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A major challenge in ecology and evolution is to disentangle the mechanisms driving broad-scale variation 
in biological traits such as body size, colour, thermal physiology traits and behaviour. Climate has long 
been thought to drive trait evolution and abiotic filtering of trait variation in ectotherms because their 
thermal performance and fitness are closely related to environmental conditions. However, previous 
studies investigating climatic variables associated with trait variation have lacked a mechanistic 
description of the underpinning processes. Here, we use a mechanistic model to predict how climate 
affects thermal performance of ectotherms and thereby the direction and strength of the effect of 
selection on different functional traits. We show that climate drives macro-evolutionary patterns in body 
size, cold tolerance and preferred body temperatures among lizards, and that trait variation is more 
constrained in regions where selection is predicted to be stronger. These findings provide a mechanistic 
explanation for observations on how climate drives trait variation in ectotherms through its effect on 
thermal performance. By connecting physical, physiological and macro-evolutionary principles, the 
model and results provide an integrative, mechanistic framework for predicting organismal responses to 
present climates and climate change. 
 
 
Climate imposes constraints on organismal trait diversity and evolution through its effects on 
physiological performance and fitness1,2. As climatic conditions vary across space and time, these 
constraints also change, leading to sometimes predictable variation in functional traits such as body size 
and shape, skin colour, physiological thermal tolerance and behaviour (ecogeographical rules3,4). 
Understanding the mechanisms underpinning these patterns lies at the core of macroecology and 
macrophysiology5 and represents a milestone towards explaining and predicting organismal responses 
to past, present and future climates. Yet, predicting how climate modulates functional trait diversity and 
evolution is challenging. This task requires a thorough understanding of the mechanisms that govern 
organism–environment interactions2, environmental information at the proper scale of these inter-
actions6,7 and a framework that enables evaluation of the joint influence of multiple traits on physiological 
performance and fitness across environmental gradients. 

In ectotherms, environmental temperature plays a fundamental role in regulating physiological 
performance and fitness8. Temperature is thought to impose selective pressures on functional traits 
involved in body temperature regulation that give rise to broad-scale spatial gradients in body size9, body 
shape10,11, skin colour12, thermal tolerance limits13,14 and behaviour15,16. However, these traits interact 
with each other, obfuscating how we might predict them to be altered by selection when allowed to 
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mutually vary. For example, behavioural adjustments of body temperature can buffer the evolution of 
thermal tolerance traits, a phenomenon known as the Bogert effect16–18. Previous studies have focused on 
the analysis of statistical associations between functional traits and climatic variables, which has allowed 
us to identify the main environmental factors hypothesized to drive these patterns. However, these 
correlative methods lack a mechanistic representation of the physical and biological processes 
underpinning these patterns, which limits their capacity to predict the responses of organisms to new 
environmental conditions.  

Here, we propose a mechanistic approach combining a biophysical model and a sensitivity analysis to 
numerically predict the effects of different functional traits (body size, skin colour, thermal tolerance 
limits, preferred body temperature and thermoregulatory capacity) on thermal performance of 
ectotherms (Fig. 1). The biophysical model calculates body temperature and thermal performance as a 
function of both climatic conditions and multiple independently varying functional traits (Fig. 1; Methods; 
Supplementary Information 1–3). Then, the sensitivity analysis quantifies the effect of each functional 
trait on thermal performance by assessing the relationship between changes in each trait value and the 
resulting changes in thermal performance. By combining this approach with spatially explicit 
microclimatic data19, we compute a putative direction and strength of selection on each trait across the 
globe. We then test two hypotheses about the evolution and assembly of temperature-related phenotypes. 
The first is that selection has acted on trait variation to maximize thermal performance and the second is 
that selection strength on traits varies in proportion to their predicted impact on performance. We test 
these hypotheses by comparing model-generated predictions on the direction and strength of selection 
with empirical trait and assemblage data of global lizards.  

Results  
We analysed the sensitivity of cumulative thermal performance to changes in body mass, skin colour 
(absorbance to short-wave radiation), preferred temperature (Tpref), thermoregulatory ability (λ), critical 
thermal maximum (CTmax) and critical thermal minimum (CTmin; Fig. 1). Sensitivity values, that is, the slope 
of the predicted relationship between change in performance and change in each trait value, displayed 
geographical patterns that recapitulate patterns expected with climate. For body mass, sensitivity values 
were negative in tropical regions meaning that increasing body mass reduced thermal performance in 
these regions. These negative sensitivity values vanished towards higher latitudes suggesting that 
changes in body mass did not affect thermal performance in colder environments (Fig. 2A). Conversely, 
skin absorbance showed stronger, positive sensitivity values in colder regions, negative in subtropical 
regions and deserts and weak, negative relationships in tropical regions (Fig. 2B). These results suggest 
that a higher skin absorbance improves thermal performance in colder environments since it increases 
body temperature by raising absorption of solar radiation, whereas a lower skin absorbance would be 
favoured in warmer environments. Sensitivity values close to zero in the tropics suggest that the effect of 
skin absorbance on thermal performance is weak in these regions. Sensitivity values of behavioural 
thermoregulation were higher in the tropics, suggesting that tropical ectotherms are more pressed to 
increase Tpref and thermoregulatory ability (λ) than are temperate organisms (Fig.2 C, D). Similarly, CTmax 
exhibited higher, positive sensitivity values at lower latitudes, suggesting that increasing heat tolerance 
improves performance in these regions (Fig. 2E). Finally, CTmin sensitivity was higher and negative 
towards colder regions, as expected to reflect greater performance with lower CTmin values (Fig. 2F). 
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Fig. 1 | Model description. A, The biophysical model uses heat transfer principles to simulate body temperature 

and thermal performance of a lizard-like ectotherm that thermoregulates behaviourally by moving between sun-

exposed and shaded conditions. The model uses information on body mass, skin absorbance, preferred temperature 

(Tpref), thermoregulatory ability (λ) and critical thermal limits (CTmax and CTmin). B, To perform the sensitivity 

analysis of the biophysical model, we changed the value of one trait at a time drawing random values from their 

input distributions. Then, the effect of each trait on cumulative performance is estimated by computing the slope of 

the relationship between the change in performance and the change in each trait value. This process is repeated 

across locations (grid cells) on a global map to investigate emerging geographical patterns of trait sensitivity. 
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Fig. 2 | Sensitivity of thermal performance to each functional trait. Predicted effect of each functional trait on 

thermal performance. Negative sensitivity values (blue shading) indicate that an increase in the trait value reduces 

thermal performance, whereas positive values (red shading) denote that higher trait values increase thermal 

performance. 
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Model predictions for direction and strength of selection  
Our model allows us to make predictions about trait variation according to two hypotheses. First, under 
the hypothesis that selection on trait variation has acted to maximize thermal performance, we predict 
that trait values among species will vary in proportion to their predicted impact on performance. In other 
words, larger trait values should be observed in places where the slope of performance sensitivity is 
positive for that trait and smaller trait values should be observed in places where the slope of 
performance sensitivity is negative for that trait. Second, under the hypothesis that selection is stronger 
in places where performance sensitivity to trait variation is higher, we predict that trait variance will be 
greater in places where performance sensitivity to trait variation is closer to zero (weak selection) and 
less variable where performance sensitivity to trait variation is high in absolute value (strong selection)20. 
We can apply these predictions to macro-evolutionary processes considering variation among species 
within a phylogeny or to environmental filtering processes by considering variation and means among 
co-existing species. Hence, we evaluated the first prediction, that sensitivity drives trait values across 
species, by analysing the relationship between species’ mean trait values and their mean sensitivity 
(averaged across each species’ geographical range). We also evaluated this prediction at the assemblage 
level by computing the mean trait value of all the species that co-exist in a grid cell and analysing its 
relationship with the sensitivity estimated in that cell. We evaluated the second prediction, that 
performance sensitivity constrains trait variance, only at the assemblage level by analysing the 
relationship between the variance of traits within-species assemblages in each grid cell and the 
performance sensitivity to that trait at that location. 

Prediction I for sensitivity drives trait values  
The species-level analyses comparing the functional traits of lizards with the sensitivity values averaged 

across their geographical range revealed positive relationships for body mass, preferred temperature, 

field body temperature and critical thermal minimum with their respective sensitivity values (Fig. 3 and 

Table 1). The relationship was non-significant for the critical thermal maximum. Preferred and field body 

temperatures, both used as indicators of parameter Tpref in the model, showed similar relationships with 

Tpref sensitivity. The phylogeny generally explained a large amount of variance suggesting that historical 

factors and the phylogenetic relatedness among species played an important role in determining 

functional trait variation (Table 1). Overall, these results support the prediction of a positive relationship 

between trait values and sensitivity—a possible proxy for the strength and direction of selection—at the 

species level (Fig. 3). Interestingly, the analyses using sensitivity as predictor outperformed correlative 

models based on climatic variables by improving the explanatory capacity of the linear models 

(Supplementary Information 4). At the assemblage level, the relationship between mean trait values and 

sensitivity was weaker overall than for species-level analyses. We found no significant relationship for 

mean body mass, critical thermal maximum or critical thermal minimum, although the relationship 

between field body temperature and Tpref sensitivity was significant and positive (Supplementary 

Information 5).  
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Fig. 3 | Relationship between mean species traits and predicted sensitivity. A-D, Observed body mass (A), 
preferred temperature (B) and maximum (C) and minimum (D) critical thermal limits of lizard species in relation 
to the predicted sensitivity of cumulative performance to variation in each trait modelled across its geographical 
range. Dashed line represents non-significant relationship (see model estimates and standard errors in Table 1). 

Table 1 | Results of PGLS models testing the relationship between trait values and sensitivity of thermal 
performance to changes in this trait. 

 Estimate SE t P Pagel's λ R2 - ecology R2 - phylogeny 

Body mass 86.53 29.90 2.89 0.004 0.96 0.020 0.672 

Preferred temperature 318.56 90.15 3.53 0.001 0.40 0.183 0.061 

Field body temperature 98.21 33.70 2.91 0.004 0.93 0.097 0.420 

Critical thermal maximum -17.72 33.45 -0.53 0.598 0.96 0.002 0.340 

Critical thermal minimum 348.36 157.92 2.21 0.031 0.51 0.150 0.146 

* Bold indicates significant relationships. 
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Prediction II for sensitivity constrains trait variance  
Species assemblages facing higher sensitivity (in absolute value) to changes in body mass displayed lower 
variance in body mass, whereas assemblages facing lower sensitivity values showed either low or high 
variances. The relationship between trait variance and sensitivity was also triangular for preferred 
temperature, field body temperature and critical thermal minimum. That is, the variance in these traits 
was delineated by quantile regression across the upper 0.9 quantile (Fig. 4), suggesting that sensitivity 
imposes an upper limit on trait variance. In contrast and against expectations, the relationship was 
positive for critical thermal maximum (Table 2). 
 

 
 
Fig. 4 | Trait variances of species assemblages in relation to the absolute value of sensitivity. A–D, 

Relationship between the variance in body mass (A), preferred temperature (B) and maximum (C) and minimum 

(D) critical thermal limits of lizard assemblages in relation to the sensitivity of thermal performance to variation in 

each trait. Trait variances were corrected for spatial autocorrelation using Moran eigenvectors. Dashed and solid 

lines represent, respectively, fitted values of the ordinary and quantile linear regressions (quantile 0.9) and shaded 

areas are regression confidence intervals. Each grey circle represents trait variance in one cell and circle size is 

proportional to the percentage of species with known trait value data at each cell. 

Table 2 | Assemblage-level variance in each trait in relation to the sensitivity estimated at that location. The table 

shows values from fitted model to mean variance (ordinary regression) and to the 0.9 upper quantile values 

(quantile regression, tau = 0.9). 

 Ordinary regression  Quantile regression (tau = 0.9)  

 Estimate SE t P R2 Estimate SE t P R2 

Body mass -152.61 23.12 -6.60 <0.001 0.11 -129.60 34.43 -3.76 <0.001 0.04 

Preferred temperature 10.04 27.914 0.36 0.719 0.001 -82.06 40.73 -2.02 0.044 0.04 

Field body temperature -432.04 66.48 -6.50 <0.001 0.18 -683.42 132.54 -5.16 <0.001 0.20 

Critical thermal 

maximum 
67.14 13.99 4.80 <0.001 0.12 74.78 32.28 2.32 0.022 0.08 

Critical thermal 

minimum 
-309.40 106.63 -2.90 0.004 0.05 -657.87 283.41 -2.32 0.022 0.06 

* Bold indicates significant relationships. 
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Discussion  

Our global analysis of performance sensitivity to trait variation predicted geographical patterns in the 
direction and strength of selection on different functional traits involved in thermoregulation and thermal 
performance in lizards. The sensitivity analysis provided new hypotheses for where relevant phenotypes 
are expected to be under strong versus weak selection and the direction of selection. Although the 
observed patterns of trait variation can still preserve the imprint of historical processes acting on species’ 
distributions and trait evolution21, our findings provide evidence that selective regimes on body mass, 
skin absorbance, thermoregulatory ability and thermal tolerance limits vary predictably with climate 
across space. Our model predicts the direction and strength of selection of multiple traits at once, 
providing numerical predictions that can be tested against empirical data. This work thus provides a first 
step in building an integrated view of how climate modulates functional trait evolution and composition 
of species assemblages through its effect on thermal performance.  

The sensitivity of thermal performance to each evaluated trait exhibited strong geographical 
gradients. For instance, sensitivity to changes in body mass was negative in tropical latitudes, meaning 
smaller sizes had higher cumulative performance than larger sizes and approached zero (a flat, invariant 
relationship) towards colder latitudes, meaning body size variation had no effect on performance. This 
pattern suggests that selective pressures favouring smaller body sizes in warm latitudes weaken at higher 
latitudes. Hence, the selective pressure towards maximizing thermal performance seems to drive body 
size evolution among tropical species. The effect of climate on large-scale patterns in body size might arise 
through the direct influence of temperature accelerating growth rates and reducing maximum size (a 
proximate cause, for example, ref. 22) or via selection on maximum body size to avoid overheating in 
warm environments (an ultimate cause). Our findings build on previous work in macroecology focused 
on the ultimate causes of body size evolution suggesting, for example, that larger sizes evolve to facilitate 
heat conservation in cold environments9. Yet, latitudinal body size patterns in lizards have been 
previously disputed, with empirical analyses reporting negative9, positive23 or even no relationships 
between body size and environmental temperature24 (Supplementary Table 4). Our mechanistic analysis 
resolves this lack of consensus, by predicting different relationships to arise from spatial variation in the 
relative importance of body size evolution upon thermal performance. Mechanistically, large bodies 
reduce convective heat dissipation relative to the absorption of solar radiation, increasing body 
temperature and overheating risk25,26, especially in the tropics, where solar radiation levels are higher27. 
Among temperate species, however, the many factors that might drive body size evolution (for example, 
historical, ecological and constraints on life-history traits9,28,29) might supersede the constraints linked to 
overheating risk. Yet, the idea that larger species experience higher overheating risk due to lower 
effectiveness of convective heat dissipation has been questioned30, since larger animals might also 
experience lower temperatures due to greater height above the ground. Although we used size-specific 
microclimates in our modelling, our results might be sensitive to our specific assumptions about 
allometric relationships between body size and height above the ground30 and this could lead to an 
overestimate of size sensitivity in the tropics in our models. 

Under the perspective of our mechanistic model, the empirical analyses supported the predicted 
association between body size and climate at the species level (Fig. 3A). At the assemblage level, we found 
no significant relationship between mean body mass and sensitivity (Supplementary Table 5), whereas 
the relationship between the assemblage variance and absolute sensitivity was negative as predicted (Fig. 
4A). Because the accuracy of the estimated mean body mass at the assemblage level depends on the 
assemblage variance, this change in variance in relation to sensitivity might affect the observed 
relationship between mean assemblage body mass and sensitivity. Our predictions could be further tested 
with intraspecific trait variation data as they become available. Assemblages at environments with higher 
sensitivity to body mass variation displayed lower variance in body mass, depicting a triangular 
relationship between variance and sensitivity (Fig. 4A). That is, the variances at the assemblage level 
could be either high or low in regions with lower sensitivity to body mass but only low in regions of higher 
predicted climatic constraints. These results suggest that thermally related selection on body size 
influences body mass evolution across lizard species in warm environments and constrains assemblage 
composition constituting an environmental filter. 
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The variation in different functional traits may generate different adaptive pathways to maximize 
thermal performance across climatic gradients. For example, light skin colours (low skin absorbance) 
could reduce body temperature allowing large-bodied ectotherms to compensate for their high body 
temperature in tropical regions. The predicted geographical patterns of skin absorbance supported the 
thermal melanism hypothesis, which proposes that a darker colouration (low reflectance or high 
absorbance) is beneficial in cold environments because it accelerates heating rates and increases body 
temperature12. In addition, the thermal melanism hypothesis predicts that – once potential confounding 
factors such as crypsis, fecundity and life history are controlled for – skin absorbance might be negatively 
related to body mass, with larger species showing lighter colours12. Our model and analyses support this 
prediction and suggest that the expected relationship between body size and skin colour may vary 
geographically. Thus, although reducing body size lowers the risk of overheating in the tropics, changes 
in body size may not significantly affect thermal performance in temperate and subtropical latitudes. 
Instead, animals at these latitudes may effectively increase body temperature via increasing skin 
absorbance. Thus, tropical species may experience selective pressures to reduce skin absorbance and 
body size (potentially leading such variables to covary), whereas the skin colour–body size correlation is 
expected to vanish among temperate and subtropical species because body size variation in these regions 
is less influenced by thermal constraints. In the end, the actual interspecific relationship between these 
traits likely depends on the evolutionary lability of each trait, time and the relative importance of other 
selective forces such as crypsis or fecundity31,32.  

The sensitivity analysis predicts that animals living in warmer latitudes select higher body 
temperatures (Tpref) than those living in colder regions. Similarly, thermal tolerance limits are predicted 
to display latitudinal gradients, with CTmax increasing towards warmer latitudes and CTmin decreasing 
towards colder environments. Following the expected effect for Tpref, lizards showed higher preferred 
temperatures in warm environments (Fig. 3b) and the assemblage-level variance in preferred 
temperature was higher in regions where Tpref sensitivity values were lower (Fig. 4b). The empirical 
patterns of heat tolerance, however, did not followed the prediction of the model. Thus, the mean heat 
tolerance of the species was unrelated to CTmax sensitivity and the assemblage-level variance in this trait 
increased in relation to sensitivity. This result is consistent with previous observations that found 
invariance in heat tolerance across latitudes15,33–37. The mismatch between the observed and predicted 
patterns for CTmax indicates that other factors might be driving or constraining the evolution and 
geography of heat tolerance. One explanation is that thermal tolerance limits—generally measured as the 
temperature at which locomotor activity declines—are not relevant to fitness. However, the observed 
patterns for the cold tolerance limit were consistent with the model’s prediction for CTmin suggesting that 
it is relevant to fitness and modulated by climate. Therefore, an alternative explanation for the mismatch 
between observed and predicted patterns for CTmax is that heat tolerance is relevant to fitness but 
evolutionarily constrained because elevated temperatures compromise biochemical stability of 
membranes and proteins, imposing a hard boundary to heat tolerance evolution14. Another explanation 
involves the role of thermoregulatory behaviour through the Bogert effect, under which greater 
behavioural capacity to control body temperature may inhibit selection on CTmax16,18. Indeed, our 
model suggests that both CTmax and thermoregulatory ability are more strongly selected in the tropics 
which might open two alternative evolutionary pathways: either increasing CTmax or improving 
thermoregulatory ability to avoid overheating in exposed conditions. In tropical regions, the greater 
availability of cool and stable microclimates under the forest canopy may facilitate lizards to 
behaviourally avoid high body temperatures in sun-exposed environments inhibiting selection on 
CTmax36. 

This work offers a mechanistic framework to predict the direction and strength of the effect of 
climate on traits involved in thermoregulation and thermal performance in ectotherms. Our approach 
predicts broad-scale patterns of trait variation, providing numerical descriptions of patterns that might 
be observed as ‘ecogeographical rules’ (such as geographical clines in body size or skin colour across 
latitudes) from their fundamental biophysical and physiological mechanisms. By deepening how we 
consider the mechanisms underpinning lizard–microclimate interactions, the sensitivity analysis offers 
insights into the climatic drivers of trait variation that would not be possible to test using traditional, 
correlative models. Mechanistic predictions demonstrate that not only the direction but the strength of 
selection on different functional traits varies with climate, explaining previous contradictory results on 
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how functional traits like body mass should covary with latitude in terrestrial ectotherms. Finally, the 
sensitivity analysis raised new hypotheses and provided a way to numerically evaluate the environmental 
filtering effect of climate on trait variance in species assemblages. Our framework connects concepts of 
interspecific phenotypic trait evolution with abiotic filtering of assemblages and patterns of functional 
diversity. We propose that this framework, complemented with further modelling work describing, for 
example, water exchange and energy assimilation rates, provides a key step forward towards unifying 
frameworks in ecology and evolution. 

Methods 
Modelling body temperature and thermal performance 
Body temperature in ectotherms depends on the heat exchange between the body and its environment 
and thus on morphological traits such as body mass, shape or skin colour and on microclimatic conditions 
such as solar radiation or air temperature at sun-exposed or shaded conditions. The variation in 
experienced body temperature over a time interval determines cumulative thermal performance or 
fitness33,38,39. To develop a mechanistic model that captures body temperature variation and its effect on 
thermal performance, we needed to arrange (1) a transient-heat model that computes heat exchange 
between the animal and its environment as a function of microclimatic conditions and the animal’s 
morphology and colour, (2) a behavioural model to simulate the capacity to select different micro-
environments behaviourally (for example, sun or shade) to maintain body temperature close to the 
preferred temperature and (3) a physiological model to compute cumulative thermal performance as a 
function of experienced body temperature.  

We developed a transient-heat model to compute changes in body temperature (Tb) as a function of 
the absorbed solar radiation, the exchange of thermal radiation with the environment, convective cooling 
and conductive heat exchange with the soil surface25,26,40 (Supplementary Information 1). To compute 
heat flow and body temperature, the model uses information on the microclimatic conditions (solar 
radiation, air and soil temperature and wind velocity19), together with morphological and radiative 
properties of the body (body mass, skin surface area, body length, skin absorbance and emissivity of 
thermal radiation). We used this model to calculate how body temperature varies over time in one micro-
environment or when the animal moves between sites. 

To model behavioural thermoregulation, we considered that animals prefer the micro-environment 
(sun-exposed or shade) closer to their preferred temperature (Tpref)41. Animal’s decisions on what micro-
environment is selected at each instant of time balance multiple costs and benefits, not only on thermal 
performance but also on nutritional needs or predation risk38,42. To address this complexity, behavioural 
thermoregulation can be modelled as a probabilistic process using the maximum entropy framework 
where the thermoregulatory constraint weights—but does not entirely determine—the probability of 
selection of each micro-environment in the repertoire26. Thus, the probability that the animal selects sun-
exposed conditions depends on the difference between Tpref and body temperature in the sun and a non-
dimensional parameter, λ, that characterizes thermoregulatory ability: 

 
 
 
 

 

and the probability of selecting the shade is 1 − P(Tb,sun, λ, Tpref)26. The denominator, that is, the summation 
across all possible micro-environments (here, sun-exposed and shade conditions; subscript j is the index 
of summation across micro-environments), normalizes probabilities so that the sum of all probabilities is 
equal to 1. Both the preferred body temperature (Tpref, °C) and parameter λ weight the importance of 
thermoregulatory behaviour in determining shifts between micro-environments. When λ is 0, the 
probabilities of sun-exposed and shaded conditions are the same: P(Tb,sun, λ = 0, Tpref) = P(Tb,shade, λ = 0, 
Tpref) = 0.5, meaning that the animal shifts between micro-environments irrespectively of what its body 
temperature is at each site. By contrast, high λ values led to an increase in the probability of selection of 
the micro-environment that is closer to the animal’s preferred body temperature26.  
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Together, the behavioural thermoregulation and transient-heat models generate a series of body 
temperatures over a time interval, which may be expressed as a body temperature distribution n(Tb) 
representing the probability density of body temperatures as a function of microclimatic conditions, 
animal’s morphology, radiative properties, Tpref and thermoregulatory ability, λ. This distribution can be 
obtained by numerically integrating the master equation of the system to find the stable Tb distribution 
across every hour of the day (details in ref. 26). Then, daily Tb distributions are generated by adding 
hourly distributions for the period of interest, for example, during the daytime. This approach reduces 
computational time and provides accurate predictions of daytime Tb distributions of lizards26. Validation 
analyses suggest that the model accurately predicts body temperatures observed in the field (within-
species validation, R2 values mostly ranging between 60% and 90%; among-species validation, R2 = 0.86; 
Supplementary Information 3). 

Finally, we were interested in modelling how experienced body temperatures determine cumulative 
performance or fitness over time. To do so, we modelled physiological performance using thermal 
performance curves (TPCs), which describe thermal dependence of physio-logical processes such as 
locomotion or digestion and thus assume that fitness varies with temperature following a TPC33,38. TPCs 
are typically asymmetric curves with their maximum shifted towards high body temperatures. Thus, 
performance declines rapidly for body temperatures exceeding the optimum and more gradually towards 
temperatures below the optimum (Fig. 1). As such, TPCs can be characterized by three parameters: the 
body temperature at which maximum performance is attained (Topt) and the critical thermal minimum 
(CTmin) and maximum (CTmax), representing temperatures at which thermal performance becomes zero. 
The cumulative performance over a time period is the integral of thermal performance weighted by the 
distribution of body temperatures over that period33,38,39. Here, we used the equation by  ref. 33 and 
computed relative performance (ranging between 0 and 1) as a function of CTmax and CTmin. We assumed 
that Topt corresponds to Tpref (see ref. 43 for a discussion) to reduce the complexity of the model and 
because empirical Topt data are scarce in the literature. We then calculated cumulative performance using 
the simulated Tb distribution, n(Tb), by computing the integral ∫TPC(Tb)n(Tb)dTb. 

Microclimatic conditions in the sun and the shade were modelled using the NicheMapR microclimate 
model19 in R v.3.5.3 (ref. 44). To simulate conditions in the shade, NicheMapR requires input information 
on the percentage of shade in that location. To estimate the level of shade, we modelled the percentage of 
solar radiation intercepted by the canopy using remotely sensed data on the leaf area index (LAI)45, 
obtained from a monthly averaged global gridded database of LAI worldwide46. Specifically, the 
proportion of solar radiation that makes it through the canopy was modelled as an exponential function 
of LAI as ωp = exp[-sqrt(0.8 Kb,c LAI)] where Kb,c is the extinction coefficient for direct solar radiation at 
zenith angle z, Kb,c = sqrt(1+tan2z) / 2.0013 (ref. 45). Then, we used the value ωp to compute the maximum 
shade level in the NicheMapR microclimate model and correct the radiation level under the canopy. To 
parametrize height above ground in the microclimate model, we estimated the height of a lizard as a linear 
function of body mass (Supplementary Table 1) thus considering size-specific microclimates30. With this 
approach, we computed solar radiation (W m−2), air temperature (°C), soil surface temperature (°C), wind 
speed (m s−1) and relative humidity (%) every hour for the middle day of each month. To reduce 
computational times, we focused the simulations on the daytime and on the period of activity, which was 
determined to be months in which maximum temperature (operative temperature in the sun) was higher 
or equal to Tpref47. 

Sensitivity analysis 
We are interested in quantifying the effects of different functional traits on cumulative performance and 
how these effects change across climatic gradients. That is, we aim to assess the sensitivity of cumulative 
performance to changes in six traits: body mass, skin absorbance to short-wave radiation, preferred 
temperature (Tpref), thermoregulatory ability (λ), critical thermal maximum (CTmax) and critical thermal 
minimum (CTmin). Sensitivity analysis is a well-stablished approach in ecological modelling for analysing 
the effect of input parameters (here, functional traits) on the output of the model (here, cumulative 
thermal performance)48,49. For numerical models, this analysis often requires running simulations using 
different combinations of parameter values to evaluate their effect on the output of the model. Because 
simulating each combination of parameter values requires substantial computational effort, exploring the 
total factorial space is effectively impossible. Therefore, sampling methods are required to navigate 
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effectively throughout the multidimensional space of parameter values. Here, we used the Latin 
hypercube sampling method in a one-at-a-time sensitivity analysis design48–50. The method starts by 
sampling a set of start values from their input distributions and computing cumulative performance for 
this set of trait values. The second step changes the value of only one variable and calculates the resulting 
change in cumulative performance as the difference in performance between the second and the first run. 
The process continues changing one variable each time and calculating the change in cumulative 
performance with the previous time step until all variables have been changed. We ran this process 20 
times, with a different set of start values each time, totalling 140 runs (20 × (k + 1) where k = 6 is the 
number of input traits). To obtain an efficient sampling of these traits, we used the Latin hypercube 
sampling method (using the R package lhs)50, which provides a near-random, well-distributed walk 
through the hypercube of parameter values. We tested the repeatability of sensitivity estimations by 
running the model 20 times, obtaining a different set of starting values for each run, across ten randomly 
selected cells. The repeatability of the slopes was high for all traits: 85.6% ± 0.081 (mean ± s.d.) for body 
mass; 99.1% ± 0.008 for skin absorbance; 98.3% ± 0.016 for Tpref; 93.7% ± 0.047 for thermoregulatory 
ability; 95.9% ± 0.032 for CTmax; and 99.2% ± 0.007 for CTmin. We parameterized trait distributions using 
values that are representative for lizards: log-normal distributions for log body mass (values used for 
parameterization are given in Supplementary Table 1) and thermoregulatory ability; and normal 
distributions for skin absorbance, Tpref, CTmax and CTmin (Supplementary Table 1). 

Data collection from lizards 
We gathered mean species’ trait data of diurnal, heliothermic lizards, including body mass51 (estimated 
using family-specific allometric equations based on snout–vent lengths), preferred temperatures52 and 
thermal tolerance limits53. We also used field body temperature51 as an indicator of the model parameter 
Tpref (relationship between field and preferred temperatures: r = 0.70, t = 5.9, d.f. = 36, P < 0.01) because 
field temperature was available for more species in our database. Predictions for skin absorbance and 
thermoregulatory ability (λ) were not analysed due to the lack of empirical data for these traits among 
heliothermic lizards. Finally, we used the geographical ranges of lizards in ref. 54 and the phylogeny by 
ref. 55. Our database included 1,219 lizard species, with body mass being available for 1,215 species, 
preferred temperature for 49 species, field body temperature for 351 species, critical thermal maximum 
for 103 species and critical thermal minimum for 68 species. 

Data analyses  
To perform the species-level analyses, we used phylogenetically controlled linear models (phylogenetic 
generalized least squares, PGLS) to test the prediction of a positive relationship between each trait with 
its corresponding sensitivity value averaged across the geographical range of the species. All statistical 
analyses were evaluated using two-sided tests. Thus, we compared mean species body mass versus body 
mass sensitivity across the species’ range; preferred temperature and field body temperature versus Tpref 
sensitivity; critical thermal maximum versus CTmax sensitivity; and critical thermal minimum versus CTmin 
sensitivity. We then computed pseudo-R2 values to estimate the variance explained by either the 
ecological factor (trait sensitivity) or the phylogeny using variance partitioning methods for models with 
autocorrelated residuals56. In an additional analysis, we compared the explanatory capacity of linear 
models using either trait sensitivity or climatic variables as predictors to evaluate the potential of 
mechanistic variables to describe functional trait variation when compared with traditional, correlative 
approaches (Supplementary Information 4). For the assemblage-level analyses, we projected the 
observed average trait values of species across their geographical ranges. Then, for each trait, we 
extracted both the mean and variance of the species assemblage at each location. Because the estimation 
of variance of the assemblage is sensitive to sample size (number of species with known trait data co-
existing in a grid cell), we performed additional analyses controlling for missing data in species 
assemblages to evaluate whether our results are robust to incomplete trait information57,58 

(Supplementary Information 6). To analyse the relationship between trait variance and sensitivity, we 
used both ordinary linear regression and quantile regression (regression at the upper 0.9 quantile)59. 
Quantile regression estimates specified quantiles of the response variable (trait variance) and computed 
a linear relationship between estimated quantiles and the predictor variable (trait sensitivity) to detect a 
possible triangular relationship between these variables. To control for spatial autocorrelation in 

https://www.nature.com/articles/s41559-023-02007-x


Accepted article - nature ecology & evolution                           https://doi.org/10.1038/s41559-023-02007-x 
 

https://www.nature.com/articles/s41559-023-02007-x 

assemblage analyses, we obtained Moran eigenvectors and included them as covariates in linear 
regressions. This method effectively reduces the spatial autocorrelation and type-I error in the 
assemblage-level analyses by accounting for the spatial dependence in the residuals60,61. We implemented 
Moran eigenvectors using the R package spdep, which selects the number of eigenvectors required to 
reduce the Moran’s I index for regression residuals up to a tolerance set to 0.1 (ref. 61). To represent the 
relationships between spatially corrected variances and sensitivity values (Fig. 4), we first computed the 
residuals of the trait variance in relation to the Moran eigenvectors and then represented these residuals 
in relation to the sensitivity values. For the cross-species analyses, species’ trait sensitivities were 
obtained by averaging sensitivity values across their geographical ranges. Therefore, the spatial 
component is not explicit in these analyses and spatial eigenvectors may not be accurate. However, to 
confirm that our results were not affected by spatial autocorrelation, we performed additional analyses 
including Moran eigenvectors computed from the centroids of species’ geographical ranges. The results 
of these spatially corrected models were similar to those excluding spatial eigenvectors (Supplementary 
Information 7 and Supplementary Table 7). 

Data availability  
The data that support the findings of this study62 are openly available in Figshare under 
https://doi.org/10.6084/m9.figshare.19949315. 

Code availability  
The R code used to compute the sensitivity analysis is available in the GitHub repository: 
http://github.com/JRubalcaba/Tb_sensitivity_analysis. 
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