
Ref. Ares(2019)5528626 - 02/09/2019

1

D2.3 – Deployment of intermediate version of

hybrid open cloud and processing middleware

Project Full Title: PRedictive In-silico Multiscale Analytics to support cancer personalized
diaGnosis and prognosis, Empowered by imaging biomarkers

Project acronym: PRIMAGE

Project type: Horizon 2020 | RIA (Topic SC1-DTH-07-2018)
Grant agreement no: 826494

Document information:

Deliverable no. D2.3

Title Deployment of Intermediate version of hybrid open cloud and

processing middleware

Work Package WP2
Dissemination level PU

Nature O
Responsible partner UPV-I3M
Main Contact person iblanque@dsic.upv.es dquilis@dsic.upv.es

DOI 10.5281/zenodo.7777471

 Deliverable due

submission date
31/08/2019

Deliverable actual

submission date
02/09/2019

This work is licensed under CC BY-NC-SA 4.0.
To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/4.0/

History of changes:

Change explanation Pages
affected

Change made by (Name & surname) Date

Table of contents and
complete initial version

All document Ignacio Blanquer (UPV), J. Damian
Segrelles (UPV)

29/7/2019

Description of the
architecture

Sections 2-3 Ignacio Blanquer (UPV) 30/7/2019

Interactive Application Section 4 Ignacio Blanquer (UPV) 31/7/2019
Introduction and

Conclusions
Sections 1, 5 Ignacio Blanquer (UPV) 31/7/2019

A High-Throughput
Compute Batch job

Application

Section 4 J. Damian Segrelles (UPV) 12/8/2019

List of Abbreviations 1 J. Damian Segrelles (UPV) 19/8/2019
Improvements All J. Damian Segrelles (UPV) 19/8/2019

Proofreading All J. Damian Segrelles (UPV) 30/8/2019

2

Table of Contents
1. INTRODUCTION 5

1.1. Scope of the document 5

1.2. Target Audience 5

1.3. Structure of the document 5

2. Software Architecture Proposal 6

2.1. Security Components 6

2.2. Data Storage Components 8

2.3. Processing Components 9

3. Software Repositories, Documentation and Endpoints 13

3.1. Repositories for the project 13

3.2. Computing Back-end 13

3.3. Storage Back-end 13

4. Implementation of Sample applications 15

4.1. Application 1. A High-Throughput Compute Batch job 15

4.2. Application 2. An interactive application. 17

5. Conclusion 20

6. Acronyms and Abbreviations 21

3

Disclaimer

The opinions stated in this report reflects the opinions of the authors and not the opinion of the European
Commission.

All intellectual property rights are owned by the consortium of PRIMAGE under terms stated in their
Consortium Agreement and are protected by the applicable laws. Reproduction is not authorized without prior
written agreement. The commercial use of any information contained in this document may require a license
from the owner of the information.

Acknowledgement

This document is a deliverable of the PRIMAGE project. This project has received funding from the European
Union´s Horizon2020 research and innovation programme under grant agreement no.: 826494.

4

1. Introduction
The objective of this deliverable is to show in practical terms the deployment of PRIMAGE (​PRedictive In-silico
Multiscale Analytics to support cancer personalized diaGnosis and prognosis) applications and services on top of
a public cloud offering. The deliverable is of type “Other”, which relates to a prototype. This report is an
explanatory guide and a reference document for understanding and using the prototype.

1.1. Scope of the document

This document constitutes the third deliverable of WP2. It covers a first preliminary prototype that addresses a
set of fundamental and mandatory requirements needed for the implementation of the applications in
PRIMAGE. The document comprises the procedures that a user should follow to grant access to the
resources, the URLs for the repositories of software, configuration descriptions and binaries, as well as the
key services of this first version of the PRIMAGE platform.

1.2. Target Audience

The document is mainly intended for internal use, although it is publicly released. The main target of this
document is the global team of technical experts of the PRIMAGE project that will access and use the
resources. It also serves to the dissemination and exploitation partners to understand the relations with other
projects in the landscape of EOSC (​European Open Science Cloud)​.

1.3. Structure of the document

This document is organised in 6 sections, starting with this introduction. Section 2 summarizes the software
architecture proposal, with special attention to the three layers (security, storage and processing), identifying
the actual components to be used. Section 3 describes the repositories and URLs to be used in the frame of
the project, and section 4 describes two canonical applications that can be used as examples. Finally, section
5 presents the conclusions and section 6 includes some references and acronyms.

5

2. Software Architecture Proposal
This section details the software architecture for the PRIMAGE platform. The details on the requirements, use
cases and selection of technologies are given in deliverable D2.2. In this section, the components selected for
each one of the services identified in the architecture will be described. First, an overview of the architecture
is given in ​figure 1​. The architecture identifies two types of resources and services. On one hand, cloud
services deal with the resources related to the cloud offering. On the other hand, HPC (​High Performance
Computing) services interact with the supercomputer Prometheus. This deliverable will focus mainly on the
cloud-based services. The Datacloud and processing architecture must provide resources to store data, host
PRIMAGE services, run processing pipelines and guarantee the security of the system.

Figure 1​. Overview of the Cloud platform architecture.

2.1. Security Components

The security components proposed at the security architecture (see ​figure 2​) will guarantee that all users
accessing the services are properly authenticated and authorised. For this purpose PRIMAGE selected the
EGI-Checkin service (​Authentication and Authorisation (​AA) Service in ​figure 1​), available in the EOSC
marketplace (​https://marketplace.eosc-portal.eu/services/egi-check-in​), as it is widely supported by the EU
Research Infrastructures and compatible with the main European academic authentication services. This first
version of the platform will support the following requirements (see Deliverable D2.2 for more details):

- R3.1. Restrict access to applications.
- R3.2. Restrict access to job manager services.
- R3.3. Restrict access to platform services.
- R3.4. Restrict access to infrastructure services.
- R3.5. Restrict access to storages.

6

https://marketplace.eosc-portal.eu/services/egi-check-in

Figure 2​. Security architecture​.

In order to use the services two different options are possible::

- Create an EGI (​European Grid Infrastructure) SSO (​Single Sign On) account using the link
https://sso.egi.eu/admin/email and follow the steps. After a short evaluation process, the account will
be activated and the services will be accessible.

- Get authenticated throughout an existing IdP (​Identity Provider)​ in ​https://aai.egi.eu​.

Figure 3​ shows two snapshots of the account creation.

Figure 3​. Account creation snapshots​.

7

https://sso.egi.eu/admin/email
https://aai.egi.eu/

Once the user has been created, she will need to request the membership to the PRIMAGE_Project Check-in
Group. This project is managed by UPV, and should be requested to ​dquilis@dsic.upv.es​. In this request, the
new user should provide the unique user name and the purpose of such access (e.g. the task where the user
will develop her work).

The group admin will add the user to the group, so she can access the services directly. ​Figure 4 shows the
process for adding a user to the group.

https://aai.egi.eu/registry/co_group_members/select/co:2/cogroup:118/Search.familyNameStart:c https://aai.egi.eu/registry/co_groups/edit/118/co:2

Figure 4​.​ Administrative interface for adding the user Miguel Caballer to the PRIMAGE_Project group.

2.2. Data Storage Components

According to the Requirements and the Use Cases identified in Deliverable D2.2, data storage in PRIMAGE
must give access to data through standard protocols such as POSIX (​Portable Operating System Interface)​.
Depending on the application behaviour, data should be transferred in advance and copied locally or data
could accessible remotely.

For this purpose PRIMAGE selects the use of ONEDATA (​Global Data Access Solution for Science)
(​https://www.onedata.org/​) as it is a technology integrated in EGI-Datahub, well known by the two partners
leading WP2. It supports diverse back-end technologies (including S3) and provides POSIX mounted
volumes. ONEDATA is secure and multitenant and it can be configured to provide near cache and the
integration of local volumes.

Figure 5 shows the data storage architecture. This architecture considers the use cases to be supported in
the first version of the platform and will support the following requirements (see Deliverable D2.2 for more
details):

- R2.1. Create a Persistent storage.
- R2.2. Mount a Persistent storage on a running application.
- R2.3. Mount a Persistent storage on a local computer.

8

mailto:dquilis@dsic.upv.es
https://aai.egi.eu/registry/co_group_members/select/co:2/cogroup:118/Search.familyNameStart:c
https://aai.egi.eu/registry/co_groups/edit/118/co:2
https://www.onedata.org/

Figure 5​. Storage services Architecture.

The storage objects are created by users who act with the role of data manager (who provides raw or curated
data so that the services of the PRIMAGE platform can access them). It is important to indicate that an
application administrator can act as a data administrator when requesting persistent storage for applications
to install. Conceptually, we distinguish between persistent shared and private storage, although technically
both are the same type of object and are provided by ONEDATA.

Once a persistent storage object is created on the platform, it must be accessible as a POSIX volume in
applications deployed in cloud services. In addition, the data must be able to be downloaded to access
resources that are not closely linked to data storage resources or due to network access limitations.

Data volumes must be shared, so that different applications from different users can access storage for
inspection, download or even editing. Authentication will be provided by the central authentication service and
authorization (see ​figure 2​) will be managed at the storage resource level (for example, sharing access
tokens).

2.3. Processing Components

Closely related to the storage, processing components will deal with the orchestration of resources and the
execution of the different types of jobs, such as batch, HTC (​High-Throughput Computing)​, parallel and
interactive. First, in ​figure 6​, it is defined the architecture for the deployment of applications and then, in figure
7, it is shown the architecture for the execution of jobs.

9

Figure 6​. Deployment of applications (services, frameworks) on the cloud resources.

The requirements (see Deliverable D2.2 for more details) that will be addressed in this first version of the
prototype will be:

- R1.1. Application Deployment
- R1.2. Application Undeployment
- R1.3. List Applications
- R1.4. Inspect Application
- R1.5. Reconfigure Application
- R1.8. Automatic build of containers
- R1.9. Provide a private Registry
- R1.11. Submit a batch application
- R1.12. Submit an HTC application
- R1.13. Submit an interactive application
- R1.17. List applications submitted
- R1.18. Delete an application
- R1.19. Retrieve output of an application

Applications to be deployed in the cloud will be embedded as containers and application topologies are coded
into templates. An application will comprise three parts:

● The application template, either coded into OASIS (​Organization for the Advancement of Structured
Information Standards) TOSCA (​Topology and Orchestration Specification for Cloud Applications​) or
RADL (​Resource and Application Description Language)​, which describes the topology of the
application as a combination of nodes and configuration relations. Application templates will be mostly
platform-agnostic and will be available in the code repositories (see next section).

10

● Configuration recipes with the necessary information to configure and install the software
dependencies expressed in the application templates. Basically, recipes for the installation of
Kubernetes will be provided and stored in the Ansible Galaxy Repository . 1 2

● Container descriptions, with the application-specific software dependencies, which code the
dependencies at service level.

For the deployment of applications, EC3 (​Elastic Compute Cluster in the Cloud) LTOS (​Long Tail Of Science)
portal will be used, which deploys the Virtual Infrastructures in EGI Compute Cloud. ​Figure 7 shows several
steps on the deployment of a K8s (​Kubernetes)​ cluster.

Figure 7​. Deployment service through the EC3 Dashboard.

The execution of jobs will be performed through Kubernetes. Kubernetes applications can be batch
applications, HTC applications and interactive services. Therefore, it is a convenient backend for dealing with
the requirements of the different types of applications in PRIMAGE. HTC batch applications can be coded as
Kubernetes Jobs and interactive services as Statefulsets. K8s services can be created to provide external
connectivity for interactive applications. Detailed descriptions are given in the last section of the document.

1 ​https://github.com/indigo-dc/tosca-types/blob/master/examples/kubernetes_cluster.yaml
2 ​https://galaxy.ansible.com/indigo-dc/kubernetes​ and ​https://github.com/indigo-dc/ansible-role-kubernetes

11

https://github.com/indigo-dc/tosca-types/blob/master/examples/kubernetes_cluster.yaml
https://galaxy.ansible.com/indigo-dc/kubernetes
https://github.com/indigo-dc/ansible-role-kubernetes

Figure 8​. Architecture for​ ​the execution of jobs on the PRIMAGE platform.

12

3. Software Repositories, Documentation
and Endpoints
This section includes the references to the software repositories, documentation repositories and service
endpoints that will be used in the project. This should be carefully read by the developers of new applications.

3.1. Repositories for the project

The list of repositories of the project are the following:

- Source code repositories (​https://gitlab.com/primageproject​)
- ec3client (​https://gitlab.com/primageproject/ec3client​). Customized tool to deploy elastic

kubernetes clusters in the cloud backends of PRIMAGE.
- Containers (​https://gitlab.com/primageproject/containers​). Container specifications for the

dependencies of the applications to be run in the infrastructure.
- Example of an image processing application to demonstrate the functionality of the platform

(​https://plg-cyfronet-01.datahub.egi.eu/#/onedata/data/a3f6c83ea357807e5ed5e3e8821ca048
/Z3VpZCNzcGFjZV9hM2Y2YzgzZWEzNTc4MDdlNWVkNWUzZTg4MjFjYTA0OCNhM2Y2Yzg
zZWEzNTc4MDdlNWVkNWUzZTg4MjFjYTA0OA​). Code for the application for the
segmentation of Neuroblastoma tumours, see the details for accessing the files in section 3.3.

- Binary repositories (​https://hub.docker.com/u/primage​). Organization for the Docker images used for
the execution of the containers.

- Documentation (​https://gitlab.com/primageproject/documentation​). A repository where documentation
on how to use the platform is being collected.

3.2. Computing Back-end

The default computing back-end will be the EGI Cloud Compute. EGI Cloud Compute is an EOSC service 3

that comprises a wide set of federated IaaS (​Infrastructure as a Service) resources. In the period June
2018-July 2019, EGI Cloud Compute served more than 26 million CPU hours.

EGI Cloud compute can be easily accessed through the EGI applications on demand service
(​https://marketplace.egi.eu/42-applications-on-demand-beta​). ​How to access one data files are described in
3.3. EGI Applications on demand is an exploratory service for new communities that want to start using EGI
Cloud Compute. This way, a user community can tune up and mature their services before scaling up to a
production platform. The access to the resources is granted for free if registered in the EGI AAI (​Authentication
and Authorisation Infrastructure)​ system.

As the cloud orchestrator services are platform-agnostic, the applications can be deployed elsewhere
requiring minimal changes. The final production back-end of the platform will be evaluated in the
sustainability plan.

3.3. Storage Back-end

For the storage backend, the project selects using EGI Data Hub, an EOSC service listed in the EOSC
marketplace, despite the deployment system is platform agnostic and it could be reproduced in other IaaS
platform. EGI Data Hub is available in ​https://datahub.egi.eu/​.

3 ​https://marketplace.eosc-portal.eu/services/egi-cloud-compute

13

https://gitlab.com/primageproject
https://gitlab.com/primageproject/ec3client
https://gitlab.com/primageproject/containers
https://plg-cyfronet-01.datahub.egi.eu/#/onedata/data/a3f6c83ea357807e5ed5e3e8821ca048/Z3VpZCNzcGFjZV9hM2Y2YzgzZWEzNTc4MDdlNWVkNWUzZTg4MjFjYTA0OCNhM2Y2YzgzZWEzNTc4MDdlNWVkNWUzZTg4MjFjYTA0OA
https://plg-cyfronet-01.datahub.egi.eu/#/onedata/data/a3f6c83ea357807e5ed5e3e8821ca048/Z3VpZCNzcGFjZV9hM2Y2YzgzZWEzNTc4MDdlNWVkNWUzZTg4MjFjYTA0OCNhM2Y2YzgzZWEzNTc4MDdlNWVkNWUzZTg4MjFjYTA0OA
https://plg-cyfronet-01.datahub.egi.eu/#/onedata/data/a3f6c83ea357807e5ed5e3e8821ca048/Z3VpZCNzcGFjZV9hM2Y2YzgzZWEzNTc4MDdlNWVkNWUzZTg4MjFjYTA0OCNhM2Y2YzgzZWEzNTc4MDdlNWVkNWUzZTg4MjFjYTA0OA
https://hub.docker.com/u/primage
https://gitlab.com/primageproject/documentation
https://marketplace.egi.eu/42-applications-on-demand-beta
https://datahub.egi.eu/
https://marketplace.eosc-portal.eu/services/egi-cloud-compute

EGI DataHub , is a service designed to make data discoverable and available in an easy way across all EGI 4

federated resources. It allows users to make their data available using different levels of access: from
completely unrestricted open access to open data to authenticated access to closed data sets. This is
possible as a result of the seamless integration with the EGI AAI service, also integrated in the PRIMAGE
project.

The EGI DataHub is built on top of the EGI Open Data Platform using Onedata technology to connect a wide
range of existing storage services, regardless of their underlying technology (e.g. Lustre, Amazon S3, Ceph,
NFS, or dCache). More information on EGI Datahub can be found on ​Matthew Viljoen, Łukasz Dutka, Bartosz
Kryza, Yin Chen, “Towards European Open Science Commons: The EGI Open Data Platform and the EGI
DataHub”, Procedia Computer Science, Volume 97, 2016, Pages 148-152, ISSN 1877-0509,
https://doi.org/10.1016/j.procs.2016.08.294 . 5

The project has requested a shared space named “MedicalImaging”,stored in the Onedata Provider
plg-cyfronet-01.datahub.egi.eu. Access to the storage can be obtained by creating issues in the OneClient
repository. ​Figure 9​ shows a snapshot of such shared space.

Figure 9​. Snapshot of the EGI Datahub shared space.

4 ​https://www.egi.eu/about/newsletters/introducing-the-egi-datahub-prototype/
5 ​http://www.sciencedirect.com/science/article/pii/S187705091632110X

14

https://www.egi.eu/about/newsletters/introducing-the-egi-datahub-prototype/
http://www.sciencedirect.com/science/article/pii/S187705091632110X

4. Implementation of Sample
applications
This section describes how the canonical applications described in deliverable D2.2 can be implemented.

4.1. Application 1. A High-Throughput Compute Batch job

High-Throughput Compute Batch job is a canonical example that can be used to build other complex
applications, such as processes that are part of muti-scale models or quantitative imaging biomarkers
workflows (e.g. segmentation processes).

Figure 10 shows the architecture of High-Throughput Compute Batch job. In the figure, an Application
Developer (AD) has created an application for Image Segmentation. The application is coded into Python3
and requires specific software libraries. The code is available in a Github repository which is linked to the
autobuild and testing system. The application is structured into three folders in the repo: Application Code,
Application Dependencies and Unity tests. The AD commits a new change on the repository (1), which
triggers the building and testing (2) of an application image, which is uploaded (3) into a private registry.
Then, the application developer mounts a previously created persistent storage (4) on the local compute to
explore the files(s) to process. Then, the AD submits a job (5) using a specific command from PRIMAGE
platform and specifies the files to process, as well as the storage id. This result on a set of jobs submitted to a
queue system (e.g. an elastic Kubernetes) on the PRIMAGE platform (6). The jobs mount the storage (7), pull
the application container from the registry (8), run the job and produce the output on the same storage, which
can be seen by the AD from his/her computer (9).

For this canonical example, the application will consist of a queue system for submitting jobs on a Kubernetes
cluster. The application will launch independent jobs in which all of them will share and have accessible the
same remote file system. In this case, the shared repository will contain the required executable, the input
files to process (e.g. medical images) and also will save the results when the jobs end. The remote file
system also can be accessible from the local computer. This way, the user can upload data in a shared
repository to prepare the process, submit the jobs, and finally view the results from the console.

The steps for the deployment are:

1. Create a volume on a shared repository (see ​figure 9​). For this purpose an EGIDatahub valid account,
a provider (plg-cyfronet-01.datahub.egi.eu in our case), a data space (MedicalImaging in our case)
and the access token to the volume will be needed.

2. Mount the shared volume from the local computer. For this purpose the modified Docker image of
ONEClient in the PRIMAGE Project (​primage/oneclient:latest​) can be used:

docker run -dit --privileged -e MOUNT_POINT=$MOUNT_POINT -e

ONECLIENT_ACCESS_TOKEN=$ACCESS_TOKEN -e ONECLIENT_PROVIDER_HOST=$PROVIDER_HOST --name

primage_oneclient primage/oneclient:latest bash

Where ​ONECLIENT_ACCESS_TOKEN contains the access token, ​ONECLIENT_PROVIDER_HOST the
provider and ​MOUNT_POINT​ the absolute path where the volume will be mounted in the container.

Also, the web interface (see ​figure 9​) can be used through a web browser and the EGIDatahub valid
account.

3. Create a specialized Docker image if needed, to execute the jobs. In this example, the PRIMAGE
customized oneclient image was extended with the support of required scripts to execute a
segmentation process (​primage/segmentation_htc_job:latest​). The code of the Dockerfile and the

15

associated scripts is available in the public repository
https://gitlab.com/primageproject/containers/tree/master/Segmentation_HTC_Job/Docker​.

4. Deploy a self-managed Kubernetes cluster in EGI LTOS Portal (see ​figure 7​). For this purpose,the
same EGI Checkin credentials can be used. It can be deployed through the LTOS Portal at
https://servproject.i3m.upv.es/ec3-ltos/index.php​.

5. Access through ssh (​Secure Shell) to the K8s cluster following the instructions given from the
Dashboard.

Cluster name: PRIMAGE_PILOT

Frontend IP: XXX.XXX.XXX.XXX

Username: cloudadm

Secret key: XXX

6. Launch the HTC batch job by using the YAML file (​batch_python.yaml​) in the same GitLab repository
https://gitlab.com/primageproject/containers/tree/master/Segmentation_HTC_Job/Docker​.

sudo kubectl apply -f batch_python.yaml

7. Once the process has finished, the cluster can be deleted safely. Bear in mind that only the files
under the mounted directory will be preserved.

8. Such files are still accessible from your local computer:

docker exec -it primage_oneclient ls -s /mnt/oneclient/MedicalImaging

Also, it is possible to access that files using the web interface.

Figure 10​. Canonical application for the HTC Batch job architecture​.

16

https://gitlab.com/primageproject/containers/tree/master/Segmentation/Docker
https://servproject.i3m.upv.es/ec3-ltos/index.php
https://gitlab.com/primageproject/containers/blob/master/Segmentation_HTC_Job/Docker/batch_python.yaml
https://gitlab.com/primageproject/containers/tree/master/Segmentation/Docker

4.2. Application 2. An interactive application.

Interactive applications are other canonical example that can be used to build more complex applications,
such as the PRIMAGE Clinical Decision Support System (CDSS) Dashboard.

Figure 12 shows the architecture of High-Throughput Compute Batch job. In that figure it can be seen an
Application Developer (AD) that has created a Jupyter application notebook for Image filtering. The
application requires Jupyter and it also produces some graphics. The code is available in a GitLab repository
which is linked to the autobuild and testing system. The application is structured into three folders in the repo:
Application Code, Application Dependencies and Unity tests. The AD commits a new change on the
repository (1), which triggers the building and testing (2) of an application image, which is uploaded (3) into a
private registry. Then, the application developer runs the application through a PRIMAGE command (4) that
runs the application as a service (5) mounting a previously created persistent storage (7) on the application
and pulls the previously defined container (7). The user receives the URL (​Uniform Resource Locator) to
connect, and accesses the application through his/her computer (8).

For canonical example, the application will consist on a Jupyter Notebook deployed on a Kubernetes cluster,
which mounts a remote filesystem, which is also accessible from the local computer. This way, the user can
upload data, process it remotely and view the results from the Jupyter notebook.

The steps for the deployment are:

1. Create a volume on a shared repository. For this purpose, an EGIDatahub valid account, a provider
(plg-cyfronet-01.datahub.egi.eu in our case), a data space (MedicalImaging in our case) and the
access token to the volume will be needed.

2. Mount the shared volume from the local computer. For this purpose the modified Docker image of
ONEClient in the PRIMAGE Project (​primage/oneclient:latest​) can be used:

docker run -dit --privileged -e MOUNT_POINT=$MOUNT_POINT -e

ONECLIENT_ACCESS_TOKEN=$ACCESS_TOKEN -e ONECLIENT_PROVIDER_HOST=$PROVIDER_HOST --name

primage_oneclient primage/oneclient:latest bash

Where ​ONECLIENT_ACCESS_TOKEN contains the access token, ​ONECLIENT_PROVIDER_HOST the
provider and ​MOUNT_POINT​ the absolute path where the volume will be mounted in the container.

9. Create an specialized Docker image if needed. In this case, the PRIMAGE customized oneclient
image was extended with the support of ipyhton, ipyhton notebooks and Jupyter
(​primage/jupyter:latest​). The code of the Dockerfile and the associated scripts is available in the
public repository ​https://gitlab.com/primageproject/containers/tree/master/Segmentation/Docker​.

10. Deploy a self-managed Kubernetes cluster in EGI LTOS Portal (see ​figure 7​). For this purpose, the
same EGI Checkin credentials can be used. It can be deployed through the LTOS Portal at
https://servproject.i3m.upv.es/ec3-ltos/index.php​.

11. Access the K8s cluster following the instructions given from the Dashboard, and deploy the Jupyter
Notebook application by using the YAML file in the same GitLab repository
https://gitlab.com/primageproject/containers/tree/master/Segmentation/Docker​.

12. Access the Jupyter notebook front end and process the files (see ​figure 11​).

17

https://gitlab.com/primageproject/containers/tree/master/Segmentation/Docker
https://servproject.i3m.upv.es/ec3-ltos/index.php
https://gitlab.com/primageproject/containers/tree/master/Segmentation/Docker

Figure 11​. Jupyter front end.

13. Once the process has finished, the cluster can be deleted safely. Bear in mind that only the files
under the mounted directory will be preserved.

14. Such files are still accessible from your local computer (as well as on the web site):

docker exec -it primage_oneclient ls -s /mnt/oneclient/MedicalImaging

Also, it is possible to access that files using the web interface.

18

Figure 12​. Canonical application for the interactive application architecture.

19

5. Conclusion
This document describes in practical terms the first version of the cloud platform defined for the project. This
platform fulfils a first set of 21 requirements and it is deployed on a European funded Research Infrastructure
from the EOSC initiative. The document contains URLs, procedures, command examples, snapshots and
examples to develop applications using two canonical examples. The document will be extended with the
support of the rest of requirements, as well as with additional services and compatibility, as the project
evolves.

The use of EOSC services, such as EGI check-in, EGI Datahub and EGI Cloud Compute will be relevant for
the sustainability of the project and will help on building the EOSC concept. As data and services are being
developed, the project will consider releasing the access to such services and data, according to the privacy
regulations imposed by the nature of the data.

20

6. Acronyms and Abbreviations
ACRONYM DEFINITION

AA Authentication and Authorisation

AAI Authentication and Authorisation Infrastructure

AD Application Developer

CDSS Clinical Decision Support Systems

EC3 Elastic Compute Cluster in the Cloud

EDUGAIN EDUcation Global Authentication INfrastructure

EGI European Grid Infrastructure

EOSC European Open Science Cloud

HPC High Performance Computing

HTC High-Throughput Computing

IaaS Infrastructure as a Service

IdP Identity Provider

K8s Kubernetes

LTOS Long Tail Of Science

OASIS Organization for the Advancement of Structured Information Standards

ONEDATA Global Data Access Solution for Science

POSIX Portable Operating System Interface

PRIMAGE PRedictive In-silico Multiscale Analytics to support cancer personalized diaGnosis and prognosis

RADL Resource and Application Description Language

SSH Secure Shell

SSO Single Sign On

TOSCA Topology and Orchestration Specification for Cloud Applications

URL Uniform Resource Locator

YAML Ain't Markup Language

21

