A 1D Combined Multifluid-Population Balance Model for the Simulation of Batch Bubble Columns

F. Breit¹, A. Mühlbauer¹, E. von Harbou², M. W. Hlawitschka³, H.-J. Bart¹

1 Lehrstuhl für Thermische Verfahrenstechnik, Technische Universität Kaiserslautern 2 Laboratory of Reaction and Fluid Process Engineering, Technische Universität Kaiserslautern 3 Institut für Verfahrenstechnik, Johannes-Kepler-Universität Linz

Bubble columns are widely used as multiphase reactors for gas-liquid reactions in industrial applications.

It is important for the **design engineer** to be able to determine the general **influence** of the **geometry** (e.g. diameter and height) and the **process conditions** (e.g. power input) on the behavior of the reactor at an early stage of **process development**. Thus a model is needed that should be:

> at three gas volume fluxes $j_{\rm d}$ = (2.0, 3.0, 4.0) cm s⁻¹

■ **Fast** and **reliable**;

- Incorporates **couplings** between the **fluid dynamics**, the **population balance equation** (PBE) and the **thermodynamics**;
- **Easy** to calibrate.

- **Continuous representation** of the BSD in *d*_n and *z.*
- The exp. BSD are well reproduced through calibration.
- **Various breakage** and coalescence models give similar results.
- New approach for the calculation of integral gas holdup could be **predictively confirmed**.

The authors gratefully acknowledge the support given by the Deutsche Forschungsgemeinschaft (DFG) funded Research Training Group RTG 1932 "Stochastic Models for Innovations in the Engineering Sciences".

Laboratories of Reaction and \mathcal{C}_0^{∞} Process Engineering **Fluid Process Engineering** Laboratory of Reaction and Prof. Dr.-Ing. Erik von Harbou

Results

Mathematical Model

Conclusion Future Research

- 1D steady-state **combined multifluid-PBE** model is able to describe a batch BC up to the **transition regime**.
- **Fast** parameter calibration, simulation and sensitivity analysis are possible.
- Reliable **deep insights** into complex multiphase systems.
- The developed model represents a **valuable tool** in process development.
- Further test of the **scalability** of the calibrated parameters.
- Extension to **reactive systems**.
- Extension to other reactor types.

Dispersed gas phase from the kinetic theory approach [1] with size resolution (KTAWSR) :

Population Balance Equation:

 $\frac{\partial}{\partial z}\Big[u_{\rm d}(d_{\rm d},z)q_{\rm d,m}(d_{\rm d},z) \Big] - \left(\frac{q_{\rm d,m}(d_{\rm d},z) u_{\rm d}(d_{\rm d},z)}{\rho_{\rm d}(z)} \frac{\partial \rho_{\rm d}(z)}{\partial z} \right) - \frac{3}{d_{\rm d}}d_{\rm d}(d_{\rm d},z) (d_{\rm d},z)$ $+\frac{\partial}{\partial d_{\rm d}}\left[d_{\rm d}(d_{\rm d},z)q_{\rm d,m}(d_{\rm d},z)\right] = -B_{\rm D}(d_{\rm d},z) + B_{\rm B}(d_{\rm d},z) - C_{\rm D}(d_{\rm d},z) + C_{\rm B}(d_{\rm d},z)$

Experimental Setup

Momentum:

$$
u_{d}(d_{d},z)q_{d,m}(d_{d},z)\frac{\partial u_{d}(d_{d},z)}{\partial z}+d_{d}(d_{d},z)q_{d,m}(d_{d},z)\frac{\partial u_{d}(d_{d},z)}{\partial d_{d}}=-\frac{q_{d,m}(d_{d},z)}{\rho_{d}(z)}\frac{\partial p(z)}{\partial z}+\frac{\partial}{\partial z}\left[\frac{q_{d,m}(d_{d},z)}{\rho_{d}(z)}\mu_{d}\frac{\partial u_{d}(d_{d},z)}{\partial z}\right]-q_{d,m}(d_{d},z)g+m_{d}(d_{d},z)
$$

Continuous Liquid phase from the mutlifluid model

Measurement of the:

- **Integral gas holdup**
- **Bubble size distribution (BSD)**

- at four axial positions
- *z* = (20, 30, 60, 105) cm

in a **DN100** batch **water-air** bubble column.

Motivation

[1] J. Solsvik, H.A. Jakobsen (2014), J. Dispers. Sci. Technol. 35(11), 1611–1625.