - Yes

Jensen-Shannon - Yes

L1 distance Scikit-learn 1.1.3 NO

L2 distance Scikit-learn 1.1.3 NO

Community detection Fastgreedy Python-igraph 0.10.2 NO

Infomap Python-igraph 0.10.2 NO

Label propagation Python-igraph 0.10.2 NO

Leiden leidenalg - igraph 0.9.0 NO

Louvain Python-louvain 0.15 NO

Walktrap Python-igraph 0.10.2 NO

Connected components Python-igraph 0.10.2 NO

Graph transduction Personalized PageRank (PPR) NetworkX 2.8.4 NO

Cosine similarity - NO

Other secondary

graphs

Transitive graphs - NO

Equivalent Graphs - NO

Other - NO

Centrality and other

local measures

Absolute (unnormalized) in-degree NetworkX 2.8.4 NO

Absolute (unnormalized) out_degree NetworkX 2.8.4 NO

Betweenness centrality NetworkX 2.8.4 NO

Closeness centrality NetworkX 2.8.4 NO

Clustering Coefficient NetworkX 2.8.4 NO

Degree Centrality NetworkX 2.8.4 NO

Eigenvector Centrality NetworkX 2.8.4 NO

Katz centrality NetworkX 2.8.4 NO

PageRank NetworkX 2.8.4 NO

Community metrics Coverage - NO

Performance - NO

Modularity Python-louvain 0.13 NO

Community

comparison

Variation of information Python-igraph 0.10.2 NO

NMI: Normalized mutual information Python-igraph 0.10.2 NO

Rand index Python-igraph 0.10.2 NO

Adjusted Rand index Python-igraph 0.10.2 NO

Split-join distance Python-igraph 0.10.2 NO

Split-join projection Python-igraph 0.10.2 NO

Graph layout Force atlas 2 Fa2 0.3.5 NO

Fruchterman-Reingold NetworkX 2.8.4 NO

31

D3.7 Graph Analysis Toolbox

4. SOFTWARE

4.1. Software structure

The software package can be downloaded from the IntelComp repository in GitHub9. It contains

all software modules and their documentation. The documentation has been generated using

Sphinx in ReadTheDocs format and it has been published in the GitHub page10. Figure 14 shows

a snapshot of the main page of the documentation, and the page describing one of the main

classes.

Figure 14: Snapshots of the software documentation. (Left): Main page. (Right) Sample page

of the documentation of one of the main classes.

The main components of the folder structure in the software repository are:

● docs/: Documentation folder.

● rdigraphs/: The python software package. Contains all classes and methods.

● Main scripts: several executable python scripts that can be used to test all software

modules through a terminal/command window.

The complete directory tree and some relevant files are shown below. Next to each folder, we

provide a brief description of its purpose, indicating relevant files or subfolders when necessary:

9 https://github.com/IntelCompH2020/GraphAnalysisToolbox
10 https://intelcomph2020.github.io/GraphAnalysisToolbox/index.html

https://github.com/IntelCompH2020/GraphAnalysisToolbox
https://intelcomph2020.github.io/domain_classification/index.html

32

D3.7 Graph Analysis Toolbox

root

├───LICENSE: MIT license file

├───mainRDIgraphs.py: main file to start the basic console-based UI

├───mainRDIlab.py: main file to start an extended console-based UI

├───mainValidate.py: main file to start a console-based UI for graph validation

├───make_conda_environment.sh: shell script for library installation

├───README.md: markdown text file for the project presentation page in GitHub.

├───requirements.txt: file with required library information

├───setup_sphinx.sh: shell script to setup the documentation files

├───config: folder containing other configuration information

├───docs: HTML files used by Github-pages to generate the documentation pages

├───docs_all: other documentation files generated by Sphinx.

├───figures: figures used for project reports and other documents.

│ └───class_diagrams: several UML diagrams of classes from the software project.

├───rdigraphs: main code repository

│ ├───labtaskmanager.py: for tasks related to processing of multiple graphs

│ ├───sgtaskmanager.py: tasks related to supergraph generation, processing, analysis

│ ├───valtaskmanager.py: tasks related to validation of graphs

│ ├───community_plus: contains the class providing community detection algorithms

│ ├───datamanager: classes related to read/write data from/to files or databases

│ ├───menu_navigator: class to manage the user navigation through a multilevel

│ │ options menu.

│ ├───sim_graph: classes for the generation of similarity graphs

│ │ ├───sim_bigraph.py: classes for the generation of similarity graphs

│ │ ├───sim_graph.py: classes for the generation of similarity graphs

│ │ ├───th_ops.py: classes for the generation of similarity graphs

│ │ └───test: data files related to software testing

│ ├───supergraph: classes for the generation, analysis and processing of graphs,

│ │ │ bipartite graphs and supergraphs

│ │ ├───sedge.py: class for generation and processing of bipartite graphs

│ │ ├───snode.py: class for generation and processing of graphs

│ │ └───supergraph.py: class for the generation and processing of supergraphs

│ └───test: data files related to software testing

├───sphinx-settings: configuration files for the generation of documentation in docs/

└───template: ome template files used for Halo visualizations

The structure of classes of all modules in folder rdigraphs/ is shown in the UML diagram in

Figure 15. Arrows represent parent class relations and edges with diamond terminals represent

classes used by other classes.

4.1.1. Graph processing classes

Figure 15 highlights, in yellow, the main classes in relation to the generation and processing of

graphs, which are the most relevant software components to be integrated in the main

IntelComp tools. Other classes may be needed too, but they should be adapted to the specific

data structure required by the IntelComp tools, such as the Interactive Model Trainer (IMT), the

STI viewer or the Evaluation Workbench Tools (EWT). A more detailed diagram including the

main attributes and methods from each class is shown in Figure 16. These classes are described

in some detail:

33

D3.7 Graph Analysis Toolbox

Figure 15: UML diagram of classes from the graph tool.

● ThOps (rdigraphs/sim_graph/th_ops.py): a generic class for the computation of

thresholded matrix products, which is the basis for the generation of all types of

similarity graphs in the tool: document similarity graphs, author similarity graphs,

citation graphs, etc. Essentially, the class is in charge of the efficient and scalable

computation of the thresholded products

 𝑆 = 𝜙𝑡(𝑋𝑇𝑌)

where X and Y are the input matrices of embeddings and 𝜙𝑡 is the threshold function

with threshold t (that is 𝜙𝑡(𝑥) = 𝑥 · (𝑥 ≥ 𝑡), which is applied component-wise). Since

the direct computation of the above expression is infeasible for large graphs in the order

of million nodes, the output matrix is computed blockwise taking advantage of GPU

processing, if available.

● SimGraph (rdigraphs/sim_graph/sim_graph.py): this class inherits and extends

ThOps to facilitate the creation of different types of similarity graphs, using different

similarity measures or distance metrics. In addition, it takes advantage of efficient

implementation of neighbor graphs available in the Scikit-learn library.

● SimBiGraph (rdigraphs/sim_graph/sim_bigraph.py): this class inherits and extends

SimGraph to the generation of bipartite similarity graphs.

● CommunityPlus (rdigraphs/community_plus/community_plus.py): it provides

community detection algorithms for graphs. This is a wrapper class that does not contain

any proper implementation of the algorithms but provides access to different open-

source implementations from NetworkX and other external packages.

● DataGraph (rdigraphs/supergraph/snode.py): the main class for the generation and

management of supernodes (single graphs). It uses SimGraph for the generation of

similarity graphs, and CommunityPlus for the application of community detection

algorithms. Additionally includes functionality for graph edition, importation, analysis

(graph sampling, graph filtering, identification of equivalent nodes, evaluation of

community structures, etc.) and graph exportation methods.

34

D3.7 Graph Analysis Toolbox

Figure 16: Diagram of classes related to the generation, analysis and processing of graphs.

35

D3.7 Graph Analysis Toolbox

● SEdge (rdigraphs/supergraph/sedge.py): extends DataGraph to bipartite graphs

(superedges).

● SuperGraph (rdigraphs/supergraph/supergraph.py): this is the major class in the

tool. It is in charge of generating a structured collection of graphs. A supergraph is

defined as a collection of graphs (supernodes, which are objects from the DataGraph

class). The relation between supernodes is defined by bipartite graphs (superedges,

which are objects from the SEdge class). The overall supergraph structure is, thus, a

multigraph, stored in the SuperGraph.metagraph attribute, which is also a DataGraph

object.

● Validator (rdigraphs/Validator.py): this is a container class of several methods to

evaluate the quality of a collection of graphs. It can be used to (1) validate the scalability

of the graph construction with respect to the number of nodes and edges, (2) analyze

the variability of graphs caused by variation in the embedding model (e.g., the

hyperparameters of the LDA algorithm), (3) evaluate the quality of multiple graphs with

respect to a reference graph that is taken as a gold standard (e.g., to evaluate similarity

graphs of papers with respect to a co-citation reference graph). The validation

methodology implemented in this class has been tested over scientific corpora in [12].

4.1.2. Task control classes

The graph tool includes some python scripts that facilitate the generation and processing of

graphs by means of interactive menus. The tasks executed from the menus are defined by

specific methods in several task control classes, whose UML diagram is shown in Figure 17.

● MenuNavigator (rdigraphs/menu_navigator/menu_navigator.py), a class that

defines the logic for the navigation through the interactive menus. It reads the menu

structure from a configuration file, prints the available options at each time of the menu

navigation, requests the user to make successive choices during navigation and, finally,

launches the task, from the task manager, selected by the user.

● SgTaskManager (rdigraphs/sgtaskmanager.py). This class is in charge of creating the

main objects required to run a supergraph project and calling the methods required to

carry out all of the processing tasks.

● LabTaskManager (rdigraphs/labtaskmanager.py): an extension of the

SgTaskManager class that provides additional functionality for processing and

visualizing results obtained from multiple graphs, and for graph validation tasks.

● ValTaskManager (rdigraphs/valtaskmanager.py): an extension of class

SgTaskManager that provides additional functionality for validation tasks.

36

D3.7 Graph Analysis Toolbox

Figure 17: Diagram of classes related to task control.

37

D3.7 Graph Analysis Toolbox

4.1.3. Input / output classes

Finally, some additional classes have been generated in order to import and export data from

specific databases, in particular, datasets with embeddings of projects, papers and patents,

based on topic models or transformers, and citation graphs, taken from files, SQL databases or

Neo4J graph databases. All these classes are controlled or used by the DataManager class (in

rdigraphs/datamanager/datamanager.py). This is a provisional class that can be used to test the

software using particular test datasets, but it should be replaced by the appropriate I/O software

in charge of all read and write operations according to the IntelComp data structure in the

integration phases of the project. For this reason, we omit a detailed explanation of these

classes.

4.2. Software prerequisites

4.2.1. Python prerequisite packages

The software has been developed in Python, requiring some open-source libraries. These can be

found in the requirements.txt file, and installed using the following command in a terminal:

$ pip install -r requirements.txt

The main libraries required to run the python application are listed below. The table also shows

the library versions integrated in the latest code version, and its license.

Note that python 3.8 is required. The latest version of fa2, implementing the force-atlas layout
algorithm, is not available for python 3.9+. Disabling fa2 (and, thus, the force-atlas option) the
code has been successfully tested on python 3.10.

4.3. Running the application

4.3.1. Execution commands

The main goal of the graph toolbox is to provide classes and methods to be integrated in the

IntelComp main tools. However, it can be used as a standalone application through several

python scripts that can be used to explore the functionality of the software:

● mainRDIgraphs.py: to run all the basic operations with graphs, bipartite graphs

and supergraphs

● mainRDIlab.py: to run tasks involving iterations over multiple graphs

● mainValidate.py: to run specific graph validation experiments

38

D3.7 Graph Analysis Toolbox

Table 2: Python prerequisite packages.

Package Version License

dask 2022.2.1 BSD

fa2 0.3.5 GPLv3

ipython 8.6.0 BSD

leidenalg 0.9.0 GPLv3+

matplotlib 3.5.3 Python Software Foundation

NetworkX

 2.8.4 3-clause BSD

numba 0.56.3 2-clause BSD

numexpr 2.8.4 MIT

numpy 1.21.5 BSD

pandas 1.5.1 BSD

pyarrow 8.0.0 Apache Software

python 3.8.15 Python Software Foundation

python-igraph 0.10.2 GPL-2.0

python-louvain 0.15 3-clause BSD

pyyaml 6.0 MIT

Scikit-learn 1.1.3 3-clause BSD

scipy 1.9.3 3-clause BSD

seaborn 0.12.0 BSD

tqdm 4.64.1 MIT; MMPL 2.0

In order to start any version of the application, the following command needs to be executed:

$ python main_script.py

--p project_folder

--source datasets_folder

where:

- main_script is any of the executable scripts listed above.

- project_folder is the path to a new or an existing project in which the application output

will be saved.

- datasets_folder is the path to the folder containing the source data files and folders

Since mainRDIlab.py and mainValidate.py are extensions of mainRDIgraphs.py that provide

some extra functionality, we will focus the attention on mainRDIgraphs.py.

39

D3.7 Graph Analysis Toolbox

4.3.2. Startup

If the project_folder does not exist, the application creates it, along with the file and folder

structure required to store the output files. The structure of this folder will be described later.

In addition, a copy of the default configuration file (located in

config/parameters.default.yaml) is saved in the project folder with name

parameters.yaml. The list of parameters, their function, and the default values used for

application testing are shown in Annex A.

Since the user might be interested in modifying some of these parameters, the application needs

a confirmation to activate the configuration file from the user. For this reason, the first time the

application is run for a given file, only the activation of the configuration file is available, as

shown in Figure 18.

Figure 18: Startup menu. No options are available but the activation of the config file.

4.3.3. Menu navigation

After the activation, the whole set of options is available by navigating through a hierarchical

structure of menus and sub-menus. The options in the root menu of mainRDIgraphs.py are

shown in Figure 19.

Figure 19: Main menu of the command-line application.

The complete tree of options from mainRDIgraphs.py is shown in Table 3. In the table, each

option has a label and a short description. Labels in boldface are gates to further options. Shaded

40

D3.7 Graph Analysis Toolbox

labels correspond to specific tasks, which are executed by a method from the task manager

(class SgTaskManager in rdigraph/sgtaskmanager.py) with the same name as the label. In

some cases, some parameters are requested as additional options before the task is launched.

Table 3: Complete list of available options from the hierarchy of menus in mainRDIgraphs.py.
Shaded labels correspond to the methods in the task manager that runs the corresponding

task.

● [create]: Create new project [only if project_folder is not given]

● [load]: Load existing project [only if project_folder is not given]

● setup: Activate configuration file

● import_data: Import data

○ import_snode_from_table: Import nodes and features from table files

○ import_nodes_and_model: Import nodes from table files and features from npz files

○ import_co_citations_graph: Import co-citations graph from DB

○ import_node_atts: Load node attributes from SQL databases

■ Pu: Publications

■ Pr: Projects

■ Pa: Patents

○ import_agents: Import project-researchers bipartite graph from file

● manage_databases: Manage SQL or Neo4J databases

○ showSDBdata: Show SQL data sources

○ manage_Neo4J: Manage Neo4J database

■ showGDBdata: Show Neo4J Super Graph

● show_Neo4J: Overview of the whole graph databases

● show_Neo4J_snode: Show information about a snode

● show_Neo4J_sedge: Show information about a sedge

■ resetGDB: Reset Neo4J Graphs

● reset_Neo4J: Reset the whole Neo4J graph databases

● reset_Neo4J_snode: Reset a specific Neo4J snode

● reset_Neo4J_sedge: Reset a specific Neo4J sedge

■ export_graph: Export graphs to Neo4J

■ export_bigraph: Export bigraph to Neo4J

● graph_previews: Pre-visualize supergraph

○ show_SuperGraph: Show supergraph structure

○ show_snode: Quick preview of graph

○ show_sedge: Quick preview of bipartite graph

● reset_snode: Reset graph (supernode)

● reset_sedge: Reset bigraph (superedge)

● graph_tools: Graph tools

○ generate_minigraph: Generate a synthetic graph for simple testing

○ subsample_graph: Subsample snode

■ inplace: Replace the original snode

■ newgraph: Keep the original snode and create a new one

○ largest_community_subgraph: Make a subgraph with the largest community

○ remove_isolated_nodes: Remove isolated nodes

○ remove_snode_attributes: Remove attribute from graph nodes

○ disambiguate_snode: Evaluate if a node is ambiguous.

● gInference: Graph inference tools

○ equivalence_graph: Cluster equivalence classes: from A to eqA

○ infer_sim_graph: Similarity graph: from A_X to A-A

■ He: He: 1 minus squared Hellinger's distance (JS) (sklearn-based)

■ He2: He2: self implementation of He (faster)

41

D3.7 Graph Analysis Toolbox

■ BC: BC: Bhattacharyya coefficient

■ l1: l1: 1 minus l1 distance

■ JS: JS: Jensen-Shannon similarity (too slow)

■ Gauss: Gauss: An exponential function of the squared l2 distance

■ He->JS: He->JS: JS through He and a theoretical bound

■ He2->JS: He2->JS: Same as He->JS, but using implementation He2

■ l1->JS: l1->JS: JS through l1 and a theoretical bound

■ cosine: cosine: Cosine similarity

■ ncosine: ncosine: Normalized cosine similarity (rescaled to [0, 1])

○ import_and_infer_sim_graph: Import and infer Similarity graph: from A_X to A-A

■ [Same options than nfer_sim_graph]

○ infer_eq_simgraph: Equivalent Similarity graph: from A_X to eqA-eqA

■ [Same options than infer_sim_graph]

○ infer_sim_bigraph: Similarity bipartite graph: from A_X, B_X to A-B

■ He2: He2: 1 minus squared Hellinger's distance

■ He2->JS: Jensen-Shannon similarity

■ cosine: cosine: Cosine similarity

■ ncosine: ncosine: Normalized cosine similarity (rescaled to [0, 1])

○ infer_ppr_graph: PPR graph

○ inferBGfromA: Bipartite graph from attributes: from A_B to A->B

○ transduce: Transductive graph: from A-A->B to B-B

■ 1: First-order graph (for transduced similarity graphs)

■ 0: Zero-order graph (for cooperation graphs)

○ inferTransit: Transitive graph: from A->B->C to A->C

● local_graph_analysis: Local graph analysis

○ centrality: Eigenvector Centrality

○ degree: Degree Centrality

○ betweenness: Betweenness centrality

○ closeness: Closeness centrality

○ cluster_coef: Clustering Coefficient

○ pageRank: PageRank

○ katz: Katz centrality

○ abs_in_degree: Absolute (i.e. unnormalized) in-degree

○ abs_out_degree: Absolute (i.e. unnormalized) out_degree

● detectCommunities: Community detection tools

○ leiden: Leiden

○ louvain: Louvain

○ fastgreedy: Fastgreedy

○ walktrap: Walktrap

○ infomap: Infomap

○ labelprop: Label Propagation

○ kmeans: kmeans

○ aggKmeans: Agglomerative Kmeans

○ cc: Connected components

● community_metric: Evaluate community partitions

○ coverage: Coverage

○ performance: Performance

○ modularity: Modularity

● compare_communities: Compare two communities

○ vi: VI: Variation of information metric, Meila (2003)

○ nmi: NMI: Normalized mutual information, Danon et al (2005)

○ rand: RI: Rand index, Rand (1971)

○ adjusted_rand: ARI: Adjusted Rand index, Hubert and Arabie (1985)

○ split-join: SJD: Split-join distance of van Dongen (2000)

○ split-join-proj: SJP: Split-join projection of van Dongen (200)

42

D3.7 Graph Analysis Toolbox

● display_graphs: Graph visualization

○ show_top_nodes: Show top nodes ranked by attribute value

○ graph_layout: Graph layout

○ display_bigraph: Visualize bipartite graph

○ profile_node: Analyze single node over the whole supergraph

4.4. Project folder structure

If the project_folder does not exist, it is created by the application, along with the files and

folders required to store the output files and save the project status: the default structure

consists of the following:

1. parameters.yaml: the configuration file of the project.

2. metadata.pkl: a file with metadata that stores the status of the project (for internal

use of the application).

3. msgs.log: log file of the latest code execution with this project (for debugging

purposes).

4. metagraph/: it contains the files describing the supergraph structure.

5. graphs/: it contains all graphs (supernodes) from the supergraph.

6. bigraphs/: it contains all bipartite graphs (superedges) from the supergraph.

7. output/: to save some output files with some results of the graphs processing. All

results from the local graph analysis options are saved here.

8. import/: to store some data imported from other sources that could be used to create

new graphs or process existing graphs.

4.4.1. Graph folders

All data related to each graph of the supergraph is stored in a folder with the name of the graph.

For instance, if graph G1 is created, the following structure of files is added to the graphs folder.

graphs

└───G1: Name of the graph.

 ├───G1_nodes.csv [required]: table of nodes and node attributes.

 ├───G1_edges.csv [required]: table of edges and edge attributes.

 ├───G1_mdata.yml [required]: metadata about the graph generation.

 ├───feature_matrix.npz [optional]: matrix of node features.

 └───G1_mdata.gexf [optional]: graph with layout data.

Nodes and edges, including their respective attributes, are stored in csv files G1_nodes.csv and

G1_edges.csv, respectively.File G1_mdata.yml contains metadata information about the

generation of the graph and its attributes. A sample metadata file is shown in Figure 20(left), for

a similarity graph of 42069 nodes. It contains general information about the graph, nodes, edges

and the community detection algorithms applied over the graph.

The matrix of node features (feature_matrix.npz) is optionally saved when nodes have a

vector-space representation, after the computation of similarity graphs.

43

D3.7 Graph Analysis Toolbox

File G1_mdata.gexf is optionally saved by the layout method, to save the spatial coordinates

and the colors of the nodes in GEXF format, to facilitate a later visualization.

Figure 20: (Left) Sample metadata file of a similarity graph with 42069 nodes with 2 node
attributes computed from community detection algorithms. (Right) Sample metadata of a

bipartite graph. Source nodes are Semantic Scholar paper, target nodes are the Louvain

4.4.2. Bipartite Graph folders

Bipartite graph folders (superedges of the supergraph) have a similar structure to the graphs,

but with an additional, optional, file holding information for halo visualization.

bigraphs

└───G2: Name of the bipartite graph.

 ├───G2_nodes.csv [required]: table of nodes and node attributes.

 ├───G2_edges.csv [required]: table of edges and edge attributes.

 ├───G2_mdata.yml [required]: metadata about the graph generation.

 ├───feature_matrix.npz [optional]: matrix of node features.

 ├───G2_mdata.gexf [optional]: graph data for visualization in Gephi.

 └───halo_G2.csv [optional]: metadata about the graph generation.

44

D3.7 Graph Analysis Toolbox

A sample metadata file of a bipartite graph is shown in Figure 20 (right): the graph connects

680302 papers from Semantic Scholar with the Louvain communities computed over a similarity

graph.

4.4.3. Metagraph folder

The metagraph folder contains the files describing the whole supergraph structure. Therefore,

it contains information about all the graphs and bipartite graphs in the project, and the relations

between them. Since the supergraph is itself a graph, the folder structure is similar to that of

any other graph

metagraph

 ├───metagraph_nodes.csv [required]: table of nodes and node attributes.

 ├───metagraph_edges.csv [required]: table of edges and edge attributes.

 └───metagraph_mdata.yml [required]: metadata about the graph generation.

As an illustration, Figure 21 and Figure 22 show the file of nodes and edges, respectively, of a

supergraph with 7 supernodes and 4 superedges. Figure 21 shows that 3 supernodes in the

supergraph are similarity graphs computed from CORDIS projects and Semantic Scholar (SS)

papers. Two transductive graphs of communities have been computed from CORDIS using the

louvain and walktrap algorithms. Furthermore, two second-level transductive graphs of

communities have been computed as the transduction over these community graphs. Figure 22

shows the superedges connecting the CORDIS graph with the 1st level transductive graphs, and

the superedges connecting the first level transductive graphs with their corresponding second-

level graphs.

Figure 21: Sample file of nodes (metagraph_nodes.csv) from a supergraph. Each node of the

supergraph represents a graph.

Figure 22: Sample file of edges (metagraph_edges.csv) from a supergraph. Each edge of the

supergraph represents a bipartite graph. In the example, all bipartite graphs were computed
by connecting each node to its community, according to a community detection algorithm.

45

D3.7 Graph Analysis Toolbox

5. CONCLUSIONS

This document describes the Graph Analysis toolbox that has been developed for Task

T3.7 of the IntelComp project. The toolbox has been developed using python and

provides methods for the generation of graphs from feature vectors, tools to use

metadata as the basis of new graphs and methods to generate new graphs as a

combination of other graphs.

Although the toolbox can be used generally for any type of data sources, it is specially

oriented to the processing and analysis of large corpora of scientific documents. Starting

from a given corpus of scientific documents (projects, papers, patents, etc.) from a

scientific field, the tools can be used to generate graphs describing the semantic

similarity relations between documents, infer graphs connecting authors according to

different types of relations (research affinity, cooperation, co-citation, etc.), and also

infer graphs associated to other metadata in the corpus (affiliation, funding

organizations, keywords, etc.). Additional analysis tools for node profiling and

centralization measures can be used to identify the main features of documents, authors

or other metadata based on the structure of their connections in the graph.

The software has a modular structure and has been oriented to facilitate the integration

of the key components into the main IntelComp tools. Moreover, a complete python

application has been developed, and all the software functionalities can be exploited by

using a terminal-based interface, allowing its integration in automated scripted

processes and by user friendlier navigation through a menu hierarchy.

6. REFERENCES

[1] Liu, T., Moore, A. W., & Gray, A. (2006). New Algorithms for Efficient High-Dimensional
Nonparametric Classification. Journal of Machine Learning Research, 7, 1135-1158.

[2] Meila, M., “Comparing clusterings by the variation of information”. In: B. Scholkopf, M.K.
Warmuth (eds). Learning Theory and Kernel Machines: 16th Annual Conf. on
Computational Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003,
Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003.

[3] van Dongen, D., “Performance criteria for graph clustering and Markov cluster
experiments”. Technical Report INS-R0012, National Research Institute for Mathematics
and Computer Science in the Netherlands, Amsterdam, May 2000.

[4] Danon, L., Díaz-Guilera, A., Duch, J., Arenas, A., “Comparing community structure
identification”. J Stat Mech P09008, 2005.

46

D3.7 Graph Analysis Toolbox

[5] Rand, W.M., “Objective criteria for the evaluation of clustering methods”, J Am Stat
Assoc 66 (336): 846-850, 1971.

[6] Hubert, L., Arabie, P., “Comparing partitions”. Journal of Classification, 2:193-218, 1985.

[7] U. Brandes, (2001). A faster algorithm for betweenness centrality. Journal of
mathematical sociology, 25(2), 163-177.

[8] M. Latapy, (2008). Main-memory triangle computations for very large (sparse (power-
law)) graphs. Theoretical Computer Science, 407(1-3), 458-473.

[9] P. Bonacich (1986): Power and Centrality: A Family of Measures. American Journal of
Sociology 92(5):1170–1182.

[10] L. Page, S. Brin, R. Motwani, T. Winograd (1999). The PageRank citation ranking:
Bringing order to the web. Stanford InfoLab.

[11] L. Katz (1953): A New Status Index Derived from Sociometric Index. Psychometrika
18(1):39–43.

[12] Vázquez, M. A., Pereira-Delgado, J., Cid-Sueiro, J., & Arenas-García, J. (2022). Validation
of scientific topic models using graph analysis and corpus metadata. Scientometrics, 127
(9), 5441-5458.

47

D3.7 Graph Analysis Toolbox

7. ANNEXES

A. Default Configuration File.

The first time the application is run, a copy of the configuration file is stored in the project folder

with name parameters.yaml. Table 4 shows the list of parameters, their function, and the

default values used for application testing.

Table 4: Default configuration file. Comments explain the meaning of each parameter.

Path to Halo software

path2halo: '../myhalo'

Parameters for algorithms

algorithms:

 # Size of blocks for the computation of similarity graphs. 25_000 is

 # ok for computation in a standard PC. Larger values may cause large

 # processing times caused by memory swapping.

 blocksize: 25_000

 # If True, cupy library will be used when possible

 useGPU: False

 # If True, affinities for similarity graphs are computed from

 # distances by rescaling values so that the minimum is zero and

 # maximum is 1.

 rescale: False

Parameters for model validation

validate_all_models:

 spf: 1 # Sampling factor

 rescale: False

 n_edges_t: 100_000

 g: 1

 # Average number of edges per node in the graphs used for validation

 epn: 100 # Average

 # Prefix of the names of the reference graphs

 ref_graph_prefix: RG

 # Size of the initial set of nodes (only for some databases)

 # 4-5 times ref_graph_nodes_target is ok.

 ref_graph_nodes_init: 100000

 # Target number of nodes in the reference graph

 ref_graph_nodes_target: 20000

 # Target average number of edges per node in the reference graph

 ref_graph_epn: 100

SQL and Graph DataBases

connections:

 SQL:

 # Select the databases to be used in the project.

 db_selection:

 # Each selection must have the form:

 # label: db_name

 # where label is a mnemonic used to identify the database, and

 # db_name is the name of the db below. You can select different

 # dbs for projects, patents, publications & companies as

 # Pr: db_name01

 # Pa: db_name02

 # Pu: db_name03

 # Co: db_name04

 # where db_name01, db_name02, must be the

 databases:

48

D3.7 Graph Analysis Toolbox

 # Here, you can include a complete list of available databases.

 # Only those included in db_selection (above) will be connected.

 # The key of each DB is the name of the DB as specified

when opening the connection. For instance:

 # db_name01:

 # category: Pr # Type of database

 # connector: &sql_con mysql # Use & to allow dereferencing

 # server: &sql_server hal01.tsc.uc3m.es # Your server address

 # user: &sql_user username # Write username here

 # password: &sql_password xxxxxxxx # Write password here

 # Uncomment an set neo4j parameters if available

 # neo4j:

 # server: xxxxxxx # Write server here

 # user: neo4j # Write username here

 # password: xxxxxx # Write password here

Specify format for the log outputs

logformat:

 filename: msgs.log

 datefmt: '%m-%d %H:%M:%S'

 file_format: '%(asctime)s %(levelname)-8s %(message)s'

 file_level: INFO

 cons_level: DEBUG

 cons_format: '%(levelname)-8s %(message)s'

