Sea-ice deformation product derived from Sentinel-1 & RADARSAT Constellation Mission SAR imagery (2017-2022)

Mathieu Plante¹, Amélie Bouchat², Damien Ringeisen², Jean-François Lemieux¹, Bruno Tremblay², Philippe Blain¹, Stephen Howell¹, Mike Brady¹, Alexander Komarov¹,

IICWG-DA-11 workshop, Oslo, March 21-23

https://worldview.earthdata.nasa.gov

Environment and Climate Change Canada Environnement et Changement climatique Canada

Sea-ice deformation

LKFs: Linear Kinematic Features

Understanding LKFs and statistical properties of sea-ice deformations is of interest from a climatological, physical and logistical point of view

https://worldview.earthdata.nasa.gov

RADARSAT Geophysical Processor System (RGPS)

RGPS (Jan 25-27, 2000)

Total deformation rate (day⁻¹)

0.00

Other large scale SAR data sets

EGPS (Envisat): Gridded, 24hrs, 10km, 2007 – 2012

DTU (Envisat, RADARSAT-2, Sentinel-1): Gridded, 24hrs, 10km, 2018 – 2023

Global Ocean - High Resolution SAR Sea Ice Drift

Other large scale SAR data sets

EGPS (Envisat): Gridded, 24hrs, 10km, 2007 – 2012 DTU (Envisat, RADARSAT-2, Sentinel-1): Gridded, 24hrs, 10km, 2018 – 2023

New ECCC sea ice drift data set (Howell et al. 2022)

ECCC-ASITS (Sentinel-1, RCM): Gridded, 24hrs, 6.25km, 2017-2023 7days, 25km

Other large scale SAR data sets

EGPS (Envisat): Gridded, 24hrs, 10km, 2007 – 2012 DTU (Envisat, RADARSAT-2, Sentinel-1): Gridded, 24hrs, 10km, 2018 – 2023

New deformation data set

Lagrangian deformation estimates, at multiple temporal and spatial resolutions

ECCC Automated Sea Ice Tracking System (ASITS)

ECCC Team: Stephen Howell, Mike Brady, Alexander Komarov

System designed for generating large-scale sea-ice motion fields for operational uses (near-real-time) within ECCC. (Howell et al., 2022)

Feature tracking algorithm (Komarov and Barber, 2014) applied to sequential SAR images.

- Sentinel-1: 2017 2023
- RCM: 2020 2023

Howell et al. (2022)

ECCC-ASITS - Overview

Images are processed in different streams for each satellite.

ECCC-ASITS - Overview

Images are processed in different streams for each satellite.

ECCC-ASITS - Output

List of start/end positions for tracked points per image pair:

CP	startX	startY	dispX	dispY	sLat	sLon	theta	pCorr	pkStr	cCorr	conf	velX	velY	endX	endY
Θ	1152	944	Θ	Θ	57.3198631	-91.0738504	0.000	0.235	24.682	0.444	3	0.000	0.000	1152	944
1	1272	1048	0	Θ	57.3044571	-90.5742550	0.000	0.197	20.895	0.267	1	0.000	0.000	1272	1048
2	1320	1056	Θ	Θ	57.2568385	-90.4488085	0.000	0.273	28.705	0.604	3	0.000	0.000	1320	1056
3	1384	1080	0	Θ	57.2092767	-90.2526791	0.000	0.172	16.123	0.258	1	0.000	0.000	1384	1080
4	1608	1152	0	Θ	57.0257084	-89.5976654	0.000	0.172	16.401	0.260	1	0.000	0.000	1608	1152
5	1640	1160	Θ	0	56.9964390	-89.5098076	0.000	0.191	18.018	0.329	2	0.000	0.000	1640	1160
6	1672	1184	0	Θ	56.9861593	-89.3864792	0.000	0.167	14.387	0.211	1	0.000	0.000	1672	1184
7	1440	1256	153	52	57.3539215	-89.7362019	343.125	0.237	25.831	0.726	3	15.300	5.200	1593	1308
8	1488	1264	149	64	57.3053031	-89.6118579	343.125	0.253	24.820	0.556	3	14.900	6.400	1637	1328
9	1064	1272	117	-34	57.8261627	-90.5478144	354.375	0.146	15.107	0.498	3	11.700	-3.400	1181	1238
10	1832	1272	Θ	Θ	56.8949020	-88.8429321	0.000	0.300	32.747	0.476	3	0.000	0.000	1832	1272
11	1928	1272	0	Θ	56.7769111	-88.6369418	0.000	0.448	51.832	0.739	3	0.000	0.000	1928	1272
12	1104	1280	114	- 20	57 797	-00 1385018	25/ 275	0 170	17 469	0 170	3	11 400	- 2 000	1219	1250

ECCC-ASITS - Output

List of start/end positions for tracked points per image pair:

-																-
CP	startX	startY	dispX	dispY	sLat	sLon	theta	pCorr	pkStr	cCorr	conf	velX	velY	endX	endY	
0	1152	944	0	Θ	57.3198631	-91.0738504	0.000	0.235	24.682	0.444	3	0.000	0.000	1152	944	
1	1272	1048	0	Θ	57.3044571	-90.5742550	0.000	0.197	20.895	0.267	1	0.000	0.000	1272	1048	
2	1320	1056	0	0	57.2568385	-90.4488085	0.000	0.273	28.705	0.604	3	0.000	0.000	1320	1056	
3	1384	1080	0	Θ	57.2092767	-90.2526791	0.000	0.172	16.123	0.258	1	0.000	0.000	1384	1080	
4	1608	1152	0	0	57.0257084	-89.5976654	0.000	0.172	16.401	0.260	1	0.000	0.000	1608	1152	
5	1640	1160	0	0	56.9964390	-89.5098076	0.000	0.191	18.018	0.329	2	0.000	0.000	1640	1160	
6	1672	1184	0	0	56.9861593	-89.3864792	0.000	0.167	14.387	0.211	1	0.000	0.000	1672	1184	
7	1440	1256	153	52	57.3539215	-89.7362019	343.125	0.237	25.831	0.726	3	15.300	5.200	1593	1308	
8	1488	1264	149	64	57.3053031	-89.6118579	343.125	0.253	24.820	0.556	3	14.900	6.400	1637	1328	
9	1064	1272	117	-34	57.8261627	-90.5478144	354.375	0.146	15.107	0.498	3	11.700	-3.400	1181	1238	
10	1832	1272	0	Θ	56.8949020	-88.8429321	0.000	0.300	32.747	0.476	3	0.000	0.000	1832	1272	
11	1928	1272	0	0	56.7769111	-88.6369418	0.000	0.448	51.832	0.739	3	0.000	0.000	1928	1272	
12	1104	1280	114	- 30	57 7970950	-00 1385018	254 275	0 170	17 469	0 470	2	11 400	- 3 000	1219	125	J

- Deformation estimates are obtained for triangles.
- We reject triangles that are too distorted and have angles of less than 10°.

- Output format = netCDF
- Variables (one entry per triangle):
 - Start/end positions (each vertex),
 - Start/end time,
 - Area,
 - Shear, divergence, vorticity, total def.
 - Strain rate errors

Available spatial and temporal scales

Shear rate, Mar.31- Apr.1st, 2020 (24 hrs)

Vorticity, Mar.31- Apr.1st, 2020 (24 hrs)

Divergence, Mar.31- Apr.1st, 2020 (24 hrs)

Spatial coverage

- RCM + S1
- Nov-May, 2017– 2022
- T = all
- L = all

Spatial coverage

Spatial coverage

Coverage for different temporal resolutions

Limitations - coverage

• Patches overlap in space and time, which complicates model comparison.

To deal with this, a satellite emulator seeding the same tracked points in models needs to be implemented.

 Trajectories are Lagrangian, but deformation history is not continuous as new cells are defined for each new pair of images. The implications on temporal scaling analyses are not clear...

Limitations – Impacts of tracking resolution

We observe a checkerboard pattern for deformations of the order of 3×10^{-2} days⁻¹.

This happens in regions of low deformation rates, where the ice displacement appears discontinuous due to the tracking resolution:

Limitations - Impacts of tracking resolution

$$\sigma_{\dot{\epsilon}_{11}}^2 = \sum_{i=1}^n \left(\frac{(y_{i+1} - y_{i-1})^2}{4A^2 T^2} \right) \sigma_{track}^2$$

(Bouchat and Tremblay, 2020)

where: A is the Lagrangian cell area, T is the temporal scale of the def. estimate, (x_i, y_i) is the position of the cell vertex i σ_{track} is the tracking error.

0.00

Impact of temporal and spatial scales

$$\sigma_{\dot{\epsilon}_{11}}^{2} = \sum_{i=1}^{n} \left(\frac{(y_{i+1} - y_{i-1})^{2}}{4A^{2}T^{2}} \right) \sigma_{track}^{2}$$

The checkerboard pattern for RGPS is observed at a lower scale because:

- 1. Lower tracking error (100 m vs. 200 m)
- 2. Longer time intervals (3 days vs. 1 day)
- 3. Larger cells (~10 km vs. ~5.5 km)

Example: PDFs of deformation rates

Example: regional analysis

Summary

- Lagrangian sea-ice deformations from SAR imagery of Sentinel-1 and RCM (Nov-May, 2017-2023)
- Version 0:

Triangular deformation estimates Spatial resolution ~5.5 km Temporal resolution: 12 hrs - 96 hrs Tracking error: 200 m Deformation resolution: 3 x 10⁻² day⁻¹

- Advantages of RCM: increased coverage in Chukchi Sea, Bering Sea, Hudson Bay & compensating for the loss of S1-B.
- Discretized feature-tracking algorithms lead to apparent checkerboard pattern when drift gradient is below the tracking resolution.
- Still need to compare with other deformation products (e.g. DTU) to validate location of LKFs and the order of magnitude of deformation.

2022-12-01 to 2022-12-02

Coming up...

- Including HH & HV channels
- Reduced tracking error: 80 m

2022-12-01 to 2022-12-02

Coming up...

- Including HH & HV channels
- Reduced tracking error: 80 m

Temporal evolution of coverage (Nov.-May)

