Supporting Information

Development of novel Pt(IV)-Carbohydrate derivatives as targeted anticancer agents against Osteosarcoma

Eoin Moynihan, Silvia Panseri, Giada Bassi, Arianna Rossi, Elisabetta Campodoni, Eithne Dempsey, Monica Montesi, Trinidad Velasco Torrijos, Diego Montagner

NMR Spectra

Figure S1b: ¹³C NMR spectrum of **11** in D₂O

Figure S1c: COSY NMR spectrum of 11 in D₂O

Figure S1d: HSQC NMR spectrum of 11 in D₂O

Figure S1e: HMBC NMR spectrum of 11 in D₂O

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (βρm)

Figure S2b: 13 C NMR spectrum of 12 in D₂O

Figure S2c: COSY NMR spectrum of 12 in D₂O

Figure S2d: HSQC NMR spectrum of 12 in D₂O

Figure S2e: HMBC NMR spectrum of 12 in D_2O

Figure S3a: ¹H NMR spectrum of 21 in D₂O

230 220 210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm)

Figure S3c: COSY NMR spectrum of 21 in D₂O

Figure S3d: HSQC NMR spectrum of 21 in D₂O

Figure S3e: HMBC NMR spectrum of 21 in D₂O

Figure S3f: DEPT-135 NMR spectrum of 21 in D₂O

Figure S4a: ¹H NMR spectrum of 22 in D₂O

Figure S4c: COSY NMR spectrum of 22 in D_2O

Figure S4d: HSQC NMR spectrum of 22 in D₂O

Figure S4e: HMBC NMR spectrum of 22 in D₂O

Figure S5b: ¹³C NMR spectrum of **13** in DMSO

Figure S5c: COSY NMR spectrum of 13 in DMSO

Figure S5d: HSQC NMR spectrum of 13 in DMSO

Figure S5e: HMBC NMR spectrum of 13 in DMSO

Figure S6a: ¹H NMR spectrum of **14** in DMSO

Figure S6b: ¹³C NMR spectrum of **14** in DMSO

Figure S6c: COSY NMR spectrum of 14 in DMSO

Figure S7a: ¹H NMR spectrum of 23 in DMSO

Figure S7b: ¹³C NMR spectrum of 23 in DMSO

Figure S7c: COSY NMR spectrum of 23 in DMSO

Figure S7d: HSQC NMR spectrum of 23 in DMSO

Figure S7e: HMBC NMR spectrum of 23 in DMSO

Figure S7f: DEPT-135 NMR spectrum of 23 in DMSO

Figure S8b: ¹³C NMR spectrum of 24 in DMSO

Figure S8c: COSY NMR spectrum of 24 in DMSO

Figure S8d: HSQC NMR spectrum of 24 in DMSO

Figure S8e: HMBC NMR spectrum of 24 in DMSO

Figure S8f: DEPT-135 NMR spectrum of 24 in DMSO

Figure S9a: ¹H NMR spectrum of **1** in DMSO

Figure S9b: ¹³C NMR spectrum of 1 in DMSO

Figure S9c: COSY NMR spectrum of 1 in DMSO

Figure S9d: HSQC NMR spectrum of 1 in DMSO

Figure S9f: ¹⁹⁵Pt NMR spectrum of 1 in DMSO

Figure S10a: ¹H NMR spectrum of 2 in DMSO

Figure S10b: ¹³C NMR spectrum of 2 in DMSO

Figure S10c: COSY NMR spectrum of 2 in DMSO

Figure S10d: HSQC NMR spectrum of 2 in DMSO

Figure S10f: ¹⁹⁵Pt NMR spectrum of 2 in DMSO

Figure S11a: ¹H NMR spectrum of 3 in DMSO

Figure S11b: ¹³C NMR spectrum of 3 in DMSO

Figure S11c: COSY NMR spectrum of 3 in DMSO

Figure S11d: HSQC NMR spectrum of 3 in DMSO

Figure S11f: ¹⁹⁵Pt NMR spectrum of 3 in DMSO

Figure S12a: ¹H NMR spectrum of 4 in DMSO

Figure S12b: ¹³C NMR spectrum of 4 in DMSO

Figure S12c: COSY NMR spectrum of 4 in DMSO

Figure S12d: HSQC NMR spectrum of 4 in DMSO

Figure S12f: ¹⁹⁵Pt NMR spectrum of 4 in DMSO

Figure S13: HR-MS spectrum of 1

Figure S15: HR-MS spectrum of 3

Figure S16: HR-MS spectrum of 4

Stability

Figure S17a: ¹H NMR of 1 in DMSO and PBS buffer at 0 and 96 hours.

Figure S17b: ¹³C NMR of 1 in DMSO and PBS buffer at 0 and 96 hours.

Figure S17c: ¹⁹⁵Pt NMR of 1 in DMSO and PBS buffer at 0 and 96 hours

Figure S17d: ¹H NMR of 3 in DMSO and PBS buffer at 0 and 96 hours

Figure S17e: ¹³C NMR of 3 in DMSO and PBS buffer at 0 and 96 hours.

Figure S17f: ¹⁹⁵Pt NMR of 3 in DMSO and PBS at 0 and 96 hours.

Cyclic Voltammetry

Figure S18: Cyclic voltammogram of Complex 1 and ligand 11

Figure S19: Cyclic voltammogram of Complex 3 and ligand 21

Reduction Study

Figure S20: ¹H-NMR spectra of the complex **3** with addition of 10 eq. of ascorbic acid. NMR spectra were collected every 7minutes for 30 minutes and then every hour for 3 hours and finally left to reduce for 2 days.

Biological Figures

Figure S21: 2D in vitro screening of complexes 1-4 on MG63 cell line by MTT assay and IC₅₀ (μ M) values. Doseresponse curves used to generate IC₅₀ (μ M) for complexes 1 (a), 2 (b), 3 (c) and 4 (d), and for cisplatin (e) inhibitor activity on cell viability of MG63 cell line. The Log[concentration] in μ M and the normalized response (%) of survival fraction of cells are reported on X and Y asses, respectively. For each complex, the curve interpolation with 50% survival cells is highlighted in Y dotted line and correspond to its LogIC₅₀. A comparison of all doseresponse curves is reported (f).

Figure S22: 2D in vitro screening of complexes 1-4 on SAOS-2 cell line by MTT assay and IC₅₀ (μ M) values. Doseresponse curves used to generate IC₅₀ (μ M) for complexes 1 (a), 2 (b), 3 (c) and 4 (d), and for cisplatin (e) inhibitor activity on cell viability of SAOS-2 cell line. The Log[concentration] in μ M and the normalized response (%) of survival fraction of cells are reported on X and Y asses, respectively. For each complex, the curve interpolation with 50% survival cells is highlighted in Y dotted line and correspond to its LogIC₅₀. A comparison of all doseresponse curves is reported (f).

Figure S23: 2D in vitro screening of complexes 1-4 on hFOBs cell line by MTT assay and IC₅₀ (μ M) values. Doseresponse curves used to generate IC₅₀ (μ M) for complexes 1 (a), 2 (b), 3 (c) and 4 (d), and for cisplatin (e) inhibitor activity on cell viability of hFOBs cell line. The Log[concentration] in μ M and the normalized response (%) of survival fraction of cells are reported on X and Y asses, respectively. For each complex, the curve interpolation with 50% survival cells is highlighted in Y dotted line and correspond to its LogIC₅₀. A comparison of all doseresponse curves is reported (f).

Figure S24: Actin and DAPI staining of 2D *in vitro* screening of complexes **1-4.** The cell morphology evaluation of MG63 (A – F), SAOS-2 (G – L) and hFOBs (M – R) cell lines cultured with complexes 1-4 and cisplatin are reported in the figure. For SAOS-2 and hFOBs 30 μ M concentration was selected for the analysis, while 60 μ M is reported for MG63 cells. F actin filaments in Phalloidin (Green) and cell nuclei in DAPI (Blue). Scale bars 200 μ m.

Figure S25: Anti-cancerous effect of cisplatin on 3D OS model versus 2D cell culture. Cell viability evaluation at day 1, 4 and 7 of culture by MTT assay. Data are reported in the graph as percentage (%) mean \pm standard deviation. Significant differences of cisplatin cytotoxicity between different cell culture systems are reported in the graph at each time point ****p value ≤ 0.0001 .

Figure S26: Actin and DAPI staining of *in vitro* 3D tumour-engineered models of osteosarcoma. Cell morphology evaluation of 3D tumour engineered models of MG63 cells after 72 hours in the presence of complex 1 (a;b), 2 (c;d), 3 (e;f), 4 (g;h) and cisplatin (i;j), and without any drug (k). F-Actin filaments in green (FITC) and cell nuclei in blue (DAPI). Scale bars 50 µm.