
Magicmol - A light-weighted pipeline for drug-like
molecule evolution and quick chemical space
exploration
Lin Chen 

Huzhou University
Qing Shen 

Huzhou College
Jungang Lou  (  ljg@zjhu.edu.cn )

Huzhou University

Research Article

Keywords: Generative models, Reinforcement learning, Deep learning, Synthetic accessibility, De novo
drug design

Posted Date: October 11th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-2124702/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-2124702/v1
mailto:ljg@zjhu.edu.cn
https://doi.org/10.21203/rs.3.rs-2124702/v1
https://creativecommons.org/licenses/by/4.0/


Chen et al.

RESEARCH

Magicmol - A light-weighted pipeline for drug-like
molecule evolution and quick chemical space
exploration
Lin Chen1,3, Qing Shen2,3 and Jungang Lou1,3*

*Correspondence: ljg@zjhu.edu.cn
1Zhejiang Province Key

Laboratory of Smart Management

& Application of Modern

Agricultural Resources, School of

Information Engineering , Huzhou

University, Huzhou, China
3Yangtze Delta Region (Huzhou)

Institute of Intelligent

Transportation, Huzhou

University, Huzhou, China

Full list of author information is

available at the end of the article

Abstract

The flourishment of machine learning and deep learning methods have boosted
the development of cheminformatics, especially when it comes to the application
of drug discovery and new materials exploration. Lower time and space expenses
make it possible for scientists to search the enormous chemical space. Recently,
some work combines reinforcement learning strategies with an RNN-based
(Recurrent Neural Networks) model to optimize the property of generated
drug-like molecules, which notably improved a batch of critical factors for these
drug candidates. However, a common problem of these RNN-based methods is
that several generated molecules have difficulty in synthesizing even if owning
higher desired properties such as binding affinity. But still, the RNN-based
framework appears well in reproducing the molecule distribution among the
training set than other categories of models when it comes to the molecule
exploration tasks. Thus, to optimize the whole exploring process and make it
contribute to the optimization of specified molecules. In this paper, we devised a
light-weighted pipeline called - Magicmol with a re-mastered RNN network and
use SELFIES presentation instead of SMILES. Our backbone model achieve
extraordinary performance in evaluating metrics meanwhile reduced the training
cost and we devised reward truncate strategies to eliminate the ”model collapse”
problem. Also, adopting SELFIES presentation makes it possible for combining
STONED-SELFIES as a post-processing procedure for specified molecule
optimization and quick chemical space exploration.

Keywords: Generative models; Reinforcement learning; Deep learning; Synthetic
accessibility; De novo drug design

Introduction

The generative model is a class of techniques that use computational ways to devise

molecules inversely, and these models can be roughly separated into several cate-

gories: variational autoencoders (VAEs) [1, 2, 3], generative adversarial networks

(GANs) [4, 5], recurrent neural networks (RNNs) [6, 7], and flow-based models

[8, 9]. In essence, the generative model learns valid molecule presentations from an

extensive, cleaned database. For RNN-based models, while training, the input is

like a ”prefix” [10], for each time, a particular prefix is fed into the model, and the

next character is defined as the training target. Concerning the existence of the

hidden layer, which accounts for the ability of RNN models to process sequential

data, RNN models take the output of the last step as the input of the next step and

thus memorize the sequential information. During this process, an initial character
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and a terminal character are used to indicate the start and termination of generat-

ing process. Following the established probabilistic rules, a well-trained generative

model can ”reproduce” the process while generating molecules with different sam-

pling strategies (different sampling temperatures [11], etc.), which accounts for the

validity and novelty of generated molecules.

Lots of experiments [12, 13, 14] had confirmed the feasibility and generative ca-

pacity of RNN-based models. And recently, Alan et all. conducted a research [15] ,

which made a comparison between chemical language models and got the conclu-

sions that RNN-based models prevail over VAE-based models over reproducing the

molecule distribution of the training set. However, that’s not the whole story. The

problem may cause by the biases of the training data thus leading the correspond-

ing tasks to be grossly overestimated[16]; Without extra optimizations, RNN-based

models appear well in common evaluate metrics, for instance, novelty, validity, and

originality, but lots of generated molecules contain unwanted structures, or they are

just not available for the reason of difficulty in synthesizing.

We see this problem is caused by the partiality of the evaluation metrics, especially

the metric - novelty. Specifically speaking, the novelty of a generative model is

defined as:

Novelty = 1−
|set (Vm) ∩N |

|set (Vm)|
(1)

where (Vm) is a batch of non-duplicate generated molecules, and N is the orig-

inal training set. Any molecules that have never emerged in the training set are

contributed to the novelty score. Concerning of formerly mentioned situation, such

evaluating metric could not reflect this implicit structural problem, and it should

be called the ”permissive novelty” [17].

Meanwhile, Deep Generative Model (DGM) is not the only way for efficient chem-

ical space exploration. Recently, some research utilized GA (Genomic Algorithm)

such as Monte-Carlo Tree Search (MCTS) instead of DGM and proved GAs served

as a potent candidate for searching for the desired chemical compounds[18, 19].

This search-based methods generally regard molecule fragments as the tree nodes,

and the whole process can be viewed as searching for a feasible connection between

the generated midbody and the nodes[20, 21]. The possibility for feasible connec-

tions not only ensure the validity of generated molecules but also make the search

process efficient. However, the search process needs to get feedback from the third-

part supervision, which could be a scoring function, a neural network[21], or some

mechanism such as Expectation Maximization[22]. This step needs extra training

and devise precisely for a reason to ensure it will lead the search process in the right

direction.

In this paper, we tried a new pattern for combining the GA and DGM and treat

novel molecule exploration as a two-step task. At first, we trained a 3-layer stacked

RNN model as our backbone network for quick molecule exploration. Then we try to

solve the problem of ”permissive novelty” of RNN-based models using reinforcement

learning while the Reinforcement Score (for details, see chapter Reinforce Score )

is the target. And We adopt SELFIES [23] as the molecule presentation instead of
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SMILES [24]. Second, when the network converged, we aim to utilize its exploration

power to find the evolution target (a molecule with ideal properties), and the target

will lead the optimization procedure for the specified molecule.

The main contribution of this paper are summarized below: (1) We re-trained a

more efficient backbone model without inheriting the former framework and the

post-processing bases on Reinforcement Score could make our model cater to differ-

ent requirements. (2) We devised a light-weighted baseline that combines GA and

DGM for specified molecule evolution without introducing extra parameters,the

whole process is intervene-free and does not need further supervision. (3) We issued

- reward truncate strategies for reducing the side-effect of reinforcement learning

optimization and avoiding the model collapse and it could be transferred to other

tasks.

Methods

Chemical molecular Presentation

For the purpose of making the model learns inner connection and presentation of

valid chemical compounds. A certain chemical molecular must be presented as a

meaningful vector [25]. As formerly mentioned, our baseline aims to combine with

STONED-SELFIES[26] for molecule exploration, so we tried SELFIES - a novel and

robust molecule presentation for molecule encoding. The appearance of SELFIES

mitigated the problem of the random invalidity of SMILES and ensured the validity

after structure modification. Our experiment shows excellent results while adopting

SELFIES for encoding molecules as network inputs(Table 1). It shows superiority

not only in the validity of generated molecular but also reduced the training cost.

Dataset and processing

A larger dataset will provide a more abundant combination of molecule fragments,

which empowered DGM to search the enormous chemical space. For these concerns,

we used the data collected from ChEMBL30 (https://www.ebi.ac.uk/chembl/) [27]

which contains more than 2.2 million compounds and 1.92 million small molecules.

We derived all of the small molecules for data preprocessing. After data-cleaning

by rdkit (https://www.rdkit.org/)) [28], remove the salts, and stereochemical in-

formation and filter outs SMILES strings that are far from the center of chemical

space, and convert all SMILES to canonical form. Half of the remained 1.72 million

molecules are randomly selected as the training set, given the scope of our model

structure.

After that, we take the SELFIES package to convert all selected drugs to SELF-

IES presentation and make up a chemical ”corpus” of size c. It records all chem-

ical substructure such as [Branch1 1] or [C + expl] and three placeholder named

< start > ,< pad > ,< end > which means start generation, padding, and genera-

tion ended separately. While training, we first decompose the SMILES presentation

of all molecular in our cleaned dataset into small fragments. Every fragment cor-

responds to one token in c, the process is shown in Figure 1. We noted that not

all molecules could be encoded as SELFIES presentation for several reasons, such

as violating the set rules. We exclude these molecules. Before we feed the data into

the model, the molecule is split by the SELFIES package and encoded into mean-

ingful vectors according to the chemical ”corpus.” Here we choose the length of the
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longest encoded molecular (l) of each batch as the final vector length. A placeholder

pads any molecular that does not match the final length in order to facilitate the

training. Finally, < start > and < end > were added to the head and tail of the

encoded vector separately.

Figure 1 The encoding process and the example are given of a benzene molecule, it is first
decomposed into items and structural tokens, and then each part is encoded by the established
chemical corpus. Finally, the molecule is transferred to a meaningful vector.

Backbone model

A common problem emerged in DGMs is the invalidity of generated strings while

adopting SMILES as the model input, and it is usually caused by the unmatched

brackets[29]. The emergence of DeepSMILES[30] aims to solve this problem. And

because of this, DGMs need more training epochs to reach the convergence and

get rid of the invalidity problem. The former research such as ReLeaSE[31] deviced

stack-memory layers to enhance the capacity of their model.

In our work, the modification of molecule presentation has changed and we de-

fined our work as a light-weighted pipeline. Thus, we do not use the same generating

networks with pre-trained weights, and we turn to train our backbone models and

moved the former mentioned stack-memory layers; the workflow and model struc-

ture is shown in Figure 2. We adopt a 3-layer stacked recurrent neural network

model with GRU [32]. GRU is another alternative solution with LSTM [33] which

could ease the vanishing and explode of gradient [11] and thus make it possible

to update more effectively during backpropagation. Compared with LSTM, it only

contains two gates instead of three, thus reducing the training time and network

parameters while not at the cost of model performance. The two gates of GRU are

named ”reset gate” and ”update gate” separately, the reset gate means to control

the information dependency of latest time ht of last time ht−1, while the update

gate determines the extent information be reserved from last time ht−1.

Here, we expect our model to learn the valid presentation while also being confined

by the chemical properties such as chemical valance. Given a sequence of encoded

vector (V1, ..., Vi), we let the model predict the distribution of the word (Vi + 1).

Take a common molecule as an example; if the model receives the sequence c1ccccc,

we wish the model learns to maximize the probability distribution of the word 1,

thus the ring is closed and yields the desired molecule. Formally speaking, given a

vector V we try to maximize the probability of the equation
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Figure 2 The data flow and backbone generative model for molecule generation

−
o∑

i=1

P (i)logiP (Vi+1|V1, V2...Vi) (2)

where P is the probability for each token in c be chosen as the next character and

i is the time step.

After training, we sampled 10k molecules to evaluate the generative capacity of

our model. We utilize principal component analysis (PCA) [34] and select the first

two principal components and visualize them to confirm the exploring capacity of

our generative model ( Figure 3 ).

And the generation result illustrates that our model reached over 99% validity of

generated molecules, diversity, and novelty, which are shown in Table 1 and we will

discuss them in the next session.

Model Optimization

As we inferred, RNN-based models appear well in common evaluate metrics but

lots of generated molecules contain unwanted structures. In Figure 4, we exhibited

two molecules that may cause problems while conducting virtual screening [35] for

the purpose of seeking proper drug-like chemical compounds. (the binding score is

provided by IGEMDOCK [36], and the synthetic score is supplied by SYBA [37])

In silico molecule design can always be formulated as an optimization problem and

it has been widely explorated[38, 39]. But the optimization may also be problematic.

At first, multi-object optimization is still a problem in drug design field, because

a certain compound must obey multiple physicochemical properties to be a drug

candidate, and a single property being varied may lead to the changing of another

property [7]. Second, pursuing too much on some properties may not work well, it’s

a bit comical that a molecule with the highest LogP would be such a long carbon

string and of course is of no means for molecule design[40].

We seek the possibility of reducing the training cost while putting the model ahead

and expect it generates molecules of high quality. Thus, we focus on optimizing only
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Figure 3 Visualization of training molecules and generated molecules among Chemical space
using PCA, to make it more convenient for laying out, the data is 100 times diluted.

Figure 4 The deep learning model generates these molecules; both molecules seem to own higher
binding capacity with the main protease of covid-19 (code:6LU7). The first molecule is difficult to
synthesize because of its structural complexity, while the other has no meaningful chemical
structure.

one important property - synthetic accessibility[41, 42], and the following reasons

described our opinions: (1) we regard ”the permissive novelty” as a problem caused

by lacking a structural constraint, concerning the structure of drug-like molecules

is often regular and easy to synthesize, from the economical side. Thus, the chang-

ing of SA (Synthetic Accessibility) may bring elevation of the quality of produced

molecules. And for this purpose, we utilized SYBA instead of the traditional SA
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score as our synthesis difficulty judgment. The design of SYBA takes the synthesis

routes into concern and thus it could be a good quality evaluation tool for the gen-

erated molecules. (2) the next step of our pipeline may bring structure modification

to a certain molecule, and this process may contain randomness. So these changes

may deteriorate the structure of the variants thus we explicitly optimize it at first

to mitigate this problem. (3) Treating SA as the optimizion object will bring our

model interesting capacity and make it cater to different tasks (see Optimization of

different tasks).

Synthetic score prediction

To directly optimize the synthetic accessibility from the generative model, we need

to get feedback from the generated molecules. For this purpose, we take syba to

judge all sampled molecules after one epoch is finished. Syba is capable for the classi-

fication of organic compounds as easy-to-synthesize (ES) or hard-to-synthesize (ES)

According to syba, 0 serves as the threshold while estimating whether a molecule is

difficult to synthesize or not. If the syba score is positive, the molecule is considered

to be ES; otherwise, it is deemed to be HS [37].

For this work, we first generated numerous molecules from the original backbone

model. We observed that approximately one-third of molecules should be estimated

as hard to synthesize (Figure 6). And the next section, we tried to focus on two

opposite directions - 1. Make the generative molecules harder to synthesize. 2. Make

the generative molecules easier to synthesize. The whole process is shown in Figure

5.

Figure 5 Workflow of property optimization. The generated molecules are judged by SYBA, their
attributed score will be converted to a Reinforcement score using exponential projection. And then
it will be utilized by the policy gradient optimization, with the molecule properties changing.

Optimization of different tasks

In our task, the reinforcement learning pipeline contains two modules: the actor and

the critic. The actor takes current state (sT ) and performs an action (aT ) according

to the environment, and the critic should provide feedback based on sv and av thus

conduct the actor be optimized in the right direction.



Chen et al. Page 8 of 17

As for the traditional training process, the goal of the actor is to maximize the

reward, and the reward equation is described in equation 3, and its derivative is

listed in equation 4

R(Θ) = E [r (sT )|0 ,Θ] =
∑

sT∈S

pΘ (sT ) r (sT ) (3)

∇R̄θ =
1

N

N∑

n=1

Tn∑

t=1

R (τn)∇ log pθ (a
n

T | snT ) (4)

∇R̄θ = −
1

N

N∑

n=1

Tn∑

t=1

R (τn)∇ log pθ (a
n

T | snT ) (5)

and the model is trained to find a batch of parameters (Θ) to maximize the reward

(R).

In our model, the current state st is acquired from each time step t according

to the input token, and the action aT is provided as the output of our backbone

model. During this process, we sampled a group of action pairs (sT ,aT ) from which a

brand-new molecule was de novo generated. In order to maximize the mathematical

expectation E, for each reinforcement training step, we generated 10 molecules. For

each molecule, we accumulate the product of reinforcement score and action pairs

so that we get the reward based on equation 3 mentioned above. Following the

optimized rules, we force the model to ”evolve” and modify its parameters, thus

making the generated molecules own higher synthetic accessibility.

However, this process is not immutable, and the former works are always elab-

orated to maximize the mathematical expectation. In our work, we are delighted

to observe that this process could also be reversed, which means with a slight ad-

justment, we can reduce the reward step by step and lead the model to vary in the

opposite direction and reduce the synthetic accessibility. For this process, we follow

equation 5 to conduct the adjustment. After training, we sampled 10k molecules

from three models (backbone model(BM),negative-oriented optimized model(NM),

and optimize-oriented model(OM)). And the generated result of all molecules is

shown in Figure 6, and we can see a significant shift in the distribution.

Reinforcement score

According to the generated result of our original backbone model, the majority of

synthetic scores of molecules distributes among the section from -150 to 150.

To facilitate the optimization process, an exponential projection is implemented

to the original SYBA prediction, we call it the reinforcement score (RS) and use

it to indicate a variant of synthetic accessibility for a certain molecule following a

formula e
1

150
x+e where x refers to the predicted synthesis score predicted by SYBA.

Based on the converting equation, a generated molecule with a higher predicted

synthetic score will also have a higher reinforcement score. Before we take them into

reinforcement optimization, we converted the synthetic score of all valid molecules

into positive numbers.
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Figure 6 Prediction of the synthetic score by syba of three different stages: BM,NM,and OM.
The blue part illustrates the scores derived from the original synthetic accessibility of molecules.
There are 97.2% of molecules judged to belong to HS after negative optimization while 84.5% are
believed to be ES after positive optimization.

Reward truncate strategies

Reinforcement learning can be viewed as a ”post-processing” procedure for genera-

tive models, to be specific, the appointed reinforcement score indicates the model to

change toward our desired direction. However, the procedure is delicate and difficult

to control, and a phenomenon called ”model collapse” affected the quality of gen-

eration, which often reflexes in too many duplicate tokens of generated molecules

and a performance recession. We view this phenomenon as caused by the ”stable

revenue” of positive examples, the model could repeat such series and thus get a

higher reward easily, and this problem is implicit and obscure.

For our task, some details deserve further discussion.

(1)We noticed that there are still parts of molecules ”born” with high synthetic

accessibility, from the optimal perspective, these molecules could waive further op-

timization.

(2)We also noticed that our appointed reinforcement score may be too smooth

for differentiating HS molecules or ES molecules. As we former mentioned, SYBA

regards 0 to be the boundary of two categories. The RS projected all SYBA pre-

dictions to other continuous spaces and after that all attributed RS is positive.

But the modified continuous space becomes not obvious for differentiating the two

categories. For example, molecules with -10 as a predicted SA score, and after the

exponential projection, its RS will be e−
1

15 + e; and a molecule with 10 as the for-

mer, its RS will because e
1

15 + e. We can see that the difference seems too slight

after the projection and we expect to provide the model a more clear instruction

when it conducts the task of positive optimization.

To solve all mentioned problems, a truncation of the reinforcement score is utilized

to ensure better training results. We try to utilize the ideology of activating functions

such as Relu, which exerts a non-linear transformation of the given expression. Here

we first set an ”optimal threshold” to exclude these molecules while conducting

action-pair sampling. Any ES molecules over this threshold will not contribute to

the calculation of the next step. And in our experiment, this threshold is set to

150 (before converting it to the reinforcement score). For other ES examples, only

half of their reinforcement score contributes to the calculation of the next step.

Actually, we try to reduce the reward of these examples to some extent thus getting
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rid of too many generated duplicate tokens. To evaluate this, we did experiment

with differences on adding these strategies or not, and the comparison is shown

in Figure 7. The result shows the issued strategies mitigated the phenomenon of

’model collapse’ and ensured the richness of generated molecules.

Figure 7 Comparison between model implemented our strategies and not after training 10
epochs. The post-processing is conducted on the same model with only utilizing the defined rules
or not as the difference. For each model, we sampled 10 molecules at a single optimization
timestep and repeat 20 times for a single epoch and the total epoch is set to 10 in our
experiment. The upper figure shows that with proper strategies, the navigation of chemical space
is feasible in comparison with the collapse model without any constraint.

Halfway-targeted drug-like molecules exploration

In the next part, we utilized STONED-SELFIES - an algorithm using structural

evolution to quickly explore the medium molecules; Following the metrics issued in

their works, the joint similarity ensures the evolution of the midbody molecule has

similarities to their parents (for details, see the original paper [26]). And for our

model, the light-weighted design empowers it to conduct quick exploration. Thus,

we can use it to search the enormous chemical space efficiently and find the ideal

molecule as the evolution endpoint. So the two parts can be combined together for

designated molecule evolution. And the detail of our experiments are listed below:

(1) Following the former parts to train the generative model with positive op-

timization, then we conduct molecule selection to choose the best molecules with
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ideal LogP and QED score (calculated by Rdkit). (2) Assign the ”best” candidates

as the evolution endpoint and drug candidates as the starting point to conduct

structure evolution using STONED-SELFIES, see Figure8.

Thus, the pinpoint of our method lies in finding the ideal evolution target and the

start point and the purpose is to do the structural evolution from one to another.

During this process, a bunch of midbodies will be explored in the near chemical

space. With proper selection strategies, we could find molecules with both ideal

properties and similarities to their parents. And we called this method - Halfway-

targeted drug-like molecule exploration.

Results

Speed and performance

In our work, we retrained a backbone network without using the same parameter

or structure of former excellent works[43, 7, 31] and adopted the SELFIES presen-

tation. Our model appears to have high performance throughout the whole training

process with approximately 4.9 million parameters, only one-tenth of the back-

bone models of others[43]. Among our concepts, the sampling capacity matters[44],

for the reason of efficiently searching for a proper evolution target, thus we take

the model structure into consideration. The reduction of structures lets our model

works rapidly without losing performance, even after the reinforcement optimiza-

tion. While the model is working on a laptop with a graphic card (GTX 1060 with

6GB video memory), it still reached a high speed of generating approximately 1k

novel molecules in less than a single second.

After training toward different expectations, we sampled 10k molecules from each

model for 3 rounds and calculated some standard metrics in an average; the result

is shown in Table 1.

The definitions of metrics are :

Uniqueness =
|set (Vm)|

|Vm|
(6)

V alidity =
|Vm|

Sm

(7)

where Sm means a batch of sampled molecules and Vm represents chemical valid

molecules for a single batch in Sm.

Table 1 Performance of Magicmol in different metrics. Synthesizability: generated molecules judged
as ES by SYBA; Druglikeness: average QED score of generated molecules done by Rdkit

Models Validity Uniqueness Novelty Traning Set Synthesizability Druglikeness Model Parameters
Magicmol (BM) 99.90% 99.90% 100%

0.89 M
0.655 0.14

4.9 MMagicmol (NM) 96.20% 96.20% 100% 0.027 0.51
Magicmol (OM) 99.90% 99.90% 100% 0.885 0.69
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Molecule Evolution

An example of a molecule evolution process is shown in Figure 8. The evolution

starts with a drug candidate - Ribavirin (LogP -3.01 , QED 0.44) and ends with the

generated molecule Ma97 (SMILES: COC1=CC=C(Br)C=C1C(=O)NC2=CC=C(F)C=C2

, LogP 3.84 , QED 0.93). During this process, STONED-SELFIES applied reason-

able string manipulation. The modification of molecule presentation can be seen

as a process of exploring the near chemical space around the specified molecule.

And our designated molecule with ideal drug-like properties will lead the modi-

fied direction (the joint similarity plays as a structural constraint). Though the

evolution process indeed has a randomness to some extent, but the advantage is

also distinct. First, it’s time-consuming and needs fewer computational resources,

thus it can be replicated round by round to extensively explore the surrounding

chemical space. Second, the evolution is structural-dense because at each timestep

we only permit up to 2 tokens to do alternation thus the evolution is explainable

and changes between different fragments can be detected and analyzed. Third, the

whole process is done step-by-step, we first explicitly optimize the SA of generated

molecules and then turn to optimize other chemical properties, we implicitly reach

the goal of multi-object optimization which is also a dilemma in this field.

Figure 8 An evolution process between the formerly mentioned molecules. The result confirmed
our ideas and we circled the molecules with better physicochemical properties in green dotted
ellipse.

Discussions

In this paper, we proposed Magicmol, which focuses on utilizing the advantage of

methods from two categories (the exploration capacity of DGMS and the evolution
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abilities of GAs). We first designed an RNN-based backbone model and conducted

optimization thus empowering generate molecules with ideal chemical structures,

and then we combined them with STONED-SELFIES to do the molecule evolution

to explore near chemical space to optimize a certain molecule. In the next section,

we will discuss other opinions and potential applications of Magicmol.

De novo drug design

To be honest, Magicmol is not born for de novo devise drug-like molecules,

and a potent drug candidate is a combination of several aspects such as logP,

QED(quantitative estimate of drug-likeness), ADMET(Absorption, Distribution,

Metabolism, Excretion, Toxicity), etc. We expect ideal drug-like molecules to own

all these factors. As for the reinforcement learning optimization, a single property

being varied may lead to the changing of another property [7], their solution is

modifying these properties one by one, which works well but also takes higher time

and computational complexity.

Thus, we tried to focus on altering only one significant property - synthetic ac-

cessibility, and we have conducted a series of experiments to assess the molecule

properties after reinforcement learning optimization. Actually, there is no absolute

evidence proving that the structural complexity is binding with the drug-like fac-

tors. Still, we witnessed a massive difference between these generated molecules

after changing their synthetic accessibility to different directions Figure 9.

Figure 9 QED and logP score of generated molecules after reinforcement learning optimization.
We derived 10 batches (10240) of molecules from our generative model : (a) NM (b) BM (c) OM
,and their QED and logP score are acquired by rdkit. There is a massive difference in some
drug-like properties between these generated molecules, even if we just modified the synthetic
accessibility.

Even though these properties are not perfectly positively correlated to synthetic

accessibility, we still observed that accompanying with the structural optimization,

the drug-likeness of generated molecules rises, especially for the averaged QED

score, which increases from 0.51 (BM) to 0.69(OM). And this result matches our

expectation; we see this elevating on some metrics is achieved by the ”get feedback

and optimize” pipeline, which modified the network parameters, thus enhancing the

model capable of generating ideal molecules. Also, we think Magicmol mitigated the

difficulty of retro-synthesize route identification to some extent concerning the less

complex of these generative molecules.
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Synthetic accessilbility variation

We tried to reverse the rule of policy gradient so that our model can be used to

vary the synthetic accessibility in a different direction, which can be utilized for

either improving the synthetic accessibility of molecules or simply generating lots

of hard-to-synthesis compounds without introducing any other super parameters

and we get rid of the need of domain knowledge. To the best of our knowledge,

other models have not emerged that try to vary the property of molecules directly

from the generative model to the opposite direction.

Figure 10 Distribution of training molecules by their predicted synthetic score, the positive
samples are approximately 13 times the negative samples.

In the natural world, intuitively, most compounds are designed to be easier to syn-

thesize. Then we tried to derive the synthetic score of the original training set, and

the result is shown in Figure 10. And only approximately 7% of the compounds are

judged to be difficult to synthesize. In some particular tasks, for example, the train-

ing of SYBA. For better training results, a model should reach a balance between

negative samples and positive samples while preparing the training set. Magicmol

may serve as a high-velocity negative sample generation tool, which could be a solu-

tion for such problems. And in Figure 11, we listed some generated molecules after

the reinforcement optimization in different directions.

Conclusions

In this paper, we proposed Magicmol, which focuses on utilizing the advantage of

methods from two categories (the exploring capacity of DGMS and the evolution

abilities of GAs). The idea initially seems contradicted but actually can be reason-

ably combined. We empowered the model to generate molecules with ideal chemical

structures but also utilized structural constraints that facilitate the following evolu-

tion steps. The pipeline could conduct quick exploration of enormous chemical space
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Figure 11 Generated molecules of different synthetic accessibility. The first line : the top 5
molecules generated with the highest synthetic accessilbility The second line: the top 5 molecules
generated with the lowest synthetic accessilbility

and we also issued our solutions to solve the annoying ’model collapse’ problem.

Thus, we think Magicmol may solve problems in this field to some extent.
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