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Abstract
Fungi are an understudied resource possessing huge potential for developing products that can greatly improve human 
well-being. In the current paper, we highlight some important discoveries and developments in applied mycology and 
interdisciplinary Life Science research. These examples concern recently introduced drugs for the treatment of infections 
and neurological diseases; application of –OMICS techniques and genetic tools in medical mycology and the regulation 
of mycotoxin production; as well as some highlights of mushroom cultivaton in Asia. Examples for new diagnostic tools 
in medical mycology and the exploitation of new candidates for therapeutic drugs, are also given. In addition, two entries 
illustrating the latest developments in the use of fungi for biodegradation and fungal biomaterial production are provided. 
Some other areas where there have been and/or will be significant developments are also included. It is our hope that this 
paper will help realise the importance of fungi as a potential industrial resource and see the next two decades bring forward 
many new fungal and fungus-derived products.
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Introduction

Fungi have been important resources for humankind, starting 
from the stages of early civilization. Even the most ancient 
human beings, who were gatherers and hunters, have prob-
ably already picked mushrooms and learned the hard way to 
discriminate between the good and bad choices among their 
daily diet, which consisted of a mixture of animals, plants, 
and mushrooms (Beyer 2003; Hyde et al. 2019; Svanberg 
and Lindh 2019). The earliest human civilizations were 
founded because the people deliberately cultivated cer-
tain types of plants or bred certain types of animals and 
could thus create a sustainable source of food to support 
the foundation of larger cities (Ackerman et al. 2014; Raimi 
et al. 2021). Microscopic fungi, such as certain yeasts and 
“moulds” have also been used for millennia for produc-
tion of food and beverages, based on empirical knowledge, 
even though the early civilisations did not have any scien-
tific background about fermentation processes that result in 
the production of, e.g., bread, beer, and wine (Hyde et al. 
2019). Likewise, certain mushrooms were used traditionally 
as remedies to treat and cure various kinds of diseases (De 
Silva et al. 2012). This becomes evident in particular from 
the ancient Asian pharmacopoeias (Leong et al. 2020; Xu 
et al. 2021), where ca. one third of the listed ingredients 
that accound for the “herbal” medicines is actually repre-
sented by fungal sources (Yuan et al. 2016; Hyde et al. 2019; 
Howes et al. 2020; Newman and Cragg 2020).

However, the true beneficial potential of fungi has only 
come about in the past century, due to the development of 
sophisticated biotechnological methodology that allows 

for sustainable production of various products that are 
highly beneficial to mankind (Hyde et al. 2019). Starting 
from the discovery of penicillins, large scale fermentation 
processes were developed for many drug candidates that 
can now be produced at the kilogram scale, thus marking 
the starting point of the Golden era of antibiotics (Mohr 
2016). Examples such as statins and cyclosporin illustrate 
that fungal metabolites can also be used efficiently to 
treat other diseases or make it possible to perform com-
plicated surgeries such as organ transplants (Hyde et al. 
2019; Devaux et al. 2021). Biotechnological production 
processes involving fungal work horses have also been 
established for the production of enzymes, flavour com-
ponents, pigments and various commodity chemicals. In 
recent years, fungi have also been increasinly employed 
in biodegradation and bioeconomy, e.g., to treat organic 
waste and gain energy (Filiatrault-Chastel et al. 2021). 
Last but not least, the importance of fungi as food sources 
has increased dramatically, and especially in China, the 
mushroom breeding and production industries (Meyer 
et al. 2020a, b; Alam et al. 2021; Barzee et al. 2021; Zhang 
et al. 2021) has made tremendous progress regarding the 
production of various medicinal and edible species at 
multi-ton scales (Hyde et al. 2019; Wu et al. 2019).

Many of these accomplishments were facilitated by the 
availability of various powerful screening systems for detec-
tion of enzymatic activities and biological effects at high 
throughput that are now available in the White Biotechnol-
ogy, Agro and Pharma Industries. However, in particular the 
newly arising –OMICS technologies and the correspond-
ing progress in molecular genetics and biochemistry have 
even facilitated the development of new products and pro-
cesses in all the aforementioned areas and offer new diag-
nostic tools (Wibberg et al. 2021). As shown in the latter 
study and the follow-up work by Kuhnert et al. (2021), third 
generation genome sequencing technologies provide high 
quality sequence data, and important loci such as biosyn-
thetic gene clusters can easily be made out in the almost 
complete genomes and exploited subsequently by methods 
of synthetic biotechnology. As of recently, innovative meth-
ods such as synthetic biology or gene editing that are based 
on genome data have become routine in various fields of 
unnecessary the Life Sciences (Khalil 2020; Li et al. 2020; 
Martin et al. 2020) and are essential to the proposed circular 
bioeconomies (Pan 2017; Meyer et al. 2020a, b; Lange et al. 
2021; Venkatesh 2022).

In the current paper, we summarize what we consider to 
be ten important decadal advances in fungal biology that 
will improve human well-being and, in some cases, alleviate 
climate change and reduce polluting the planet.
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Fingolimod, a drug derived 
by mimetic synthesis from a fungal 
metabolite as template as a promising 
immunosuppressive drug for treatment 
of neurodegenerative diseases

Autoimmune disorders of the central nervous system 
(CNS) like chronic multiple sclerosis (MS) have prompted 
an intensive search for new immunomodulatory drugs 
against neurological disorders of the central nervous sys-
tem in last 20 years. An estimation of up to 2.5 million 
people in the world are said to have multiple sclerosis, 
making it the leading cause of neurological disorders 
(Rosati 2001).

Current treatment strategies in multiple sclerosis 
involve management of symptoms and use of disease-
modifying drugs like; intramuscular (IM) interferon beta-
1a (IFNβ-1a), subcutaneous (SC) IFNβ-1a, SC IFNβ-1b, 
and glatiramer acetate (GA), all of which must be injected 
(O'Rourke and Hutchinson 2005; Haas and Firzlaff 2005). 
However, severe injection-site reaction incidence in addi-
tion to flu-like symptoms, depression, and fatigue has led 
to the discontinuation of the therapy (Stewart and Tran 
2012). The introduction of oral therapies has been a huge 
step forward in the treatment of relapsing–remitting mul-
tiple sclerosis, firstly due to ease of their administration 
in addition to parameters such as clinical efficacy, ability 
to reduce lesions, safety, and tolerability.

Immune‑mediated disorders affecting the central 
nervous system

The body’s immune system plays a major role combat-
ing different diseases and infections by recognizing for-
eign disease-causing pathogens and tumors and eliminat-
ing them. In some cases, the immune system may have 
abnormal responses and start attacking the body in what 
is known as an immune-mediated disease (García et al. 
2020). Immune-mediated diseases are those whose cause 
is thought to be modulated by an inappropriate immune 
response (David et  al. 2018). In such an abnormal 
response, the immune system attacks and destroys healthy 
and normal cells such as the red blood cells or platelets. 
In the case of immune-mediated disorders affecting the 
central nervous system, the immune system attacks a par-
ticular location in the central nervous system.

This attack by the immune system alters the cellular 
homeostasis and causes injury to the affected organs since 
there is an excessive inflammatory reaction in response 
to the attack (Groves et al. 2013). The response is the 
uncontrolled production of antigens as an inflammatory 

response, with the cytokines and the CD4+T lymphocytes 
being the most common response, although other lympho-
cyte types such as TH1 or TH2 may also be produced in 
response to the attack (García et al. 2020; Ghasemi et al. 
2017). The occurrence of immune medicated diseases 
often has a complex etiology with genetic factors being 
the major component, and triggered by environmental, 
genetic, and infectious agents (David et al. 2018; García 
et al. 2020).

Immune mediated disorders are an issue of public 
health significance since patients with one autoimmune 
disorder tend to develop additional conditions, including 
both autoimmune disorders and other comorbid conditions 
(Reale et al. 2018). There is an increased susceptibility 
of patients with one autoimmune disease developing an 
additional syndrome, which increases the burden of treat-
ment and management of the disease (Brinkmann et al. 
2010). Conditions such as multiple sclerosis are also asso-
ciated with a higher burden of cardiovascular disease, as 
the body’s inflammatory response serves to induce athero-
sclerosis (Reale et al. 2018). In other cases, the immune 
system reaction triggers the development of myocarditis 
due to the damage of cells both infected and uninfected by 
viruses, which can be fatal to the patient.

Apart from cardiovascular disorders, immune medi-
ated diseases can also lead to neuroinflammation, caus-
ing degenerative disorders such as Parkinson’s and Alz-
heimer’s disease, multiple sclerosis, and stroke, among 
others. These diseases lead to progressive damage and 
degeneration of neurons due to host immune response. 
According to Sanford (2014), immune mediated diseases 
such as multiple sclerosis are associated with clinical and 
economic burdens due to the nature of the disease. Condi-
tions such as multiple sclerosis are progressive and occur 
over many years, often over the individuals’ lifespan and 
require support from the family, caregivers, and the health-
care system, which often comes at a high cost (Owens 
2016).

As mentioned, conditions such as multiple sclerosis 
are immune-mediated disease that occur due to the body’s 
immune system attacking the central nervous system and 
destroys the myelin, oligodendrocytes and nerve fibers 
(Ghasemi et al. 2017). The damage due to an abnormal 
immune response result in scarring on different areas, thus 
the name multiple sclerosis. This damage affects the abil-
ity of the central nervous system to conduct signals from 
the brain to different parts of the body. The result is the 
different physical, cognitive, and neurological symptoms 
that occur due to poor transmission of impulses within 
the central nervous system, which vary among patients 
depending on the type and severity of the condition (Gha-
semi et al. 2017).
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New treatments and diagnostic methods 
under development

Testing and diagnosis for multiple sclerosis typically relies 
on ruling out other conditions that may present with similar 
signs and symptoms. However, the use of Magnetization 
Transfer imaging (MTR) based markers has been found to 
be more useful in detecting, monitoring, and understand-
ing the progression of multiple sclerosis under treatment 
(Petracca et al. 2018). The use of advanced imaging tech-
niques is helpful in detecting changes due to the enhanced 
sensitivity of the tests. However, being novel techniques, 
there are still gaps in understanding the sensitivity of the 
tests longitudinally. There is need to ensure the standardiza-
tion of tests, processing, and the development of images in 
high resolution for this to be a viable testing and diagnostic 
tool (Petracca et al. 2018).

The treatment of autoimmune diseases has traditionally 
focused on the use of immuno-suppressive therapy that low-
ers the patients’ immune response. However, this approach 
requires long-term use of progressively increasing dosages 
to maintain disease control, often exposing the patients to 
opportunistic infections that may be fatal. In addition, the 
use of immunosuppressants is also associated with toxicity 
and adverse side effects that affect the quality of life for the 
patients (Rosenblum et al. 2014). This indicates the need for 
research and development into new treatment and diagnostic 
modalities.

One such novel approach to immune-medicated dis-
eases is the use of costimulatory blockade. T-cells play a 
major role in the immune system, being involved in the 
killing of infected host cells, activating other immune 
cells and regulating the body’s immune responses. In the 

absence of pathogens and other disease-causing factors, the 
T-cells become fully activated, resulting in an autoimmune 
response. Blocking the pathways that result in this activa-
tion is the costimulatory blockade, where the costimulatory 
signals responsible for activating the T-cells are inhibited, 
reducing the effect of the autoimmune response (Rosenblum 
et al. 2014). The strategy proved to be useful in prevent-
ing disease, such as type I diabetes or rheumatoid arthritis. 
In contrast, the effectiveness of the approach on multiple 
sclerosis has been rather low, which may be attributed to 
the fact that the approach has less effect on the T-cells that 
were previously activated, with the costimulatory blockade 
being unable to suppress the cells (Rosenblum et al. 2014).

Apart from synthetic medication, natural products also 
play a major role in the treatment and management of 
autoimmune diseases such as multiple sclerosis. As men-
tioned, the use of immunosuppressive therapy is associ-
ated with the increased need of medication at higher dos-
ages, which exposes the patient to opportunistic infections 
(Rosenblum et al. 2014). Natural products play a critical 
role in the discovery and development of drugs, due to 
their structural ability to regulate the body’s defense func-
tion and also competition with disease causing pathogens, 
thus their effectiveness in the treatment of cancerous cells 
and other infectious disease (Atanasov et al. 2021; New-
man and Cragg 2016).

The use of natural products in the management of 
multiple sclerosis has made great strides in the last dec-
ade, with several biological immunomodulators derived 
and developed, and shown to be effective in suppressing 
the immune response and in slowing down the progres-
sion of the disease (Gharagozloo et al. 2018). Many of 
these compounds are secondary metabolites of fungi and 

Fig. 1   Fungi-derived natural 
immunosuppressants
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bacteria, which are characterized by having complex, 
unique structures and relatively high molecular weights. 
These properties make the secondary metabolites highly 
suitable as candidates for pharmacological drug develop-
ment (Atanasov et al. 2021).

Despite the potential benefits of natural products in 
the treatment and management of multiple sclerosis and 
other disorders, there are challenges faced in successfully 
developing and discovering drugs from these chemical 
entities. Those challenges range from the identification 
of the biologically active compounds in the extracts, 
to legal barriers in patenting the bioactive compounds 
(Atanasov et al. 2021). As mentioned, multiple sclerosis, 
is a progressive degenerative disease, and the goals of 
treatment are to improve the patients’ quality of life (Gil-
González et al. 2020), thus the need and emphasis for 
products that will have an anti-inflammatory response, 
enhance immune regulation, and repair the damage to the 
myelin sheath in the central nervous system (Ghasemi 
et al. 2017).

Immunosuppressive natural products

Natural products historically have been an incredible source 
of new therapeutic agents both in their natural form and as 
template for semisynthetic and synthetic modification (Atan-
asov et al. 2021). They are representative of a very wide 
divergent structures and became a dynamic source of drug 
discovery for the treatment of various ailments including 
autoimmune diseases (Pham et al. 2019; Harvey et al. 2015). 
Autoimmune diseases (ADs) are pathological conditions, 
which occur due to loss of immunological tolerance towards 
self-antigens leading to damage and dysfunction of specific 
or multiple organs and tissues (Singh et al. 2016). Medica-
tion, especially the use of immunosuppressive drugs, is the 
primary therapy for treating autoimmune diseases (Guo et al. 
2018). Immunosuppressant agents are used to prevent the 
immune system from acting against transplanted tissues and/
or organs such as the heart, liver and kidneys (Holt 2017). 
Therefore, the development of clinical immunosuppressive 
agents for autoimmune diseases provided solutions for drug 
discovery and development. Fungi-derived natural prod-
ucts and their semisynthetic derivatives have made impor-
tant contributions in providing potent immunosuppressants 
with unique modes of action (Fig. 1). Some of the impor-
tant clinically used immunosuppressive agents produced by 
fungi during the 1980s and the early 2000s are Cyclosporin 
A (1) (Beekman and Barrow 2014) from the ascomycete 
Tolypocladium inflatum (Dreyfuss et al. 1976) and mycophe-
nolic mofetil (2) the approved pro-drug for mycophenolic 
acid (3). The latter compound was originally isolated from 
Penicillium spp., including Penicillium brevicompactum, 
P. stoloniferum and P. roqueforti (Gosio 1896; Beekman 

and Barrow 2014; Patel et al. 2017). The discovery and 
development of these compounds supported and validated 
the screening of fungi in pursuit of lead compounds for the 
development of new immunosuppressive drugs with novel 
mode of action, improved efficacy, and reduced side effects.

In this context, the screening of extract from the asco-
mycete Isaria sinclairii by Fujita and colleagues and the 
evaluation process guided the isolation of a compound with 
significant immunosuppressant activity (Fujita et al. 1994a). 
The isolated compound was termed ISP-I and the structure 
seemed to be identical to that of myriocin (4), previously 
isolated from Melanocarpus albomyces in a screening for 
antifungal agents (Kluepfel et al. 1972). In a mixed lym-
phocyte reaction (MLR) assay, myriocin was shown to be 
more potent than cyclosporin A (Fujita et al. 1994a). How-
ever, it turned out to be more toxic compared to cyclosporin 
A (Fujita et al. 1996a), hence, researchers began to study 
myriocin in order to improve its biological properties (Fujita 
et al. 1994b, 1996b). A medicinal chemistry program to opti-
mize the activity of myriocin based on mimetic synthesis 
(Adachi et al. 1995), subsequently led to the identification 
of a novel compound: Structure activity relationship (SAR) 
studies guided the discovery of the highly effective immu-
nosuppressive agent fingolimod (5), also known as FTY720 
or 2-amino-2-[2-(4-octylphenyl) ethyl]propane diol hydro-
chloride (Adachi et al. 1995; Kiuchi et al. 2000).

In part reflecting its origins in transplantation research, 
fingolimod has been extensively studied for its effects on 
immune system. The therapeutic activity of the drug has 
demonstrated improved efficacy compared to other oral 
treatment products such as teriflunomide and dimethyl 
fumarate (Stewart and Tran 2012). In addition, initial in vitro 
findings indicated that fingolimod has an effect on disability 
and reduction of brain atrophy. It also retainis central but 
not effector memory T cells in lymph nodes, which leads 
to a preferential reduction of multiple sclerosis-pathogenic 
immune responses and spares large parts of protective 
immunity (Foster et al. 2007; Miron et al. 2008). Further-
more, its lipophilic nature enables the drug to cross the 
blood–brain barrier, which may help restore gap-junctional 
communication of astrocytes with neurons and cells of the 
blood–brain barrier (Aktas et al. 2011). This phenomenon 
is associated with neurodegeneration in multiple sclerosis.

Fingolimod was finally approved in 2010 by the USA 
Food and Drug Administration (FDA) as the first oral drug 
used for the treatment of Relapsing Remitting Multiple 
Sclerosis (RRMS) under the trade name Gilenya® (Thomas 
et al. 2017). The drug is applied as a hard gelatin capsule 
including 0.56 mg fingolimod hydrochloride (Thomas et al. 
2017). Since its discovery, several researchers have investi-
gated in the mechanism of action of fingolimod in multiple 
sclerosis as well as its potential application as therapy for 
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the treatment of other autoimmune-related diseases (Huwiler 
and Zangemeister-Wittke 2018).

Curiously, the taxonomy of the producer organisms of 
this important drug template has not been revised to date, 
and there is no other report on the discovery of myriocin 
from another member of the genus Isaria and allies, even 
though these fungi have been studied rather thoroughly dur-
ing the past decades (Isaka et al. 2005; Zhang et al. 2020a, 
b, c, d).

We have researched the taxonomic history of the pro-
ducer organism (and Hypocreales from cicada in general) 
and interestingly, we found that the taxonomy of the pro-
ducer strain reported by Fujita et al. (1994a) is incorrect! 
The name Isaria sinclairii actually goes back to a species 
that was described by Berkeley (1855) based on a specimen 
from New Zealand, as Cordyceps sinclarii Berk. The Ameri-
can mycologist Lloyd (1923) later transferred the species to 
the genus Isaria, but did not study the type specimen that 
is housed in the Kew Botanical Gardens, UK. His observa-
tions were based on another specimen that was sent to him 
from New Zealand, and the transfer of a Cordyceps spe-
cies to Isaria without any type studies would be regarded 
rather questionable today. However, the taxonomy of these 
insect associated fungi has changed drastically over the past 

decades (Sung et al. 2007; Kepler et al. 2017; Xiao et al. 
2019, 2022). For instance, most of the insect-associated 
hypocealean species are now distributed over three different 
families, Cordycipitaceae, Clavicipitaceae and Ophiocordy-
cipitaceae (Xiao et al. 2019, 2022; Zhang et al. 2020a, b, c, d; 
Wijayawardene et al. 2022). Various generic rearrangements 
have been proposed on the basis of large phylogenetic stud-
ies using multi-DNA locus genealogies and the One-Fungus-
One Name Concept. The definition of genera like Cordyceps 
and Isaria has also changed accordingly, and many species 
that were formerly accommodated in “Cordyceps sensu 
lato” are now actually members of Ophiocordyceps or other 
genera of Ophiocordycipitaceae. This even includes the 
famous Chinese Caterpillar Fungus, which is widely used in 
Asian Traditional Medicine and now bears the name Ophio-
cordyceps sinensis (Zhang et al. 2013). Likewise, there are 
species of both Cordyceps and Ophiocordyceps that are 
known to be associated with Cicadae insects. The strain that 
was reported by Fujita et al. (1994a) as the original pro-
ducer of myriocin is deposited with ATCC (strain number 
24400) and sequence data released to GenBank also point 
toward its being a member of Ophiocordyceps. The clos-
est relatives as inferred from a comparison of the sequence 
data are Ophiocordyceps sobolifera (Ban et al. 2015) and 
O. khonkaenensis (Crous et al. 2019), i.e., two species that 
were described from cicada in Asia (Fig. 2). Phylogeneti-
cally, this ATTC strain is far apart from all cicada parasites 
in Cordyceps. Even though the species Isaria (Cordyceps) 
sinclairii has apparently never been cultured and sequenced, 
the species that appear morphologically most similar to it, 
like Cordyceps jakajanicola (also reported by Crous et al. 
2019) and grow on cicadae in Asia definitely differ from it. 
Interestingly, Lloyd (1923) had already remarked that the 
type of Cordyceps/Isaria sinclarii was similar to “Cordyceps 
sobolifera”, but this was never taken into account when the 
genera and families of the invertebrate-associated taxa were 
rearranged. We conclude that the information on the original 
producer strain of myriocin needs to be corrected to “Ophio-
cordyceps sp.”, even though the species cannot be narrowed 
down with certainty because the stromata from which the 
ATCC culture was obtained are not apparently available for 
taxonomic revision. Studies are presently ongoing to verify 
whether the phylogenetically close strains to “Isaria sin-
clairii ATCC 24,400” are able to produce myriocin, so this 
riddle can be solved.

Synthetic methods for preparation of fingolimod

The first method for the synthesis of fingolimod (code name 
FTY720), with the IUPAC name 2-amino-2-[2-(4-octylphe-
nyl) ethyl]propan-1,3-diol hydrochloride, was reported by 
Adachi et al (1995). From there on, several processes for the 
preparation of fingolimod free base and/or its hydrochloride 

Fig. 2   Stromata of Ophiocordyceps khonkaenensis. Kindly provided 
by Artit Khonsanit
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have been developed (Chaturvedi et al. 2020). Although 
several literatures known synthetic strategies of fingolimod 
have been reported, most of them seem to be tedious and 
time consuming and therefore not industrially and economi-
cally feasible (Chaturvedi et al. 2020). The aim of devising 
efficient and viable routes amenable to scale-up associated 
with improved yield and quality to the small molecule drug 
for the treatment of multiple sclerosis therefore became a 
priority for organic chemists such as Chaturvedi AK, who 
provided a process for synthetic preparation of fingolimod 
hydrochloride with a purity greater that 99.8%. Basically, 
this process involves 4 or 5 steps to obtain fingolimod free 
base and fingolimod hydrochloride, respectively, starting 
from 2-acetamido-2-(4-octanoylphenethyl)propane-1,3-diyl 
diacetate via a Friedel–Crafts acylation using octanoyl chlo-
ride in the presence of a Lewis acid. A remarkable feature of 
this synthetic route, which was an improvement over prior 
disclosed methods, is the fact that it does not involve the use 
of column chromatography in the entire process.

Mode of action and potential applications 
of fingolimod

Fingolimod is a sphingosine-1-phosphate receptor modula-
tor that is rapidly metabolized in vivo following phospho-
rylation by sphingosine Kinase 2 (SphK2) to produce the 
phosphorylated and active form of fingolimod-phosphate 
(Brinkmann 2009; Huwiler and Zangemeister-Wittke 
2018) (Fig. 3). After phosphorylation, the active moiety 
fingolimod-P exerts its effects by mimicking sphingosine 
1-phosphate (S1P) and binds to four G protein-coupled 
sphingosine-1-phosphates receptors (GPCRs). Up till now, 
five S1P receptors termed S1P1-5 have been identified and 
fingolimod-P binds with similar affinity as S1P to S1P1, 

S1P3, S1P5 and shows much better binding to S1P4 than S1P. 
Unlike S1P fingolimod-P is not a ligand for S1P2 (Huwiler 
and Zangemeister-Wittke 2018). Fingolimod-P binding to 
S1P receptors inhibits the egress of lymphocytes from lymph 
nodes thus preventing them from contributing to autoim-
mune processes including inflammatory injuries character-
istic of multiple sclerosis (Brinkmann 2009). A significant 
reduction in the relapses was observed in patients treated 
with fingolimod. Moreover, fingolimod was also reported to 
contribute to neuroprotection in the central nervous system 
as it can easily cross the blood–brain-barrier (BBB) based 
on its high lipophilic nature and is thought to exert effects 
directly on resident central nervous system cells, which also 
express S1P receptors (Hunter et al. 2016).

Currently, there is a significant interest in the potential 
benefits of fingolimod on several other autoimmune disor-
ders. Its mechanism of action and potency against those have 
therefore been extensively investigated in preclinical stud-
ies, some of which moved forward to clinical trials. This 
includes stroke for which fingolimod was tested in phase 
II clinical study in patients with acute ischemic stroke (Fu 
et al. 2014; Tian et al. 2018). In addition, fingolimod showed 
efficacy against Amyotrophic Lateral Sclerosis (ALS) and 
a clinical phase II study was performed to determine safety 
and tolerability of fingolimod in patient with ALS; the drug 
actually demonstrated acceptable acute safety and tolerabil-
ity (Potenza et al. 2016; Berry et al. 2017). However, despite 
the potential benefits of fingolimod against the above men-
tioned autoimmune diseases, RRMS currently remains as the 
only approved indication for fingolimod. Another indication 
of interest for fingolimod is directed towards autoimmune 
disorders associated with neuroinflammatory processes such 
as Alzheimer’s Disease, Parkinson’s Disease, and cerebral 
malaria (Huwiler and Zangemeister-Wittke 2018).

Fig. 3   Mechanism of phospho-
rylation of sphingosine and fin-
golimod via sphingosine kinase 
2 (Strader et al. 2011)
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From enfumafungin to ibrexafungerp—
Development of the first pharmaceutical 
drug from a fungal endophyte for use 
in humans

The current chapter deals with the discovery and develop-
ment of the first drug for treatment of systemic infections 
from an endophytic fungus. Contrary to what has been fre-
quently written in the literature and even in some renowned 
scientific publications, fungal endophytes have never been 
proven to be capable of sustainable biotechnological pro-
duction of plant metabolites like taxol. For instance, the 
taxadiene synthetase, which is a key enzyme of taxol bio-
synthesis in the plant, could not be detected in the genome 
of “Taxomyces andreanae”, the fungus that was claimed to 
produce taxol in the study by Stierle et al. (1993), or in any 
other fungus (cf. Heinig et al. 2013). In fact, no one has 
even isolated a mg of taxol from a fungal source, while the 
compound can be produced at kg scale from needles or cell 
cultures of Taxus spp. Heinig et al. (2013) observed that 

traces of taxol were only detectable by HPLC–MS in pri-
mary cultures of yew endophytes they isolated themselves. 
The compound was not detected anymore after passaging the 
endophyte culture onto new media. The authors speculated 
that the traces of taxol may have been carried over from the 
plant tissue, but it is hard to prove a negative.

In any case, endophytic fungi have their own repertoire 
of biosynthesis genes that are not much different from those 
of their saprotrophic counterparts. In some cases, it has even 
been possible to relate the endophytic producers of devel-
opmental drugs or other endophytes that have high biotech-
nological potential to a certain teleomorphic state, thereby 
elucidating their life cycles (Bills et al. 2012; Samarakoon 
et al. 2020; Wittstein et al. 2020). The latter paper actu-
ally treats the producers of the cylodepsipeptide PF1022-A, 
whose derivative emodepsin was so far the only marketed 
drug from an endophyte, even though it is only used for 
treatment in veterinary medicine and was not yet approved 
for use in humans.

Below we will first highlight the problems and chal-
lenges associated with fungal infections, then summarize 

Fig. 4   Clinical manifestation of 
a and b invasive fungal diseases 
caused by Aspergillus and c 
and d zoonotic dermatomycosis 
due to species from Tricho-
phyton benhamiae clade. a A 
magnetic resonance image of 
the head showing an abscess 
(indicated with white arrow) in 
the left temporo-occipital area 
of 17-year-old boy with chronic 
granulomatous disease. b Chest 
computed tomography image 
showing lesion (white arrow) 
consistent with acute invasive 
pulmonary aspergillosis in a 
cancer patient. c Dermatophy-
tosis localized on the bearded 
areas. d Infection localized 
on the neckline and face of 
9-year-old girl contracted from 
guinea pig
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the current treatment options and finally report on the dis-
covery of this first “endophytic drug” for human use and its 
preclinical and clinical development. We also deal with the 
taxonomy of the producer organism and the biosynthesis of 
the beneficial molecule.

Importance of fungal infections to human health 
and overview of the limited treatment options 
available

Fungal pathogens significantly affect lives of more than 
80% of the present human population (Bongomin et al. 
2017). However, despite causing 1.5 million deaths world-
wide annually, pathogenic fungi are rather neglected and 
understudied infectious agents with underfunded research 
when compared to the other pathogens (Almeida et al. 
2019; Benedict et al. 2019). One of the main reasons is that 
it has long been believed that fungal pathogens have only 
a relatively low health impact in healthy people. Healthy 
individuals are endangered mostly by few primary fun-
gal pathogens while the majority of fungal pathogens are 
opportunistic and affect primarily immunocompromised 
patients (Fig. 4). In addition, infections caused by the most 
dangerous (i.e. biosafety level 3 organisms) primary fungal 
pathogens are rare because their distribution is geographi-
cally restricted mainly to a few endemic areas (Benedict 
et al. 2015). Other primary pathogens, species of derma-
tophytes (Arthrodermataceae), causing skin infections 
(dermatophytoses), tend to have broader areas of distri-
bution and are among the most common global human 
pathogens (Havlickova et al. 2008). For example, a recent 
outbreak of children skin infections caused by strains of 
the guinea-pig associated pathogenic fungus Trichophyton 
benhamiae shows that events such as the rapid spread of 
fungi in naïve host population driven by novel adaptation 
to host immune system may occasionally occur, and then 
represent a potential risk for the population (Čmoková 
et al. 2020). Rapid expansion of fungal pathogen in naïve 
hosts can be cause a significant reduction of populations 
of many animals (e.g. bats, snakes and amphibians) (Zukal 
et al. 2016; Rebollar et al. 2016; Allender et al. 2015).

In contrast to dermatophytoses, which mostly cause non-
life-threatening infections and usually do not arouse con-
siderable public interest, opportunistic pathogens such as 
Aspergillus spp. and yeasts of the genera Candida, Cryp-
tococcus and Pneumocystis are responsible for most fatal 
infections, dramatically reducing the risk of survival of 
patients in hospitals (d’Enfert 2009) (Fig. 4). The risk of 
fungal infection is particularly high in those patients with 
low immunity response and also in patients whose treat-
ment involves the use of artificial surfaces, such as plastic 
intravenous lines and cannulas (Poowanawittayakom et al. 
2018). A current striking example of such “risk groups” 

are COVID-19-infected patients that are undergoing bron-
choscopy (Bartoletti et al. 2020; Koehler et al. 2021). Some 
opportunistic pathogens may even overcome the immune 
system of healthy individuals and cause chronic or fatal 
infections. Cladophialophora bantiana, Talaromyces 
marneffei and Candida auris were chosen as examples of 
most feared opportunistic fungal pathogens responsible for 
increasing number of fatal infections in healthy individuals, 
particularly in a case of C. auris because of limited treatment 
options due to multidrug resistance (Hyde et al. 2018a). 
However, C. auris represents only one of many pathogens 
facing a threat of treatment failure due to more and more 
limited treatment options. Only three classes of antifun-
gal drugs are currently available to treat invasive mycoses 
and one additional class is registered for treatment of non-
systemic fungal infections (Walsh et al. 2008). Moreover, 
many of these pathogens have become resistant over time, 
including azole resistant Aspergillus, terbinafine resistant 
dermatophytes, fluconazole resistant Coccidioides, multid-
rug resistant strains of Candida, Lomentospora, Microascus, 
Scedosporium, and Scopulariopsis (Ebert et al. 2020; Du 
et al. 2020; Al-Hatmi et al. 2019; Mello et al. 2019; Pérez-
Cantero and Guarro 2020). Thus, if the pathogens become 
resistant to one class, the therapeutic options are signifi-
cantly reduced. This is challenging especially in patients 
undergoing invasive aspergillosis where already high mor-
talities (29–50%) (Nivoix et al. 2008; Webb et al. 2018) fur-
ther increase up to 88% in case of infection by antimycotics 
resistant strains (van der Linden et al. 2011). The situation 
regarding the current state of the art in terms of the devel-
opment of new antimycotics is unfortunately not ideal, also 
considering that the populations in the highly industrialized 
“rich” countries of the world is getting older on average. 
The pipelines for novel antimycotics are even more empty 
than the ones for new antibacterial antibiotics, which have 
fortunately been filled again to some extent, owing to mas-
sive funding for basic and translational research after over 
twenty years of negligence (Gintjee et al. 2020).

New antifungal agents are as badly needed as new anti-
bacterials because the lack of remedies against fungal patho-
gens also affects agriculture, where bacteria do by far not 
cause as much damage. Instead of prevention, decisions and 
behaviour of the human society has inadvertently supported 
the emergence of new resistant strains in both of these areas. 
For instance, the azole antimycotics are also widely used in 
agriculture, although the majority of resistant strains may 
have originated in fields treated by azole antifungals (Berger 
et al. 2017; Cao et al. 2021b). Recently, some countries have 
replaced azole antifungals in agriculture by alternatives, but 
nevertheless, azole resistance has increased rapidly all over 
the world (Van der Linden et al. 2015; Howard et al. 2009). 
Importantly, there are not so many alternatives on the mar-
ket neither in human medicine, nor in agriculture, where 
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azoles represent the key fungicides, especially, when also 
other fungicides lost approval (succinate dehydrogenase 
inhibitors) or face resistance (e.g., quinone outside and sterol 
demethylation inhibitors) of important plant pathogens (Birr 
et al. 2021; Lammari et al. 2020; Pan et al. 2020) and fungi-
cides in mixtures with azoles seems to be the only option to 
avoid famines. Such a situation is mainly because of lack of 
innovations caused by insufficient financial incentives due 
to undervaluation of the critical situation.

Validated targets for antifungal therapy

When compared to the other pathogens (in particular the 
prokaryotic bacteria), development of fungal drugs requires 
more effort also because of close relatedness between fungi 
and animals. Hence, the number of possible targets of clini-
cally available drugs for invasive fungal infections is cur-
rently limited to merely three major classes (Fig. 5).

Fig. 5   Antimyotic agents 
approved or under develop-
ment for treatment of fungal 
infections. Fungal metabolites 
are printed in red and metabo-
lites from Actinobacteria are 
printed in blue; the others are of 
synthetic origin
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A) Echinocandins, which affect the biosynthesis of 
1,3-β-d-glucan of the fungal cell wall,

B) Azoles, which inhibit the biosynthesis of ergosterol.
C) Polyenes, which bind this sterol, resulting in formation 

of pores in the fungal membrane.
Another class of antimycotics, represented by the anti-

metabolite flucytosine, has limited treatment options. After 
bioconversion in the human body, this compound interacts 
with DNA and RNA biosynthesis and thus disturbs the 
synthesis of several essential proteins. Two more options 
are available for dermatophytosis and other non-systemic 
fungal infections, i.e. the rarely used “old dog” antimycotic 
griseofulvin, which binds to microtubule and inferring its 
function (Rathinasamy et al. 2010), and allylamines which 
inhibit squalene epoxidase enzyme, resulting in low levels 
of available ergosterol and accumulation of squalene in the 
cells (Ryder and Frank 1992).

However, only a few antifungal compound classes are 
undergoing clinical trials or are in preclinical development. 
An example are the orotomides, which inhibit the fungal 
enzyme dihydroorotate dehydrogenase (Hope et al. 2017; 
Wiederhold 2020), sordarins (Domínguez et al. 1998) with 
unique mode of action resulting in protein synthesis inhibi-
tion, and parnafungins with inhibition of poly(A) polymer-
ase activity (Parish et al. 2008; Jiang et al. 2008). The fungal 
cell wall in particularly represents an attractive antifungal 
drug target because of missing homological structure in 
human cells and thus its low toxicity in humans (Butts and 
Krysan 2012). Besides echinocandines, some antifungals 
target cell wall structures synthesis, such are inhibitors of 
chitin synthesis (e.g. nikkomycins, polyoxins), mannopro-
tein-binding antifungal agents (e.g. pradimicins and bena-
nomicins), and finally, another inhibitor of β (1, 3)-D-glu-
can synthesis but with a unique mechanism of action as 
compared to echinocandins (enfumafungins) (Curto et al. 
2021). The molecular interaction site of enfumafungins 
was proposed to be located at the same target site as the 
echinocandins, the fungus specific (1,3)-ß-glucan synthase 
component FKS1. However, enfumafungins exhibit only 
limited cross-resistance to echinocandin-resistant isolates, 
suggesting a difference in binding site (Jiménez-Ortigosa 
et al. 2014, 2017).

In view of the above situation, the following paragraphs 
highlight a very fortunate positive new development, namely 
the history of the discovery of the first endophyte-derived 
antimycotic drug launched on the market.

Discovery and description of Hormonema 
carpetanum and enfumafungin

Hormonema carpetanum is a member of the black yeast-like 
fungi related to Aureobasidium pullulans in the order Doth-
ideales (Bills et al. 2004). The characteristics of the genus 

are the melanized, but otherwise undifferentiated hyphae 
that produce slimy, yeast-like blastoconidia. The latter are 
formed basipetally from one or few loci directly on the veg-
etative hyphae.

Traditionally, the genus has been discriminated from the 
morphologically similar Aureobasidium and other genera 
of dematiaceous Dothideales by having percurrent conid-
iogenous loci (rather than the synchronous conidiogenesis 
observed in Aureobasidium; cf. de Hoog and Hermanides-
Nijhof 1977; de Hoog and Yurlova 1994). In addition, some 
species have been shown to be able to form a pycnidial 
synanamorph.

Hormonema was introduced by Lagerberg (1927) and 
is typified by H. dematioides Lagerb. & Melin. The genus 
presently comprises eight species. It is included in the Doth-
ideales (Class Dothideomycetes) and has been placed in the 
family Dothioraceae (Wijayawardene et al. 2020, 2022). 
These taxa belong to the “black yeasts”, which are consid-
ered to be among the most complicated groups of Asco-
mycota in terms of taxonomy. For instance, the taxonomy 
of Hormonema is complicated because the type species is 
regarded as the asexual state (and therefore, following the 
1F1N rule, would constitute a later synonym) of Sydowia 
polyspora (Bref. & Tavel) E. Müll, which has the basio-
nym Dothidea polyspora Bref. & Tavel and is therefore the 
much older name. On the other hand, the type species of 
Sydowia is S. gregaria Bres. It remains unclear whether 
Sydowia/Hormonema dematiodes is phylogenetically closely 
related, because Sydowia gregaria has never been subjected 
to molecular phylogenetic studies and like many other names 
in the Dothideales, needs an epitypification. This could be 
best accomplished by collecting S. gregaria from Abies in 
Germany (i.e., the host plant and country from where the 
fungus was initially reported) and by designating an epitype 
(Ariyawansa et al. 2014).

The few available phylogenetic studies (e.g., Bills et al. 
2004; Humphries et al. 2017) have thus failed to provide 
a clear picture on the relationships of Hormonema and its 
allies. Anamorph-teleomorph relationships also remain to 
be established for most of the species of this group, albeit 
all teleomorphic taxa so far shown to have a hormonema-
like asexual state also have depressed-globose, erumpent, 
solitary ascomata featuring bitunicate asci, as typically 
observed in the family and order. The aforementioned pyc-
nidial synanamorphs can also be classified in several mor-
phological genera and no correlations have so far become 
evident between the different morphs observed in the genus. 
Therefore, both, Sydowia and Hormonema remain in use ad 
interim. A large scale polythetic study, perhaps even employ-
ing chemotaxonomic methods in addition to morphologi-
cal studies and a multilocus phylogeny, should be the best 
way to solve the problems with the taxonomy of these fungi 
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(Thambugala et al. 2014; Wijayawardene et al. 2014; Hum-
phries et al. 2017).

Hormonema carpetanum, the producer of enfumafungin, 
was first discovered as an endophyte from Juniperus in a 
mountain range near Madrid (Peláez et al. 2000) and seems 
to be frequently associated with this host plant in central 
Spain. However, subsequent studies revealed that this spe-
cies is also present in other habitats. It was isolated from 
plant litter, and even from rock surfaces (Bills et al. 2004). 
This is a fair example that fungal endophytes are also capa-
ble of surviving outside their host and are only spending part 
of their life cycle in the plant host (Chethana et al. 2021a; 
Pem et al. 2021).

Metabolite extracts of the fungus exhibited very potent 
antifungal activity and the respective bioactive principle was 
soon identified as the triterpene glycoside enfumafungin. In-
vitro studies of the compound demonstrated no antibacterial 
effects, but a broad-spectrum activity against fungi including 
clinically relevant pathogens such as Candida albicans and 
Aspergillus fumigatus in the range of the antifungal drug 
amphotericin B (Peláez et al. 2000).

Biosynthesis of enfumafungin

Due to the medicinal relevance and unique structure of 
enfumafungin, the biosynthesis of the compound has been 
partially investigated (Kuhnert et al. 2018). For this pur-
pose, the genome of producer strain ATCC 74,360 has been 
sequenced with Illumina technology and assembled into 
129 contigs with a total lengths of 32.8 Mbp. Based on its 
structure enfumafungin was supposed to be derived from a 

triterpene cyclase with similarity to the lanosterol synthase. 
The presence of a sugar moiety, acetyl group, hemiacetal 
and carboxylic acid functionality further indicated that the 
biosynthetic locus should contain corresponding genes 
encoding for a glycosyltransferase, acetyltransferase, and 
multiple oxidative enzymes. Homology searches revealed a 
biosynthetic gene cluster (BGC) that contained all predicted 
genes, and which was termed efu. The core gene of the efu 
biosynthetic gene cluster (efuA) featured a very unusual trit-
erpene cyclase that is fused to a glycosyltransferase Fig. 6. 
The structure of efuA was verified by cDNA sequencing. 
Phylogenetic analysis of the terpene synthase demonstrated 
that EfuA is distinct from known lanosterol synthases and 
forms an own lineage with homologs from a broad range 
of organism including bacterial squalene-hopene cyclases 
and uncharacterized fungal terpene cyclases. The latter 
are present across the major classes of the fungal kingdom 
(e.g., Agaricomycetes, Eurotiomycetes, Lecanoromycetes, 
Sordariomycetes). Most of the homologs did not feature a 
glycosyltransferase domain, but a subclade in the phylogeny 
containing EfuA included additional fusion proteins from 
unrelated fungi indicating that they are not rare (Kuhnert 
et al. 2018). The frequent occurrence of EfuA homologs in 
fungi is also in accordance with the structural diversity of 
glycosylated enfumafungin congeners isolated from various 
fungal sources. Examples are fuscosatroside from Humicola 
fuscoatra and Chaetomium sp., peniciside from Penicillium 
sp., hyalodendrosides from Hyalodendron sp., kolokosides 
from Xylaria sp. or unglycosylated congeners such as poly-
tolypin from Polytolypa hystricis, and lobarialides and reti-
geric acids from Lobaria spp. All of these compounds share 

Fig. 6   Reannotated enfumafungin biosynthetic gene cluster (efu) and hypothesized core step of the enfumafungin biosynthesis
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a common fernane core scaffold (sometimes difficult to rec-
ognize due to putative oxidative ring expansions) and are 
therefore also referred to as fernane-type triterpenoids (see 
discussion in Kuhnert et al. 2018).

The link of the efu biosynthetic gene cluster to the pro-
duction of enfumafungin was shown by gene knockout stud-
ies of efuA, which led to abolishment of enfumafungin pro-
duction and antifungal activity of the crude extracts. Based 
on the identified biosynthetic genes a biosynthetic route for 
enfumafungin was proposed. EfuA likely catalyzes the first 
reaction of the pathway by using 2,3-oxidosqualene to form 
the fernane core and subsequently also performs glycosyla-
tion via the glycosyltransferase domain. The fernene glyco-
side intermediate is further processed by a P450 monooxy-
genase and acetyltransferase to establish the acetyl moiety 
at C-2. The 5-membered ring is predicted to be expanded 
by another P450 monooxygenase and then cleaved by an 
undetermined enzyme to yield the carboxylic acid func-
tionality. The hemiacetal part of the molecule is supposedly 
introduced by one or two P450 monooxygenases. The strong 
antifungal effects of enfumafungin also raised questions 
about the self-resistance of the producer organism. As the 
biosynthetic gene cluster encodes for a protein (efuJ) with 
homology to structural proteins of the fungal cell wall, the 
authors speculated that such an enzyme could be involved in 
a resistance mechanism (Kuhnert et al. 2018).

Semisynthetic optimization

As already outlined above, enfumafungin (1) turned out to 
be the most potent out of four triterpenoid natural products 
with (1,3)-β-d-glucan synthase (GS) inhibitory activity 
(Onishi et al. 2000). The laboratories of Merck (initially) 
and (later) Scynexis established a medicinal chemistry pro-
gram based on semisynthetic derivatization of the terpenoid 

natural product enfumafungin to optimize in vivo antifun-
gal activity and oral absorption properties. Mainly chemi-
cal modification at C-2, C-3, C-12, C-18 and C-25 were 
accomplished, and the resulting analogs were evaluated for 
in vitro antifungal activity and for oral efficiency (Apgar 
et al. 2015). The chemical structures and the most important 
semisynthetic derivatives 1 – 4 are shown in Fig. 7.

A characteristic structural feature of enfumafungin (1) is 
the hemiacetal cyclisation of C-23/C-25 across the A ring 
on the β-face of the molecule, which gives rise to intercon-
verting diastereomers at the anomeric carbon C-25. Besides 
hampering structure elucidation (Schwartz et al. 2000), this 
conversion can potentially cause chemical instability due 
to possible ring opening and oxidation reactions. Thus, the 
bridging hemiacetal of 1 was reduced to an ether moiety by 
ionic reduction with Et3SiH starting (Heasley et al. 2012). 
This conversion improved the stability of the bridging ring 
system and provided a single chemical entity, while at the 
same time a comparable antifungal activity was retained.

Since enfumafungin (1) did not exhibit an acceptable 
pharmacokinetic profile as a C-3 glycoside (Apgar et al. 
2015), the β-d-glucose moiety was replaced by a chemically 
and metabolically stable system. After acidic methanoly-
sis of the glycoside linkage, various chemical entities were 
installed and evaluated. 12-oxo-25-deoxy derivatives bear-
ing an alcohol-amine-based side chain bound via an ether 
linkage to C-3 were efficacious in a candidiasis model when 
delivered orally. In course of the synthesis of derivative 2, 
the incorporation of a quaternary stereocenter proximate to 
the basic amine of the C-3 enfumafungin side chain con-
ferred improved oral activity in the target organ kidney assay 
(TOKA) murine model of disseminated candidiasis.

Lewis acid mediated nucleophilic displacements of the 
C-2 acetoxy group mediated by borontrifluoride diethy-
letherate proceeded with retention of stereochemistry at 

Fig. 7   Development of ibrex-
afungerp (4) and comparison 
of chemical structures 1–4. By 
modifying the chemical entities 
at C-2, C-3 and C-25 (illustrated 
by colored boxes), a series of 
semi-synthetic conversions cul-
minated in the development of 4 
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C-2. The observed stereochemistry of this reaction can 
be explained by stabilization of the intermediate carboca-
tion by the proximal bridging ether exerting a neighboring 
group effect by blocking nucleophilic attacks from the upper 
hemisphere. The transformation proved to be versatile to 
displace the C-2 acetoxy group by various oxygen, carbon 
and nitrogen containing nucleophiles (Apgar et al. 2015). 
Combining an aminotetrazole substituent at C-2 with an 
aminoether substituent at C-3 produced a dramatic improve-
ment in (1,3)-β-d-glucan synthase and antifungal potency, 
but resulted in a tenfold drop in oral exposure compared 
to the acetoxy group at C-2. This problem was solved by 
alkylating the amine of the aminoether substituent with a 
small alkyl group, which improved oral exposure and bio-
availability while maintaining excellent (1,3)-β-d-glucan 
synthase and antifungal potency, culminating in the synthe-
sis of MK-5204 (3) (Apgar et al. 2020).

During the course of further optimization (Apgar et al. 
2021), an examination of various 3-alkyl and aryl-2-[1,2,4-
triazole] substituents identified 3-(4-pyridyl)-2-[1,2,4-tri-
azole] as the optimal replacement for the 3-carboxamide-
2-[1,2,4-triazole] substituent of 3. This 4-pyridyl substituent 
resulted in a fourfold improvement in antifungal activity in 
the presence of serum relative to MK-5204 (3) in conjunc-
tion with an 1.5 fold increase in oral exposure. Re-optimi-
zation of the alkyl substituents of the C-3 aminoether in the 
presence of the 3-(4-pyridyl)-2-[1,2,4-triazole] substituent 
at C-2, determined (R)-tert-butyl, methyl as the superior 
C-3 aminoether with a twofold increase in oral exposure 
over 3, while sustaining the fourfold enhancement in anti-
fungal activity in the presence of serum. The concurrent 
improvements in these two parameters resulted in a drastic 
improvement in the 7-day target organ kidney assay ED99 

for ibrexafungerp (4) relative to MK-5204 (3). This devel-
opment is an excellent example of how fungal metabolites, 
which are inherently not optimally designed for use in 
humans, can be turned into drugs by means of medicinal 
chemistry. It remains to be seen whether additional chemi-
cal modifications can improve pharmacokinetic parameters 
even further; with SCY-247 a very close structural deriva-
tive of 2 was just recently evaluated in a murine model of 
hematogenously disseminated C. albicans (Chu et al. 2021).

Potential pharmaceutical use and market potential

Ibrexafungerp (4) has the potential to become an impor-
tant drug for antifungal therapy with benefits over existing 
options, due to its oral efficacy and broad-spectrum antifun-
gal activity, which includes echinocandin resistant isolates 
and Candida auris, for the treatment of multiple serious fun-
gal infections, including vulvovaginal candidiasis (VVC), 
invasive candidiasis, invasive aspergillosis, and refractory 
invasive fungal infections (Davis et al. 2020).

After successful completion of phase III clinical trials for 
the treatment of vulvovaginal candidiasis (Jallow and Gov-
ender 2021), the FDA priority review of the new drug appli-
cation was completed and ibrexafungerp (4) was approved 
on June 2nd, 2021 for the treatment of vaginal yeast infec-
tions under the trade name Brexafemme®. Thus, the first 
new class of antimycotics since more than 20 years has been 
introduced to the market very recently.

However, the development of 4 for the treatment of other, 
recurrent vulvovaginal candidiasis and invasive fungal infec-
tions is still ongoing with several clinical trials in phase II 
and III being under way (Lee 2021).

Fig. 8   Chemical structures of 
pleuromutilin and its derivatives
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The pleuromutilins, the latest antibacterial 
drug class that made it to the market, 
can now be produced by a sustainable 
biotechnological production process using 
a heterologous host!

Pleuromutilins (Fig. 8) are a well-known class of antibiotics 
from Basidiomycota. The naturally occurring pleuromuti-
lin was isolated from Clitopilus passeckerianus (formerly 
named Pleurotus passeckerianus) already 70 years ago 
(Kavanagh et al. 1951). Clitopilus was introduced by (Kum-
mer 1871) and is classified in Entolomataceae (Agaricales, 
Basidiomycota) (Co-David et al. 2009; Baroni and Matheny 
2011). Clitopilus appears phylogenetically related to Rhodo-
cybe as they share unique morphological features including 
pinkish basidiospores and evenly cyanophilic walls having 
5–12 longitudinal ridges, and this was also corroborated by a 
phylogenetic analysis of the ITS region (Baroni and Matheny 
2011; Kluting et al. 2014; Baroni et al. 2020). The taxonomy 
of pleuromutilin producers had remained obscure for a long 
time due to varying species concepts that also have affected 
many other groups of Basidiomycota (see Niego et  al. 
(2021b) for the producers of strobilurins, which are another 
class of economically important secondary metabolites from 
Basidiomycota). Recent evidence has also revealed that they 
are chemotaxonomic markers for a certain clade of Clitopi-
lus. A recent polythetic study, combining information in the 
literature concerning pleuromutilin production, morphologi-
cal features and a phylogenetic analysis of the ITS region, 
has revealed that pleuromutilins producers are located in the 
section Scyphoides of Clitopilus (Hartley et al. 2009; Jian 
et al. 2020). Clitopilus species that are known to produce 
pleuromutilins or have the potential include for instance C. 
passeckerianus, C. prunulus, C. scyphoides, C. pinsitus, C. 
fasciculatus, and C. hobsonii. This has finally clarified that 
the compound is not produced by other genera of Basidi-
omycota (e.g., the occurrence in the genus Omphalina as 
reported by Hartley et al. 2009 and Jian et al. 2020).

Pleuromutilins display strong activities against most 
Gram-positive and some Gram-negative bacterial patho-
gens (Novak 2011; Paukner and Riedl 2017). However, the 
applications of natural products in vivo was limited due to 
insufficient metabolic stability, adverse gastrointestinal side 
effects, concerns on cardiac safety, and lack of intravenous 
tolerability (Paukner and Riedl 2017). Advances in the 
optimization of the pleuromutilins by medicinal chemistry, 
targeting the improvement of the pharmaceutical properties 
under maintenance of the potent antibacterial activity have 
subsequently led to interesting, new semisynthetic deriva-
tives (Fig. 8) (Prince et al. 2013; Paukner and Riedl 2017). 
Finally, the semisynthetic pleuromutilin analog retapamulin 
(Fig. 8) was developed and marketed as the first approved 

antibiotic from Basidiomycota for treatment of skin infec-
tions of humans (Yang and Keam 2008). Other promising 
semisynthetic pleuromutilins like tiamulin (Fig.  8) and 
valnemulin (Fig. 8) were studied concurrently for use in vet-
erinary medicine (Egger and Reinshagen 1976a, b). Tiamu-
lin has become a successful drug for treatment of dysentery, 
pneumonia and mycoplasma infections in swine and poultry 
(Nahler and Nahler 2009). Valnemulin (Econor®) is also 
approved in veterinary medicine for therapy of swine dysen-
tery and enzootic pneumonia in swine (European Medicines 
Agency 2019).

Lefamulin (Fig. 8), formerly known as BC-3781, is the 
first pleuromutilin type antbiotic that has been very recently 
approved for systemic therapy of bacterial infections in 
humans. It is now marketed as XENLETA™ for the treat-
ment of community-acquired bacterial pneumonia (CAP) 
since August 2019 in the USA after approval by the U.S. 
Food and Drug Administration. In Europe, XENLETA™ 
was also approved of the marketing authorization applica-
tion for the treatment of CAP throughout EU by the Euro-
pean Medicines Agency (EMA) since July 2020, which was 
announced by Nabriva Therapeutics plc (NASDAQ:NBRV) 
(Nabriva Therapeutics plc 2020). Based on the phase III 
clinical studies, almost 1,300 patients with CAP were treated 
with lefamulin by oral administration. The results exhib-
ited the efficacy and general safety of lefamulin without any 
interferences to moxifloxacin (Alexander et al. 2019; File 
et al. 2019). Importantly, the drug can even be administered 
orally. Is is highly effective against Chlamydia trachomatis, 
Mycoplasma genitalium, Neisseria gonorrhoeae and even 
against multidrug-resistant isolates of important Gram-pos-
itive human pathogens (Bradshaw et al. 2017; Jacobsson 
et al. 2017). For instance, lefamulin displayed full activity 
against methicillin-susceptible and resistant Staphylococ-
cus aureus and β-hemolytic streptococci (Sader et al. 2012; 
Paukner et al. 2013). Considering the fact that the pleuromu-
tilins have a different molecular target than the convention-
ally used beta-lactams and other antibiotics that have been in 
use for many decades, there is now some hope that the pleu-
romutilins will remain effective for many years to come and 
their utility can be extended further by application in other 
scenarios of bacterial infections. For this purpose, however, 
the sustainable access to the compound must be improved 
further. The producer strains are basidiomycetes that grow 
relatively slowly and their fermentation at large scale is very 
difficult. It took several decades to make the pleuromuti-
lin scaffold available in multi gram quantities to allow for 
the above mentioned drug development because the natural 
product needed to be harvested, isolated by preparative chro-
matography and subsequently modified by means of medici-
nal chemistry. Even for preclinical trials the derivatives had 
to be made available in multi gram scale. Fortunately, the 
recent technologies in –OMICS technologies, bioinformatics 
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and biotechnological process developments have made it 
easier to tackle such challenges even with metabolites from 
slow growing organisms like Basidiomycota. The elucida-
tion of the biosynthesis of pleuromutilins has provided a 
showcase on how this challenge may be tackled in the future 
even for many other fungal metabolites and it is therefore 
described in more detail further below.

The biosynthesis gene cluster (BGC) of pleuromutilin 
was recently found to contain seven genes: three cytochrome 
P450s (Pl-p450-1, Pl-p450-2 and Pl-p450-3), one acetyl-
transferase (Pl-atf), one terpene cyclase (Pl-cyc), one gera-
nylgeranyl pyrophosphate synthetase (GGS, Pl-ggs) and one 
short-chain dehydrogenase/reductase (SDR, Pl-sdr). This 
gene cluster was expressed heterologously in Aspergillus 
oryzae, giving a significant increase (over 2106%) in the 
production of pleuromutilin (Bailey et al. 2016; Alberti et al. 
2017; Yamane et al. 2017). The heterologous expression of 
the gene cluster in Aspergillus has been a hallmark in fungal 
biotechnology, which could lead to more interesting metabo-
lites from Basidiomycota becoming available for intensified 
studies in the future. These organisms are extremely creative 
in particular regarding the production of unique terpenoids 
(Sandargo et al. 2019; Gressler et al. 2021). However, a lack 
of access to larger quantities has hitherto often precluded 
the broad biological characterization of these compounds, in 
particular if they were derived from fruiting bodies of spe-
cies that cannot easily be cultured, or by ectomycorrhizal or 
other slow-growing species. The example of pleuromutilin 
and its heterologous production could therefore well have 
marked a change of paradigms and may ultimately lead to 
many additional exploratory and clinical candidates for the 
development of antibiotics and other pharmaceutical drugs. 
This could be an essential part of future strategies to tackle 
the challenge of antimicrobial resistance (Miethke et al. 
2021).

A newly discovered immune disorder 
explaining severe mycoses

Chronic and highly mutilating fungal infections in otherwise 
healthy-appearing patients have long remained enigmatic. 
The classical case of a patient with a destructive, finally 
fatal infection caused by the otherwise harmless plant patho-
gen Mycocentrospora acerina (Lie-Kian-Joe et al. 1957) is 
illustrative. However, it was recently discovered that most 
patients with such infections are not perfectly healthy, but 
have one of a gamut of inherited immune disorders (Gross 
et al. 2006; Hsu et al. 2007). For fungi, mutations in the 
signaling protein CARD9 (caspase recruitment domain-con-
taining protein 9) are particularly relevant. Immunological 
investigations have shown that most fungal infections are 
controlled by the innate immune system via C-type lectin 

receptors (CLRs). Fungal β-glucans and mannans are rec-
ognized by the hosts’s pattern recognition receptors (PRRs) 
Dectin-1, Dectin-2 and Dectin-3. A cascade is triggered via 
the signaling protein CARD9 which stimulates the release 
of pro-inflammatory cytokines such as Interleukin 6 (IL-
6) and Tumor Necrosis Factor alpha (TNF-α) by activating 
macrophages (Drummond et al. 2011, 2018).

During the last decade, numerous chronic and severe fun-
gal infections proved to have associations with homozygous 
mutations in the CARD9 gene interfering with its function. 
In several cases, a familial relationship of patients with 
similar infections was revealed (Boudghène-Stambouli et al. 
2017) indicating that the disorder is inherited. CARD9 muta-
tions impair the resistance against parasites and fungi. Vaezi 
et al. (2018) were the first to show that not all fungi, but only 
particular groups were concerned: predominantly Candida, 
dermatophytes and black fungi, while the otherwise very 
common opportunist Aspergillus fumigatus remained absent 
(Zhang et al. 2020a, b, c, d). Song et al. (2021) showed that 
mutations in CARD9 each led to susceptibility to either Can-
dida, dermatophytes, or black fungi, while only a fraction 
of the mutations was associated with more than one of the 
three fungal groups. This suggests a fine-tuned connection 
between fungus and the host’s signaling system.

Candida and dermatophytes are common colonizers 
of healthy individuals and thus are likely to expand upon 
immune weakness. In contrast, black fungi are unexpected 
agents of disease, since they are environmental and are 
uncommonly found on humans. Nevertheless, black fungi in 
Phialophora are particularly pronounced in CARD9-related 
infections. Phialophora species are environmental fungi and 
cause opportunistic infections only occasionally (Song et al. 
2021). Quite probably, all published severe infections by 
Phialophora and other black fungi concerned patients with 
CARD9 defects. As yet unproven examples of such infections 
are cases by Exophiala dermatitidis (Shimazono et al. 1963; 
Chang et al. 2000), E. spinifera (Dai et al. 1987; Singh et al. 
2012a, b), Cladophialophora devriesii (Mitchell et al. 1990), 
Phialophora tarda (Hofman et al. 2005), and Veronaea bot-
ryosa (Matsushita et al. 2003); these were all published 
without awareness of the CARD9 immune disorders. Some 
were indeed recognized retrospectively as being related to 
mutations in the CARD9 gene (Bonifaz et al. 2013).

For as yet unknown reasons, nearly all CARD9-related 
disseminated infections by black fungi are found in East Asia 
(Lanternier et al. 2015). Some of the species are known as 
colonizers of domesticated locations, such as Exophiala der-
matitidis in bathing facilities (Matos et al. 2002). However, 
despite the likely inhalation via aerosols during bathing, 
very few CARD9 infections by this fungus are known in the 
Western world. In contrast, cases of destructive disseminated 
infections by E. dermatiitidis and related black fungi are 
encountered in East Asia.



563Fungal Diversity (2022) 116:547–614	

1 3

Most patients exhibit cancerous expansion of skin tissue 
with acanthosis and hyperkeratosis, and deformations with 
local loss of tissue. Some similarity to chromoblastomyco-
sis has been noted. This chronic skin disease is unique to 
black fungi and provokes cancerous elevations of skin tis-
sue. Excessive acanthosis and hyperkeratosis is not unique 
to chromoblastomycosis. Patients have skin deformations 
due to excessive expansion of (sub)cutaneous tissue. Also, 
this disease might be CARD9-related. Several members of 
the above genera were thought to be severe pathogens and 
were classified in the highest biosafety category, but possibly 

the main trigger for these infections are immune defects of 
the hosts. One of the CARD9 mutations was associated with 
severe cases of chromoblastomycosis, which links both dis-
eases types of disease sharing acanthosis.

These findings have revolutionized the understanding of 
severe and chronic fungal diseases. Possibly, many of the 
heavily mutilating infections by opportunistic species are 
related to CARD9 mutations. For example, the Mucor spe-
cies causing severe and chronic facial infections, M. irregu-
laris, which deviates from all other Mucorales that cause 
acute infections in preconditioned patients, was also found 

Fig. 9   Diagram of signal transduction pathway of fungal carbohy-
drate antigens by the human immune system. Bcl B-cell lymphoma 
protein 10, CARD9 caspase recruitment domain-containing protein 
9, IFN interferon, IL interleukin, MALT1 mucosa-associated lymphoid 
tissue lymphoma translocation protein 1, NF-kB nuclear factor kappa-

light-chain-enhancer of activated B cells, P phosphor, SYK tyrosine-
protein kinase, Th T-helper cell. CARD9/Bcl10/MALT1 is a central 
proinflammatory signalosome in innate immune cells. Modified after 
Drummond et al. (2011)
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to have a link with CARD9 (Wang et al. 2019). Other defi-
ciencies have been reported e.g. in the transcription factors 
STAT1 (van de Veerdonk et al. 2011) and GATA2 (Egenlauf 
et al. 2015). Apparently, the severity of these infections is 
largely due to the compromised host, and less to the viru-
lence of the fungus. For this reason, several black fungi, 
including Cladophialophora devriesii, have been moved 
from biosafety (BSL) level 3 to BSL-2 (de Hoog et al. 2020). 
Due to the dysfunctional human side of the host/fungus 
interaction, antifungal treatment is less effective than might 
be expected on the basis of in vitro susceptibility test results. 
Black members of Chaetothyriales are generally susceptible 
to all commonly used antifungals, but patients with homozy-
gous CARD9 mutations appear extremely difficult to treat. 
Antifungal compounds are effective for short while, but then 
the fungus takes over again, leading to slow but unstoppa-
ble disfigurement. Alternative treatment options may be the 
application of Granulocyte–Macrophage Colony Stimulating 
Factor (GM-CSF) (Gavino et al. 2014) or hemopoietic stem 
cell therapy (Queiroz Telles et al. 2019). Further research 
is needed before these methods can utilized with safe and 
certain outcomes (Fig. 9).

Advances in the molecular regulation 
of the biosynthesis of mycotoxins 
in Fusarium: focus on chromatin structure

Mycotoxins are toxic specialized metabolites produced natu-
rally by certain filamentous fungi. They represent a major 
issue for the agricultural sector worldwide, due to their fre-
quent and sometimes high occurrence and the difficulties to 
mitigate their presence. To date, there is no existing crop-
ping strategy that is fully effective in limiting mycotoxin 
contaminations and certifies compliance with official limits 
(set in Europe by the EC regulation number 1881/2006 rev. 
2009). The problem may soon become more important as 
a result of changes in production practices and climate. In 
addition, these considerations may also apply to a wide range 
of unknown (or as yet unstudied) secondary metabolites.

Fusarium is one of the most widely recognized genera of 
plant pathogenic fungi that produce important mycotoxins. 
Among Fusarium species, F. fujikuroi Nirenberg (= Gibber-
ella fujikuroi (Sawada) Wollenweber) and F. graminearum 
(= Gibberella zeae) are causal agents of major plant dis-
ease and responsible of the contamination of various crops 
with mycotoxins. Fusarium fujikuroi is associated with the 
bakanae (‘foolish seedling’) disease of rice (Hori 1890). 
Contamination of rice with this taxon is widely distributed 
in all rice-growing countries and occurrence of bakanae has 
even increased in the recent years due to environmentally-
friendly rice cultivation (Jeon et al. 2013). As rice is a sta-
ple crop with an estimated 500 million tons produced in 

2014/2015, yield reductions due to plant diseases have a 
great impact on food and feed safety, making research on this 
taxon of broad interest. Bakanae symptoms are caused by 
the ability of the fungus to produce and secrete gibberellic 
acid (Yabuta and Hayashi 1939). Besides gibberellic acid, F. 
fujikuroi produces a huge arsenal of other secondary metab-
olites including various toxins accumulating during infec-
tion, e.g., fusaric acid, fusarin C or beauvericin (Niehaus 
et al. 2017). Fusarium graminearum is a pathogen causing 
disastrous “Fusarium Head Blight” outbreaks on wheat 
across the world (Dean et al. 2012). Fusarium graminearum 
is responsible for the production and accumulation of type 
B trichothecenes (mycotoxins), such as deoxynivalenol, as 
well as other secondary metabolites in cereal grains, during 
growth. Trichothecenes are particularly stable and resist-
ant to agri-food processing, ending up in finished products. 
Beside its toxic properties for humans and animals upon 
ingestion, deoxynivalenol also plays a role in aggressiveness 
of the fungus on wheat (Maier et al. 2006).

Understanding the factors involved in crop infection and 
secondary metabolite production is a pre-requisite for the 
elaboration of durable, environment-friendly, strategies to 
control crop health. It is therefore important to increase 
knowledge regarding the mechanistic clues that can explain 
the regulation of mycotoxin production. This regulation is 
likely to operate on different regulatory levels associating 
pathway-specific and global regulators, signal transduction 
pathways, and epigenetic control. During the last decade, 
the most novel and significant insights have concerned the 
impact of chromatin structure changes on mycotoxin bio-
synthesis. This chapter proposes a synopsis of most striking 
advances on the subject.

Role of chromatin in the regulation of fungal 
secondary metabolism

In eukaryotes, including fungi, genomic DNA wraps around 
histone protein octamers to form nucleosome chains. All 
eukaryotes possess four canonical histone proteins – H2A, 
H2B, H3, and H4 – that constitute the histone octamer, each 
of them being present in two copies. Additionally, they can 
possess variant copies of these histones, whose types and 
numbers differ per species. The histones constituting nucle-
osomes can carry modifications added post-translationally 
(e.g., acetylation, methylation) or be replaced by variant 
histones that influence the overall level of tightness of the 
wrapping. This organized combination of DNA with histone 
proteins is called chromatin. Heterochromatin corresponds 
to genomic regions that are tightly packed, by opposition to 
euchromatin that refers to more relaxed structures. A com-
mon paradigm is that euchromatic territories are the places 
where active transcription of cellular genes can take place. 
The organization of chromatin is not static, and remodeling 
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events play important roles in gene regulation. In fungi, gene 
clusters encoding for secondary metabolites are silent in 
repressed chromatin (heterochromatin) when production is 
non-favorable, and can be readily activated during develop-
ment or infection processes (Strauss and Reyes-Dominguez 
2011). There is now profound evidence that many develop-
ment-related processes, such as rapid response to environ-
mental changes or expression of secondary metabolite genes, 
are subjects of epigenetic control via chromatin structure 
changes.

Histone H3 lysine 4 (H3K4) and H3K36 methylation 
marks have been described as hallmarks of euchromatin in 
budding and fission yeasts as well as in higher eukaryotes 
(Rando and Chang 2009; Wagner and Carpenter 2012). 
Indeed, the H3K4me marks are largely located to euchro-
matic regions in both Fusarium fujikuroi and F. gramine-
arum (Connolly et al. 2013; Wiemann et al. 2013). Deletion 
of CCL1, a component of COMPASS (complex associated 
with Set1) and required for full H3K4me3, resulted in an 
altered secondary metabolite profile in both taxa (Studt et al. 
2016a, b). H3K4me2/3 deposited and removed by Set1 and 
Kdm5, respectively, play a role in development, secondary 
metabolite production and pathogenicity (Liu et al. 2015a, 
b; Janevska et al. 2018a, b). In F. fujikuroi, H3K36me3 cov-
ers whole chromosomes. Notably, two genes are involved 
in deposition of this mark, i.e., ASH1 (H3K36me3 at sub-
telomeric regions) and SET2 (H3K36me3 at euchromatic 
regions) (Janevska et al. 2018a, b). Deletion of the respec-
tive genes ASH1 and SET2 resulted in the de-regulation of 
secondary metabolism in F. fujikuroi. Notably, neither in 
case of H3K4me3 nor H3K36me3 could the observed effects 
could be directly associated with the respective histone 
modifications at the analyzed secondary metabolite gene 
clusters. Conversely to activation, two methylation marks, 
i.e., H3K9me3 and H3K27me3, have been associated with 
repression of secondary metabolite gene expression in F. 
graminearum (Connolly et al. 2013; Reyes-Dominguez et al. 
2012). For H3k27me3, a direct association with secondary 
metabolite gene clusters has been shown. Consequently, 
deletion of the involved histone methyltransferase (Kmt6) 
induces expression of otherwise silent secondary metabolite 
genes (Connolly et al. 2013).

In F. fujikuroi the ortholog of KMT6 appears to be essen-
tial (Studt et al. 2016a, b), but similarly to F. graminearum, 
down-regulation of KMT6 by RNA interference resulted in 
up-regulation of several otherwise silent secondary metabo-
lite genes, a phenotype that was accompanied by reduced 
H3K27me3 levels at the respective gene loci and the pro-
duction of novel compounds (Studt et al. 2016a, b). Notably, 
H3K9me3 established by Kmt1 appears to be essential for 
biosynthesis of fusapyrone in Fusarium mangiferae asso-
ciated with mango malformation (Atanasoff-Kardjalieff 
et al. 2021). Another histone mark that has received little 

attention in filamentous fungi is H4K20me3 associated with 
gene silencing in higher eukaryotes (Kourmouli et al. 2004; 
Schotta et al. 2004). In F. fujikuroi and F. graminearum 
one protein, Kmt5, writes mono-, di- and trimethylation of 
H4K20me, and its loss distinctly affects secondary metabo-
lite biosynthesis with the most pronounced effects on fusarin 
biosynthesis in F. fujikuroi and zearalenone biosynthesis in 
F.graminearum (Bachleitner et al. 2021).

Next to histone methylation, histone acetylation has been 
shown to greatly influence secondary metabolite gene regu-
lation in both fungi. For example, the histone acetyltrans-
ferase Gcn5, a member of the SAGA complex, is responsible 
for the acetylation of several histone 3 lysine residues in F. 
fujikuroi, e.g., H3K4, H3K9, H3K18, and H3K27 (Rösler 
et al. 2016). Deletion of GCN5 affected the transcription 
of 28 out of 47 putative secondary metabolite gene clus-
ters. Similarly, the histone deacetylases Hda1 and Hda2 are 
involved in secondary metabolite gene regulation in this 
fungus (Studt et al. 2013). While several known secondary 
metabolites were shown to be de-regulated upon deletion 
of either HDA1 or HDA2, deletion of HDA1 resulted in the 
activation of a previously silent secondary metabolite, which 
was later on identified as beauvericin (Niehaus et al. 2016). 
Similarly, the ortholog of HDA2, HDF1 in F. graminearum, 
seems to be involved in the activation as well as the repres-
sion of secondary metabolite genes (Li et al. 2011). The 
intervention of chromatin control through specific changes 
in histone marks thus appears today as a major mechanism 
that controls secondary metabolite biosynthesis. In fact, 
chromatin could be a new and relevant target to generate 
novel strategies to control mycotoxin accumulation in grains.

Secondary metabolism and the histone variant 
H2A.Z

H2A.Z is a histone variant that makes up 5 to 10% of the 
total H2A protein in most organisms examined to date. 
Abundances increase when cells exit the cell cycle and no 
longer replicate their DNA, such as during development 
(Piña and Suau 1987). H2A.Z has been linked to a wide 
variety of different sometimes contradictory nuclear func-
tions, including transcriptional activation, transcriptional 
repression, RNA Polymerase II elongation, heterochro-
matin, anti-silencing, cell-cycle control, DNA replication, 
DNA damage repair, chromosome segregation, and genome 
integrity (Chen and Ponts 2020). The function of H2A.Z 
appears to be essential in a number of organisms, including 
F. fujikuroi and F. graminearum (Sevilla and Binda 2014; 
Chen et al. 2020).

H2A.Z has been mapped genome-wide in a variety of 
eukaryotes. This histone variant is mainly found around 
transcriptional start site of genes and at enhancer sites, 
likely regulating transcription, is mutually exclusive with 
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DNA methylation, and can be modified post-translationally 
(Sevilla and Binda 2014). In particular, the N-terminal tail 
of H2A.Z can be acetylated by the NuA4 and the SAGA 
histone acetyltransferase complexes (Babiarz et al. 2006; 
Keogh et al. 2006; Mehta et al. 2010). Conversely, H2A.Z 
deacetylation was shown to involve the Hda1 protein dea-
cetylase (Mehta et al. 2010). High-resolution chromatin 
immunoprecipitation (ChIP) experiments in a number of 
model organisms have revealed that H2A.Z preferentially 
occupies nucleosomes that flank gene promoters and is par-
ticularly enriched at the + 1 nucleosome as well as at the − 1 
and − 2 nucleosomes thereby flanking nucleosome-depleted 
regions at the transcriptional start sites (Talbert and Henikoff 
2010). These nucleosomes also exhibit rapid, replication-
independent turnover, which is thought to function in erasing 
histone marks, preventing the spread of chromatin states, 
and ensuring general plasticity of the epigenome. In bud-
ding yeast, nematodes and plants, H2A.Z occupancy around 
promoters is correlated with non-transcribing genes ‘poised’ 
for transcription. Similarly, in yeast, H2A.Z is involved in 
“transcriptional memory”, i.e., the priming for fast reacti-
vation of repressed genes involving perinuclear localiza-
tions. However, in flies and mammals, promoter H2A.Z 
occupancy appears to correlate more with actively tran-
scribed genes, although studies in mouse embryonic stem 
cells revealed that H2A.Z preferentially occupies the pro-
moters of genes that are poised to direct development and 
differentiation when activated. In mice, inhibiting H2A.Z 
expression results in increased and more stable nucleosome 
occupancy at regulatory regions, decreased methylation of 
H3K4 and H3K27 at promoters and enhancers, and the de-
repression of developmental target genes. In budding yeasts, 
H2A.Z is specifically deposited near or within heterochro-
matin, where it serves as an anti-silencing factor. Here, its 
deletion results in extended spreading of silent chromatin 
inward from the telomeres. This effect can be suppressed by 
the additional deletion of genes encoding silencing factors 
themselves. Indeed, this function may act globally, in paral-
lel with the Set1 histone H3 methyltransferase, to prevent 
large-scale aberrant distribution of silencing factors (Ven-
katasubrahmanyam et al. 2007).

The importance of histone modifications in secondary 
metabolite gene regulation is well-accepted and has been 
studied in several fungi over the last years, including also F. 
fujikuroi and F. graminearum (Chen and Ponts 2020). Yet, 
nothing is known regarding the influence of histone variant 
deposition on secondary metabolite gene regulation in fungi. 
H2A.Z is involved in the regulation of adaptive gene clusters 
in other organisms, including the virulence (vir) cluster in 
the malaria parasite (Plasmodium falciparum) (Petter et al. 
2013), the Hox gene cluster in animals (Creyghton et al. 
2008) as well as the thalianol and marneral gene clusters 
in Arabidopsis thaliana (Nützmann and Osbourn 2015). In 

S. cerevisiae, H2A.Z is required for the coordinate expres-
sion of the DAL cluster, a catabolic gene cluster involved in 
allantoin utilization (Wong and Wolfe 2005), and deposition 
of H2A.Z in euchromatic regions together with trimethyla-
tion of H3K4 prevents Sir2 spreading into these regions, 
thereby indirectly contributing to proximal telomeric gene 
silencing (Venkatasubrahmanyam et al. 2007; Meneghini 
et al. 2003). Thus, it is likely that H2A.Z also plays a role 
in the regulation of the fungal secondary metabolism. In a 
general manner, H2A.Z and H3K4me3 often co-localize at 
active sites of transcription, and loss of Set1 resulting in 
a complete loss of H3K4me leads to an altered secondary 
metabolite profile in both fungi (Liu et al. 2015a, b; Janevska 
et al. 2018a, b). Notably, in S. cerevisiae, both H2A.Z and 
SET1 are involved in genome-wide anti-silencing by pre-
venting ectopic, Sir2-dependent silencing of genes across 
euchromatin (Venkatasubrahmanyam et al. 2007). H2A.Z 
and H3K4me3 could, here, be acting together. The relation-
ship between their respective depositions on the genome 
remains to be defined.

Conclusion

Many factors influence the production of toxins potentially 
implying the intervention of various regulatory genes in 
response to various environmental factors. In the recent 
years, it became evident that chromatin structure plays a 
role in the regulation of secondary metabolism in filamen-
tous fungi. The intervention of chromatin control, through 
specific histone modifications, appears today as a major 
mechanism of controlling mycotoxin biosynthesis in fungi. 
Dynamic changes of chromatin structure allow the expres-
sion of secondary metabolite-related genes hitherto silent as 
optionally embedded in repressive chromatin.

Successful application of CRISPR‑Cas9 
in medical mycology

Being eukaryotic pathogens, the kingdom Fungi shares simi-
larities with human cells (Rodrigues and Nosanchuk 2020; 
Nargesi et al. 2021). Fungal pathogens often cause chronic 
diseases, and with prolonged disease duration, they tend to 
mutate, causing them detrimental to humans (Hyde et al. 
2018a). The highly variable trophism exhibited by fungal 
pathogens allows them to infect a wide range of cells (Rod-
rigues and Nosanchuk 2020). The ability of these pathogens 
to infect multiple tissues while undergoing morphogenetic 
shifts makes fungal diseases differ significantly from other 
infections (Li and Nielsen 2017). Over 600 fungal pathogens 
that may cause diseases in humans have been reported so far, 
and among them, Aspergillus, Candida, Cryptococcus and 
Pneumocystis species are the most common (Taylor et al. 



567Fungal Diversity (2022) 116:547–614	

1 3

2001; Morio et al. 2020; Rodrigues and Nosanchuk 2020). 
Fungal infections in humans or mycoses vary from mild to 
life-threatening, with various symptoms. Invasive mycoses 
were acknowledged only in the 1980s, and till then, fungi 
were underappreciated as human pathogens (Nucci and Marr 
2005). Superficial fungal infections are the most common 
aspect, affecting almost two billion people worldwide and 
are easy to treat (Cole et al. 2017). Despite having lower 
disease incidence, invasive fungal infections can be life-
threatening and associated with unacceptably high mortal-
ity rates (Janbon et al. 2019; Morio et al. 2020). However, 
this picture has changed with the increasing population of 
immunocompromised individuals (Enoch et al. 2017; Patel 
et al. 2017). Therefore, with the broadening of the suscepti-
ble population, the frequency of invasive mycoses increases 
resulting in a death toll of about one and a half million peo-
ple annually (Brown et al. 2012; Bongomin et al. 2017). 
Even the commensal fungi become lethal to immunocom-
promised patients with immunosuppressive diseases, such 
as HIV and neutropenia or to the ones undergoing treatment 
for severe diseases such as cancer and pancreatitis (Iliev and 
Underhill 2013; Fisher et al. 2020), making fungal infections 
a significant global public health problem (Li and Nielsen 
2017).

Whether invasive or superficial, successful control of fun-
gal diseases depends highly on the timely diagnosis, effec-
tive antifungal therapy and reversal of predisposing factors 
(Riley et al. 2016). However, diagnosis and treatment remain 
challenging tasks for these fungal infections (Bruni et al. 
2019). The situation is further complicated with fungi exhib-
iting intrinsic resistance to the majority of the routinely used 
antifungal agents, limiting the possible therapeutic options 
(Riley et al. 2016; Scorzoni et al. 2017). Therefore, diagnos-
tic tools and antifungal drugs with improved efficiency are 
needed (Janbon et al. 2019). Due to these reasons, there is 
a necessity to advance efficient genetic manipulation tech-
niques and an urgency to search for new antifungal targets. 
However, to achieve this, a deeper understanding of the epi-
demiology of the fungal pathogens, their interactions with 
the hosts, potential virulence factors and novel biomarkers 
are vital. Genetic manipulation tools have been utilized to 
decipher drug resistance mechanisms and the virulence 
potential in selected fungi, in a targeted and defined man-
ner. However, these tools are tedious, time-consuming and 
difficult to use in fungi, specifically for fungi that lack a 
sexual cycle (Alberts et al. 2002). Conventional genome 
editing techniques, such as RNA interference, various arti-
ficial nucleases, such as zinc finger nucleases and transcrip-
tion activator-like effector nucleases, have been used to 
manipulate fungal genomes (Meyer 2008; Weinthal et al. 
2010; Carroll 2011; Arazoe et al. 2015; Chandrasegaran and 
Carroll 2016; Sarkari et al. 2017; Wang et al. 2017). Diploid 
genomes, lack of sexual cycle, absence of natural plasmids, 

lack of cloning vectors, scarcity of dominant markers for 
screening purposes, coupled with fewer numbers of trans-
formants resulting from the prevailing techniques (Samara-
nayake and Hanes 2011; Defosse et al. 2018; Morio et al. 
2020), hampered most of the research efforts in fungi. A 
ground-breaking, novel genome-editing technique clustered 
regularly interspaced short palindromic repeats (CRISPR- 
CRISPR associated protein 9/Cas9) was introduced in the 
last decade (Mojica et al. 2005), overcoming the drawbacks 
of the previous techniques and revolutionizing the genome 
editing arena.

The CRISPR system was first discovered as an adaptive 
immune system in bacteria (Barrangou et al. 2007) which 
was later adopted for editing genomes in other organisms, 
especially in mammalian cell lines and yeasts. It is now 
being used as an efficient tool in molecular biology. There 
are different types of CRISPR/Cas systems but the most 
commonly used is the type II CRISPR/Cas9 system from 
Streptococcus pyogenes (Marraffini and Sontheimer 2008; 
Nargesi et al. 2021). The CRISPR/Cas9 system introduces 
stable and heritable changes into the genome via precision 
insertions and deletions (Wu et al. 2014). This system con-
sists of two main working components, Cas9 endonuclease 
and a single-guide RNA (sgRNA) (Cui et al. 2018). Cas9 
endonuclease introduces a double-stranded break, three base 
pairs upstream of the protospacer adjacent motif (PAM), 
which is a small chimeric motif present within the target 
sequence and facilitates the specific targeting of the Cas9 
nucleases (Karvelis et al. 2015). The sgRNA is the fusion 
between the CRISPR-RNA (crRNA) and the trans-activat-
ing crRNA (tracrRNA) that provides the specificity and the 
scaffolding/binding ability to Cas9 (Doench et al. 2014). 
The resulting DSB of this process is repaired either by non-
homologous end joining (NHEJ) facilitated by the natural 
repair mechanism of the cell or homology-directed repair 
(HDR) facilitated by the donor template (Morio et al. 2020).

The Saccharomyces cerevisiae genome is the first for 
which CRISPR/Cas9 has been applied (Dicarlo et al. 2013). 
Since then, it has been successfully adapted to many clini-
cally, agriculturally and industrially important fungi for 
functional characterization and breeding purposes (Song 
et al. 2019). The system makes it possible to perform genetic 
changes, inactivate target genes, replace defective genes 
with healthy ones, and alter gene expression via deletions, 
mutations, barcoding and tagging performed throughout 
the genome or in specific sites. Apart from understanding 
the virulence factors and disease progression, gene-editing 
in human pathogenic fungi can be utilized in developing 
new antifungal drugs (Song et al. 2019). The multiplex-
ing capabilities of the CRISPR system are used to develop 
fungal cell factories that produce medically important com-
pounds and other metabolites (Nielsen et al. 2017). Human 
pathogenic fungi, such as Aspergillus spp., Blastomyces 
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dermatitidis, Candida albicans, Cryptococcus spp., Fusar-
ium and Malassezia, have been successfully edited using 
this system (Vyas et al. 2015; Arras et al. 2016; Wang et al. 
2016; Fan and Lin 2018; Song et al. 2018). In this study, we 
discuss the application of this biotechnological breakthrough 
on medically important fungi that has the potential to revo-
lutionize the medical field.

Applications of the CRISPR/Cas9 technology 
in medical mycology

In a time when novel approaches are urgently needed to 
overcome fungal diseases, the CRISPR/Cas9 system has 
successfully manipulated target genes in human pathogenic 
fungi, including yeasts (Candida and Cryptococcus species) 
and molds (Aspergillus species). This section discusses how 
CRISPR/Cas9 technology is used to limit the susceptibil-
ity to fungal diseases and its therapeutic potential using the 
FDA approved clinical trials.

Understanding human‑fungal pathogen 
interactions

Pathogenic fungal interactions with human tissues influence 
the establishment of fungal diseases (Tronchin et al. 2008). 
As the adhesion to the human tissues is important for dis-
ease initiation, understanding fungal interactions with the 
human is a prerequisite for controlling and treatment pur-
poses. Many studies have employed CRISPR/Cas9 to study 
genes responsible for fungal virulence (Gauthier et al. 2012; 
Min et al. 2016, 2018; Lombardi et al. 2017; Shapiro et al. 
2018; Umeyama et al. 2018; Ballard et al. 2019; Bruni et al. 
2019). This system generates multiple, parallel, genome-
wide mutations of targeted genes and tests their function 
in response to fungal diseases (Mans et al. 2015; Sharon 
et al. 2018). Most of these studies have been focused on 
understanding the interactions of major human pathogenic 
fungal lineages, such as Candida species, Cryptococcus neo-
formans, Aspergillus fumigatus and Mucorales (Vyas et al. 
2015; Arras et al. 2016; Min et al. 2016, 2018; Wang et al. 
2016; Zhang et al. 2016; Al Abdallah et al. 2017; Huang 
and Mitchell 2017; Lombardi et al. 2017; Nguyen et al. 
2017; Nagy et al. 2017; Fan and Lin 2018; Shapiro et al. 
2018; Umeyama et al. 2018; Ballard et al. 2019; Bruni et al. 
2019; Wensing et al. 2019). They not only contributed to 
manipulate fungal pathogens, but also develop and assess 
different CRISPR/Cas9 delivery strategies, their transient or 
permanent expression systems, leading to the evolution of 
CRISPR/Cas9 technology (Table 1) (Vyas et al. 2015; Min 
et al. 2016, 2018; Arras et al. 2016; Wang et al. 2016; Zhang 
et al. 2016; Al Abdallah et al. 2017; Huang and Mitchell 
2017; Lombardi et al. 2017; Nguyen et al. 2017; Nagy et al. 
2017; Fan and Lin 2018; Shapiro et al. 2018; Umeyama et al. Ta
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2018; Ballard et al. 2019; Bruni et al. 2019; Wensing et al. 
2019). For instance, before the CRISPR/Cas system, which 
radically increased HDR in fungal species such as Crypto-
coccus was introduced, it was not possible to produce stable 
transformants in many clinically important fungal strains. 
Further, some species such as C. neoformans could not be 
successfully transformed with chemical methods nor elec-
troporation. Based on the rapid progress achieved, CRISPR 
and CRISPR/Cas9 were selected as the Science’s Break-
through of the Year 2015 (Kim et al. 2017).

Developing diagnostics for fungal diseases 
and the therapeutic potential of the CRISPR/Cas9 
system

As the socioeconomic burden of genetic diseases increases, 
numerous attempts were taken to test the CRISPR/Cas9 
system as a tool for disease diagnostics, correct genetic 
abnormalities, discover target cells of drugs, and assess its 
feasibility and future possibilities in clinical applications 
(Hu et al. 2014; Lin et al. 2014; Zhen et al. 2014; Liu et al. 
2015a, b; Kennedy et al. 2015; Park et al. 2015; Yu et al. 
2015; Long et al. 2016; Nelson et al. 2016). With the popu-
larization of precision or personalized medicine in medical 
practice, CRISPR/Cas9 took the center stage as a probable 
tool for diagnostic and therapeutic interventions (Karimian 
et al. 2019; Semiz and Aka 2019).

CRISPR-based diagnostic platforms provide rapid, sen-
sitive, specific and reliable diagnostics for non-infectious 
and infectious diseases caused by bacteria, fungi and viruses 
(Bhattacharyya et  al. 2018; Jolany vangah et  al. 2020). 
CRISPR-based tools rely mainly on identifying sequences 
associated with a disease or a pathogen. The CRISPR system 
has been used as a diagnostic tool for pathogenic bacteria 
(Staphylococcus aureus, Enterococcus faecium, Mycobac-
terium tuberculosis, enterohemorrhagic Escherichia coli) 
(Delannoy et al. 2012; Ai et al. 2019; Quan et al. 2019) and 
viruses (human papillomavirus, human immunodeficiency 
virus, flaviviruses, COVID-19) (Myhrvold et  al. 2018; 
Zhang et al. 2020a, b, c, d). To date, the CRISPR-based 
diagnostic tools are commercially available to diagnose 
genetic, bacterial and viral diseases (Jolany vangah et al. 
2020), and very few are available for fungi. For example, 
the rapid CRISPR/dCas9-based detection kits are available 
to diagnose Candida albicans (The International Geneti-
cally Engineered Machine Competition: UiOslo_Norway, 
accessed at: http://​2018.​igem.​org/​Team:​UiOslo_​Norway; 
accessed on August 2021). Furthermore, a new forecast-
ing system was introduced as a promising, portable plat-
form of molecular tools, including the CRISPR system to 
detect pathogenic fungal species (Arastehfar et al. 2019). 
Even though not much research has been conducted on the 

diagnosis of fungal diseases, this technique has the potential 
to develop diagnostic tools for fungal diseases in the foresee-
able future.

The CRISPR/Cas9 has been tested for its applicability 
in in vivo gene therapy in diseased cell lines and diseased 
mouse models, involving the direct transfer of nucleases 
or donor DNA templates into diseased cells and tissues 
(Hu et al. 2014; Lin et al. 2014; Zhen et al. 2014; Liu et al. 
2015a, b; Kennedy et al. 2015; Park et al. 2015; Yu et al. 
2015; Long et al. 2016; Nelson et al. 2016). The CRISPR 
has been successfully used in gene therapies in diseased 
mouse models to inactivate or correct deleterious muta-
tions responsible for diseases with no effective treatment 
plans, such as Duchenne muscular dystrophy (DMD) (Ous-
terout et al. 2015) and has been shown to correct 2–100% 
in DMD mouse models with 15–20% therapeutic benefits 
(Long et al. 2016; Nelson et al. 2016). Further, CRISPR/
Cas9 technology facilitates the insertion of corrective or 
protective mutations, such as in Haemophilia A (Park et al. 
2015), Sickle-cell anaemia and β-thalassemia (Huang et al. 
2015; Song et al. 2015). CRISPR/Cas9 has been efficiently 
used in different cell lines to disrupt viral DNA by inacti-
vating the viral gene expression and replication of human 
immunodeficiency virus (Hu et al. 2014) and other viruses, 
such as hepatitis B (Lin et al. 2014; Liu et al. 2015a, b; Ken-
nedy et al. 2015), and human papillomavirus (Zhen et al. 
2014; Yu et al. 2015). Due to the rapid development, many 
studies and clinical trials adopt CRISPR/Cas9 system as a 
therapeutic strategy. In addition to these genetic diseases 
and disorders, CRISPR-based gene alteration therapeutic 
studies have been assessed against fungal diseases, such as 
deadly Cryptococcosis caused by Cryptococcus neoformans 
and C. gattii (Arras et al. 2016; Wang et al. 2016; Fan and 
Lin 2018). Similar studies have been conducted to replace 
virulence genes in human pathogenic fungal species, such 
as the cyp51A gene in azole-resistant clinical Aspergillus 
fumigatus isolates (Umeyama et al. 2018), carB and hmgR2 
genes of Mucor circinelloides (Nagy et al. 2017), and pyrf 
gene in clinical isolates of Rhizopus delemar (Bruni et al. 
2019). Furthermore, CRISPR/Cas9 has been used in cancer 
and stem-cell research as a highly-specific and adaptable tool 
to correct mutations in cancer cell lines (Kim et al. 2017). In 
addition to being a therapeutic tool, the CRISPR/Cas9 has 
been assessed for developing anticancer drugs. For exam-
ple, CRISPR-based studies conducted on Candida species 
facilitate the development of new antifungal drugs (Min 
et al. 2016, 2018; Lombardi et al. 2017; Shapiro et al. 2018; 
Halder et al. 2019) and have been used to discover drugs 
against Cryptococcus species (Nargesi et al. 2021). Even 
though, most CRISPR-based studies are not directly related 
to fungal diseases, the development achieved can be applied 
to treat fungal diseases in the future.

http://2018.igem.org/Team:UiOslo_Norway
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Major difficulties in treating fungal diseases are drug 
resistance and the biofilm development encoded by adhesion 
genes (Wyss Institute for Biologically Inspired Engineer-
ing at Harvard 2017). Using the CRISPR/Cas9 technology, 
Shapiro et al. (2018) suggested adhesion genes as targets 
for therapy against Candidiasis infections of Candida albi-
cans. With the exception of a few studies on fungal diseases, 
almost all of the CRISPR-based diagnostic and therapeutic 
studies have been conducted on genetic, viral and bacterial 
infections. Together, these studies demonstrate a great prom-
ise to use the CRISPR/Cas9 to facilitate drug target discov-
eries, disease therapeutics, development of drugs and patho-
gen diagnostics for human fungal pathogens in the future.

Developing fungal cell factories for the production 
of secondary metabolites of pharmaceutical 
importance using CRISPR/Cas9 system

Microbial secondary metabolites are widely exploited for 
their use as antibiotics, anticancer drugs, cholesterol-low-
ering agents, immunosuppressive drugs and other medici-
nals (Newman and Cragg 2016; Nielsen and Nielsen 2017). 
Due to the limitations of natural metabolite production by 
microbes, metabolic engineering uses the CRISPR/Cas9-
based transcriptional activation in many fungal models as 
a tool to overexpress genes involved in bioactive second-
ary metabolite biosynthesis (Leonard et al. 2007; Gauthier 
et al. 2012; Weber et al. 2017; Sanson et al. 2018; Wang and 
Coleman 2019; Roux et al. 2020; Wei et al. 2020; Jiang et al. 
2021). These microbial cell factories produce a repertoire of 
metabolites important for clinical therapeutics (Jiang et al. 
2021). Many studies were conducted on filamentous fungi, 
such as Aspergillus oryzae and Trichoderma reesei using 
the CRISPR/Cas9 and the CRISPR-activation (CRISPRa) 
techniques to develop bioactive products and their deriva-
tives for biopharmaceuticals (Roux et al. 2020).

Trypacidin is an antimicrobial compound of medical 
importance produced naturally by Aspergillus fumigatus, 
which is toxic to human lung cells (Gauthier et al. 2012). 
Weber et al. (2017) used the CRISPR/Cas9 tool to recon-
stitute Trypacidin production effectively. Pneumocandin B0 
produced by Glarea lozoyensis is essential for synthesising 
Caspofungin, an antifungal drug approved by the USFDA 
against aspergillosis and certain Candida infections (Leon-
ard et al. 2007). Due to its importance in pharmaceuticals, 
studies were conducted to enhance Pneumocandin B0 accu-
mulation using the CRISPR/Cas9 tool (Wei et al. 2020). 
In addition, CRISPRa has been used to increase the tran-
scriptional regulation of biosynthetic pathways of secondary 
metabolites of pharmaceutical importance, such as micro-
perfuranones of Aspergillus nidulans (Sanson et al. 2018). 
In some fungi, the CRISPR/Cas9 has been used to identify 
genes related to the synthesis of secondary metabolites, such 

as in Talaromyces atroroseus (Nielsen et al. 2017). Simi-
larly, it brings unlimited opportunities to accelerate the pro-
duction of secondary metabolites, efficiently.

Penicillin, one of the first discovered antibiotics that 
belong to the class of beta (β) lactam antibiotics, is derived 
from highly complex nonribosomal peptide synthetase 
(NRPS) enzymes, which require multiple synthesis steps 
(Fleming 1929). The wild strains of Penicillium chrysoge-
num produce a negligible amount of Penicillin (Sawant 
and Vamkudoth 2022). Since their discovery by Alexander 
Fleming, P. chrysogenum strains have been improved using 
classical approaches, such as random mutagenesis, classical 
genetic engineering and fermentation, resulting in marginal 
increments in industrial penicillin production. For example, 
application of gene knockout has resulted in a low success 
rate in P. chrysogenum (Snoek et al. 2009; Hoff et al. 2010; 
Fierro et al. 2022). However, Pohl et al. (2016) established 
a marker-free CRISPR-Cas9 technique on P. chrysogenum 
by successfully editing several secondary metabolite genes. 
This technique can be used to edit and regulate several fac-
tors that limit penicillin production, including the number 
of genes involved, regulatory proteins, the supply of pre-
cursors, and co-factors. For example, Mózsik et al. (2019, 
2021) demonstrated that replacing the natural promoter of 
the penicillin gene cluster with engineered and adjustable 
promoters faciliates higher yields of penicillin based on the 
type of promoter used in engineered strains. Similarly, termi-
nators, transcription factors, and regulatory and DNA-bind-
ing domains of transcriptional regulators present in the gene 
clusters participating in the penicillin biosynthesis pathway 
in P. chrysogenum can be optimized using CRISPR-Cas9 
technologies to achieve better yields of penicillin. These new 
synthetic transcription units produced from CRISPR-Cas9 
technologies may be important for incorporating and assem-
bling new fungal cell factories. Therefore, the CRISPR-Cas9 
technique can facilitate the engineering of the biosynthetic 
gene cluster of penicillin in P. chrysogenum to improve the 
production yield of penicillin.

Conclusions and future perspectives

The CRISPR/Cas9 systems have been successfully devel-
oped for many fungal species, paving the way for progress 
in genetics and molecular biology of medically important 
fungi. More than the engineered nucleases, the CRISPR/
Cas9 seems simple in design and comparatively faster. 
Genetic changes performed with the CRISPR/Cas9 system, 
such as deletions, mutations, barcoding and tagging, are 
achieved throughout the genome and in specific sites caus-
ing either a single gene mutation or multi-gene expression 
regulation. The multiplexing capabilities of the CRISPR 
system are important to develop fungal cell factories that 
produce medically important metabolites.
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The flexibility of this tool has shown potential in under-
standing biology, pathogenesis and virulence factors in 
medically important fungi in research settings. Kwon et al. 

(2019) evaluated the possibilities of using this method in the 
application stage for different fungal species, while McCa-
rthy (2020) tested for medically important fungi. Accurate 

Fig. 10   Global production of mushrooms and truffles from 1961 to 2019 (Food and Agriculture Organization Statistical 2019a). Aggregate 
global data may include official, semi-official, estimated, or calculated data

Fig. 11   Production share (A) and top 10 producers (B) of mushrooms 
and truffles. Average production was calculated by the aggregate data 
of mushroom and truffle trade and production from 1961 to 2019. 

Aggregate global data may include official, semi-official, estimated or 
calculated data (Food and Agriculture Organization Statistical 2019a)
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and fast identification is paramount for preventing and treat-
ing fungal diseases. Although not widely used, diagnostic 
methods like genome imaging using CRISPR/Cas9 tech-
nology are important for medical mycology to detect medi-
cally important fungi. Pathogen diagnosis using CRISPR/
Cas9 has been established for antibiotic-resistant bacterial 
and viral pathogens, such as Staphylococcus aureus, Zika, 
dengue and most recently SARS-CoV-2 viruses. Speed and 
accuracy are assured in these CRISPR/Cas9 based modi-
fied methods of SHERLOCKv2 and CRISPR-Chip, which 
only takes up to 15 min to produce results for the diagnosis. 
Timely diagnosis is extremely important for immunocom-
promised patients as early therapeutic approaches could 
lower the mortality rate (Legrand et al. 2016). Even though, 
it has not yet been applied for fungal diagnostics, the devel-
opment of CRISPR-Chips for diagnosing fungi is important 
in the future. These highly specific and sensitive methods 
could deliver results to smartphones even in low-infrastruc-
ture settings (Lau et al. 2020; Lackner et al. 2021). In addi-
tion to these diagnostic purposes, studying other application 
potentials of CRISPR/Cas9 technology, such as drug discov-
ery, antifungal resistance, and host-fungal interactions, could 
advance the field of medical mycology in future.

Bioeconomy of mushrooms

Mushroom trade development

Mushrooms have been used as food and medicine for thou-
sands of years. The earliest reports of mushroom consump-
tion come from Spain (18,700 years ago), China (5000 to 
6000 years ago), and Egypt (4600 years ago) (Chang 2006; 
Power et al. 2015; Straus et al. 2015). Despite the long his-
tory of human use and consumption, it is only in recent dec-
ades that mushrooms have been truly embraced, as reflected 
in the ever-increasing global bioeconomy of mushrooms.

The current mushroom trade and consumption numbers 
have reached unprecedented levels. Royse (2014) reported 
that over a 15-year stretch (1997–2012), per capita global 
consumption of mushrooms has increased fourfold, from 1 
to 4 kg/year. The global mushroom trade has grown con-
tinually since the 1960s, spurred by the development of 
mushroom cultivation technology to meet increasing con-
sumer demands. At present, production figures in the mush-
room market have increased 21-fold over the last 58 years 
(Figs. 10, 11). Rising consumer awareness about the myr-
iad health and wellness benefits of mushrooms, greater 

Fig. 12   Annual change of quantity and value of mushroom products. 
A export quantity of canned and fresh mushrooms, B Export value of 
canned and fresh mushrooms, C Import quantity of canned and fresh 

mushrooms, D Import value of canned and fresh mushrooms. Fresh 
mushroom products comprise both mushrooms and truffles in the 
FAO database (Food and Agriculture Organization Statistical 2019b)
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knowledge of different varieties, and their innovative use 
as a meat substitutes are factors all driving the global mar-
ket trends (Raut 2019). From 1961 to 2019, the overall pat-
tern characterizing the global mushroom trade has shifted 
in two main ways: (1) In the past producers tended to only 
grow a single species, however, this trend has changed to 

producers growing a range of species, such as Lentinula 
edodes, Pleurotus ostreatus, and Flammulina velutipes, 
thereby diversifying their trading models; and (2) industrial 
mushroom production hubs have relocated from Europe and 
North America to Asia. In the 1970s, mushroom production 
was mainly distributed in the Netherlands, Germany, France, 
UK, Italy, and America. However, after the widespread dis-
semination of mushroom cultivation technology at the 9th 
International Edible Mushroom Congress in 1974, Asian 
countries like China, Japan, and South Korea became indus-
try powerhouses for edible mushroom production (Zhang 
et al. 2015).

Types of trade mushrooms

Generally, mushrooms (both wild harvested and cultivated) 
are traded as either fresh or processed mushroom prod-
ucts (Wakchaure 2011). Fresh mushrooms usually receive 
minimal processing (e.g., cleaning, packing) and are sold 
directly in markets or supermarkets. Processed mushroom 
products typically undergo drying, canning, pickling, and 
freezing. When looking at global mushroom products, the 
market share of fresh mushrooms is lower than processed 

Fig. 13   Relative contribution of the three major sectors (cultivated 
edible mushrooms, medicinal mushrooms, and wild harvested mush-
rooms) to the global mushroom market (A), generated using data 

from Royse et al. (2017); and the mushroom value chain highlighting 
the key sectors within the mushroom industry, and the feedback loops 
between these sectors (B)

Table 2   Trade of wild edible mushrooms by geographical region (in 
tons) Adapted from de Frutos (2020)

Geographical region 2002 2017 Average annual 
trade increase 
(%)

South Asia 1.8 3532.8 12,74
European Union 181 461.1 753 029.3 21
Other European Countries 

and Central Asia
16 582.1 38 699.7 9

Latin America and Carib-
bean

3282.2 4465.9 2

North America 14 139.6 26 512.6 6
East Asia and Pacific 156 189.6 390 156.1 10
Arab World 1953.6 9363.1 25
Sub-Saharan Africa 927.2 3481.3 18
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mushroom products (Fig. 12), while the total export amount 
and value of fresh mushroom products has increased year 
after year (Fig. 12). Canned mushroom products dominate 
the market, with China and the Netherlands producing the 
highest amount of canned mushroom products (FAOSTAT, 
2019a; b accessed on 27 April 2021).

In addition, trade mushrooms include cultivated edible 
mushrooms, medicinal mushrooms, and wild edible mush-
rooms (Chang 2006). The mushroom industry was estimated 
to be worth approximately 63 billion USD in 2013, of which 
cultivated mushrooms account for approximately 34 billion 
(54%), medicinal mushrooms comprise 24 billion (38%), 
and wild mushrooms are worth 5 billion (8%) of the overall 
mushroom industry (Fig. 13A) (Royse et al. 2017).

Value chain and economic sectors of the mushroom 
trade

Mushrooms are primarily used as foods and medicines; 
accordingly, these commodities dominate the mushroom 
trade. These products are derived from either wild harvesting 
of mushrooms or from artificially cultivated mushrooms and 
can be divided into three main categories: wild harvested, 
medicinal, and cultivated edible mushrooms (Fig. 13A). 
Products within these sectors include fresh, functional, and 
designer foods; dietary supplements; drugs and mycophar-
maceuticals; and nutraceuticals. The value chain represent-
ing the mushroom trade and encompassing the three major 
economic sectors within this trade is shown in Fig. 13B. 
Mushrooms are sourced from either the wild or through 
industrialised cultivation processes and used for the purpose 

of economic development, first by intermediary producers 
and collectors, and then later by industries related to the 
processing, marketing and sales of mushroom products. The 
role of scientists and research institutions also needs to be 
recognised within the value chain. Scientists drive discovery 
and domestication of new mushroom species for introduc-
tion to the market (Thawthong et al. 2014) as well as provid-
ing feedback on the quality and efficiency of existing pro-
duction lines. Furthermore, scientists monitor and formulate 
baseline data used in developing management strategies for 
the conservation of natural habitats. These habitats function 
as sources of new species and as habitats for economically 
valuable, wild harvested mushrooms.

Wild mushroom trade

Trade and consumption of wild harvested mushrooms ben-
efit a range of economic sectors. Mushrooms collected by 
rural communities in isolated parts of Asia and South Amer-
ica are sold in large developed cities thousands of kilome-
tres away. The urban demand for wild mushrooms drives an 
extensive value chain, providing income to numerous actors 
involved. As reported by de Frutos (2020), in 2017 the vol-
ume of trade in wild mushrooms was greatest in the Euro-
pean Union, followed by East Asia, and the Pacific region, 
whereas South Asia and sub-Saharan Africa recorded the 
lowest trading volumes (Table 2). However, when assess-
ing the average increase in trade from 2002 to 2017, South 
Asia showed by far the greatest increase (12.74%), indicat-
ing that areas with low wild mushroom utilization and trade 
are beginning to value these mushrooms and see them as an 

Table 3   Main mushroom 
species that are eaten and traded 
in different regions

Scientific names Price per kg (USD) Region References

Astraeus hygrometricus 3–5 Asia Dell et al. (2005), 
Butkrachang et al. 
92007)

Boletus edulis 11 Europe, Asia, North America Pilz and Molina (2002)
Cantharellus formosus 6 North America Pilz and Molina (2002)
Cantharellus subalbidus 5 North America Pilz and Molina (2002)
Hydnum repandum, Hyd-

num umbilicatum
7 North America Pilz and Molina (2002)

Leucangium carthusianum 100 North America Pilz and Molina (2002)
Morchella conica Asia Mortimer et al. (2012)
Morchella sp. 11 North America Pilz and Molina (2002)
Ophiocordyceps sinensis Asia Mortimer et al. (2012)
Phlebopus portentosus Asia Mortimer et al. (2012)
Termitomyces eurhizus Asia Mortimer et al. (2012)
Thelephora ganbajun 120–200 Asia He et al. (2011)
Tricholoma magnivelare 33 North America Pilz and Molina (2002)
Tricholoma matsuake 27–560 Asia, North America, Europe Wang et al. (1997)
Tuber gibbosum 50 North America Pilz and Molina (2002)
Tuber indicum Asia Mortimer et al. (2012)
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important commodity (Table 2). Conversely, some areas, 
such as Latin America and the Caribbean, showed almost 
no change in the trade of wild mushrooms over this period 
(Table 2), suggesting either market saturation or a lack of 
cultural predisposition towards the use of wild mushrooms.

High-value wild mushroom species vary across differ-
ent regions (Table 3). Harvesting commercial mushroom 
species from the wild, such as matsutake (Tricholoma sp.), 
boletes (Boletus sp.), truffles (Tuber sp.), morels (Morchella 
sp.), and various Lactarius species (e.g. L. deliciosus) is a 
lucrative practice in many countries and generates essen-
tial income for collectors and their families (Boa 2004; 
de-Román and Boa 2006; Yeh 2000). Global trends dif-
fer in which species of mushrooms are most sought after, 
which subsequently influences the trade and bioeconomy of 
mushrooms at the regional level. In Asia, the most sought 
after species are Astraeus hygrometricus, Boletus edulis, 
Morchella conica, Ophiocordyceps sinensis, Phlebopus 
portentosus, Pleurotus giganteus, Termitomyces eurhizus, 
Thelephora ganbajun, Tricholoma matsuake, and Tuber indi-
cum (Mortimer et al. 2012). Boletus edulis, Cantharellus 
cibarius, Lactarius delicosus, Morchella esculenta, Imleria 
badia, Agaricus campestris, and Cantharellus curnucopi-
oides are top sellers in the commercial markets of Euro-
pean countries, of which Boletus edulis and Cantharellus 
cibarius are the market leaders (Peintner et al. 2013). The 
most important commercially harvested wild mushrooms in 
the Pacific Northwest of the United States (Table 3) include 
Tricholoma magnivelare, Morchella sp., C. formosus, C. 
cibarius, C. subalbidus, Hydnum repandum, Boletus edulis, 
Tuber gibbosum, and Leucangium carthusianum.

Cultivated mushroom trade

Evidence suggests that mushrooms were first cultivated in 
Asia, with ancient texts indicating that Auricularia spp. were 
grown around 600 AD in China, followed by the cultivation 
of Lentinula spp. in China around 1000 AD (Zhang et al. 
2015). The Chinese maintain the tradition of mushroom cul-
tivation to this day and are currently the global leaders in 
the production and consumption of cultivated mushrooms 
(Fig. 11).

Over 30 billion kg of mushrooms were produced in China 
in 2013, accounting for about 87% of total worldwide pro-
duction. In comparison, the rest of Asia produced about 1.3 
billion kg, while the European Union, the Americas, and 
other countries collectively produced about 3.1 billion kg 
(Royse et al. 2017).

Currently, there are more than 100 species of edible mac-
rofungi that can be artificially cultivated, of which about 
60 species are cultivated commercially (Chang and Miles, 

2004). Most of these are saprobic mushrooms (Chang 2008; 
Stamets 2000). The edible macrofungi most commonly cul-
tivated as food or medicine are Agaricus bisporus, Pleurotus 
sp., Auricularia auricula, Coprinus comatus, Hericium eri-
naceus, Hypsizygus ulmarius Ganoderma lingzhi, Grifola 
frondosa, Flammulina filiformis, Lentinula edodes, Pholiota 
microspora Tremella fuciformis and Volvariella volvacea. 
Out of these, Agaricus bisporus, Lentinula edodes and 
Pleurotus sp. are produced in the greatest volumes. Cur-
rently, 90% of global mushroom production originates from 
Lentinula, Agaricus, Pleurotus, Auricularia, Flammulina, 
and Volvariella (Raut 2019). Lentinula is the most widely 
grown mushroom, accounting for over 2 million tons in 
global production; Pleurotus sp. are the second-most widely 
grown, with an annual production volume of approximately 
0.4 million tons. Auricularia sp. make up the third-largest 
production volume of mushrooms, with 73,840 tons grown 
annually, followed by Agaricus bisporus (11,076 tons), 
Flammulina (45,120 tons), and Volvariella (20,410 tons). 
Lentinula, Pleurotus and Agaricus are cultivated world-
wide, whereas Auricularia, Flammulina, and Volvariella 
are grown almost exclusively in Asia (Royse 2014, 2017).

Emerging economic sectors

Many emergent industries are beginning to utilize mush-
rooms for non-food-based products. It is likely that in the 
future, these industries will contribute significantly towards 
the mushroom bioeconomy (Ghazvinian et al. 2019). Myce-
lium-based biomaterials can be used to produce packag-
ing (Abhijith et al. 2018; Holt et al. 2012) and furniture 
(Ecovative Design LLC 2021; MycoTech 2021; Mogu S.r.l. 
2021; Krown Design 2021), with other applications in con-
struction, revolutionizing the way these industries operate 
(Hyde et al. 2019). These products are produced using the 
mycelium or fruiting bodies of certain mushrooms, such as 
Pleurotus and Ganoderma. They are renewable, sustainable, 
and cost effective (Abhijith et al. 2018). Another innova-
tive product is mycelium-based leather, offering a sustain-
able alternative to leather-based products used in fashion, 
automobile interiors, or the furniture industries (Attias et al. 
2020).

Challenges for the future growth of the industry

Currently, the global mushroom economy can be divided 
into wild and cultivated resources. Adopting a sustainable 
approach for the continued use of wild resources will be 
paramount for the industry to maintain its current growth 
trajectories. Improved forest management, sustainable har-
vesting techniques, and better post-harvest management of 
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mushroom products are all required to ensure future growth. 
Similarly, sustainable practices can enhance cultivation 
techniques. Recycling of materials, adoption of renewable 
energy, and incorporation of new varieties of mushrooms 
into existing production lines are all important aspects worth 
consideration for the cultivation industry to continue its 
explosive growth.

Furthermore, the cultivation industry is also limited by 
current production technologies. Mushroom cultivation 
is predominantly confined to saprobic species, with some 
managed production of ectomycorrhizal species showing 
potential (e.g., inoculation of host trees with Tuber sp.). 
However, to meet current and future levels of demand as 
well as to alleviate the exploitation of natural forest systems, 
new techniques will be required to cultivate ectomycorrhizal 
species at industrial scales. Such advances will launch the 
mushroom bioeconomy into new heights.

Mycelium‑based technology

The synthesis of functional materials from biological 
resources has been receiving increasing attention in recent 
years (Cerimi et al. 2019). This is in accordance with the 
Green Economy transition, which represents growth and 
development that are consistent with environmental well-
being (Söderholm 2020). There are growing concerns about 
the degradation of synthetic plastic, which initiated research 
focused on the use of materials from renewable resources 
such as fungal mycelium-based materials (Manan et al. 
2021). Mycelium can be described as a network of interwo-
ven, thread-like hyphae that constitute the vegetative part 
of fungi (Karana et al. 2018). Fungi decompose dead plant 
substrates by breaking down cellulose, hemicellulose, lignin, 
and other sugars into small molecules through the secre-
tion of enzymes (Promputtha et al. 2010). The vegetative 

Fig. 14   Schematic steps of the 
synthesis process of mycelium-
based composite with key 
steps and possible variations in 
processes
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mycelium degrades and colonizes the organic substrate by 
using the products of degradation (Meyer et al. 2020a, b). 
During colonization of the substrate, fungi grow by extend-
ing its hyphae and the hyphae bind organic particles together 
to form a three-dimensional interwoven filamentous network 
(Karana et al. 2018). The mycelial network comprises indi-
vidual hyphae ranging from about 2 to 20 μm in diameter 
(Fricker et al. 2017). Fungal mycelium grows on the surface 
and penetrates the substrate, while some grow out of the 
substrate and form a compact layer referred to as “fungal 
skin” (Grimm and Wösten 2018).

Mycelium-based materials are grown either by allow-
ing mycelium to interlock other substances to form a bulk 
material (mycelium-based composites) or by harvesting 
a liquid culture of mycelium (pure mycelium) (Holt et al. 
2012; Haneef et al. 2017). Mycelium-based materials are 
produced by growing vegetative fungal hyphae on different 
organic substrates through solid-state fermentation (Pelle-
tier et al. 2013; Islam et al. 2018). The properties of myce-
lium-based materials depend on the fungal strain, the type 
of substrate, the growth conditions, and the post-synthesis 
process (Appels et al. 2018, 2019). A schematic illustra-
tion presenting the different steps involved in the synthesis 

of mycelium-based material is shown in Fig. 14. Several 
Ascomycota and Basidiomycota genera have been used in 
mycelium-based technology (Attias et al. 2020, Table 4). 
White-rot and brown-rot fungi have mainly been utilized 
in the generation of mycelium-based materials due to their 
high colonization rate and ability to degrade a large amount 
of organic biomass (Cerimi et al. 2019). Different hyphal 
types can influence the properties of mycelium-based mate-
rials, for example, monomitic fungal species can provide 
less effective mechanical properties than dimitic and trim-
itic fungal species (Pegler 1996; Bayer and McIntyre 2012, 
2015). For example, Pleurotus ostreatus and Trametes ver-
sicolor provide greater stiffness and strength in mycelium-
based composites (Lelivelt 2015; Jones et al. 2020) whereas 
“Ganoderma lucidum” (probably wrongly named as this 
European species has not been safely recorded from China 
by specialists) can enhance the physical and mechanical 
properties of the composite (Liu et al. 2019). However, many 
publications have not identified the fungal species used in 
mycelium-based composite production (Parisi et al. 2016; 
Dahmen 2017; Jiang et al. 2017).

The ideal substrate for mycelium-based products should 
provide nutrients for mycelium growth, such as carbon, 
nitrogen, minerals, vitamins and water (Karana et al. 2018). 
The lignocellulosic forms of waste generated from routine 
agricultural, agro-industrial, and forestry practices are com-
monly used as the primary substrates for mycelium-based 
composite production (Pelletier et al. 2013; Jones et al. 
2018). Some examples of substrate include wheat or rice 
straw and wood sawdust (Pelletier et al. 2013; Jones et al. 
2018). Fungi split the polymeric plant substrates, which 
consist largely of lignin, cellulose and hemicellulose, into 
their monomeric components and synthesize new organic 
molecules (Karana et al. 2018). The composition of cel-
lulose, hemicellulose, and lignin in lignocellulosic waste 
depends upon the species, tissue, and maturity of the plant 
(Grimm and Wösten 2018; Royse et al. 2017; Kumla et al. 
2021; Moonmoon et al. 2011). The substrate composition 
can directly affect the ability of mushrooms to grow in a 
substrate, which can influence the technical and experien-
tial qualities of the resulting material (Royse et al. 2017; 
Hoa and Wang 2015). Furthermore, the addition of various 
supplements in the substrates can support mycelia growth 
(Karana et al. 2018). Pure mycelium materials are harvested 
from liquid fermentation of fungi in static or machine-shaken 
containers (Karana et al. 2018). Filamentous fungi grown in 
static liquid culture form a mat of hyphae at the surface of 
the liquid and when dried the resulting material resembles 
leather, paper, or plastic (Karana et al. 2018). Many factors, 
such as light, humidity, temperature, and incubation period 
are important factors that can affect mycelium growth. 
Conditions of darkness are often preferred to prevent the 

Table 4   Ascomycota and Basidiomycota species that have been used 
in mycelium-based technology

Phylum Species name based on Index Fungorum

Ascomycota Morchella angusticeps
Xylaria filiformis
Xylaria hypoxylon
Xylaria longipes
Xylaria polymorpha

Basidiomycota Cyclocybe aegerita (Agrocybe aegerita)
Coprinus comatus
Flammulina velutipes
Fomes fomentarius
Ganoderma lucidum
Ganoderma oregonense
Ganoderma tsugae
Grifola frondosa
Hericium erinaceus
Hypholoma capnoides
Hypholoma lateritium (Hypholoma sublateritium)
Lentinula edodes
Macrolepiota procera
Pleurotus djamor
Pleurotus eryngii
Pleurotus ostreatus
Laccocephalum mylittae (Polyporus mylittae)
Pycnoporus cinnabarinus
Trametes versicolor
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formation of fruiting bodies and for rapid mycelium growth 
(Deacon 1980).

Different fabrication processes result in different func-
tional aspects of mycelium-based composite (Karana et al. 
2018). The residual water present in the mycelium-based 
composite is commonly removed by drying in an oven to 
produce lightweight and high-strength materials (Jiang 
et al. 2017). Moreover, the pressing involved in the fab-
rication process can result in a reduction of the porosity 
of the materials, thus increasing the material density and 
strength (Haneef et al. 2017; Appels et al. 2019; Liu et al. 
2019). Mechanical, physical, and biological properties of 
mycelium-based composites are affected by the substrate 
type, the mycelia network and the pressing method (Pegler 
1996; Appels et al. 2019). The high compressive strength 
and lightweight of mycelium-based composites enable them 
to be used as packaging and construction materials (Yang 
et al. 2021). Moreover, the low density, low thermal conduc-
tivity, and high porous characteristics of mycelium-based 
composites make them suitable for the production of alter-
native synthetic foam and wood fibers (Manan et al. 2021). 
Therefore, a better understanding of the beneficial properties 
of mycelium-based composites is crucial for their poten-
tial applications in a variety of fields. Another advantage 
of mycelium-based composites is that they are non-toxic 
and biodegradable in nature (Cerimi et al. 2019; Girometta 
et al. 2019; Yang et al. 2021). One of the unique features of 
mycelium-based materials is that they can be grown into any 
shape using a mold, which represents various possibilities in 
the textile, furniture or building materials industry (Cerimi 
et al. 2019). There is also a “Grow it yourself” kit developed 
by the Ecovative company, which is available to the public to 
produce their own composite material at home in any forms 
(Rognoli et al. 2015).

Mycelium‑based materials

Mycelium‑based packaging

The demand for packaging materials has increased sig-
nificantly following global industrial growth (Söder-
holm 2020). Several petrochemical-based plastics mainly 
polystyrene, polyethylene, and polypropylene have been 
widely used in the production of packaging materials 
(Pavlineri et al. 2017). However, the production of plastic 
packaging materials contributes to the release of green-
house gases, while plastic packaging is also known to be 
wasteful and leads to increased levels of environmental 
pollution (Verma et al. 2016). Therefore, several studies 
focusing on the performance of alternative materials have 
explored the development of new materials for packaging 
(Cerimi et al. 2019). Bioplastic production can be utilized 

to create an alternative to petroleum-based plastics, but 
the cost of bioplastics remains higher than petrochemical-
derived plastics (Gill 2014). Mycelium-based materials 
can therefore represent a cheaper alternative for packaging 
applications for electronics, food, and fragile items (Abhi-
jith et al. 2018; Ncube et al. 2020). The preference for 
these materials is based on their excellent renewable and 
biodegradable features (Fig. 14). Importantly, materials 
with non-toxic properties are preferred for use in the food 
industry (Hyde et al. 2019). The packaging production 
of mycelium-based materials focuses on the use of vari-
ous agricultural residues and the mycelia of many fungal 
genera, namely Agrocybe, Fomes, Ganoderma, Lentinula, 
Pleurotus, Polyporus, and Xylaria (Abhijith et al. 2018; 
Cerimi et al. 2019). Mycelium-based packaging developed 
from Pycnoporus cinnabarinus has an orange-red color 
without the addition of any pigments (Cerimi et al. 2019; 
Manan et al. 2021). Mycelium-based packaging has been 
designed in various shapes by many companies depending 
on its intended use. The Ecovative Company, Shenzhen 
Tech., Beijing Zhongke Aobei Supersonic Wave Tech Res 
Inst., and Mycoworks Inc are examples of some of these 
companies. These companies have developed and pat-
ented several methods of manufacturing mycelium-based 

Fig. 15   Applications of mycelium-based materials in different fields. 
a, b Packaging. c Leather. d–f Construction materials. g, h Others
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products as substitutes for conventional packaging materi-
als (Cerimi et al. 2019; Manan et al. 2021).

Mycelium‑based leather

Leather is a durable natural product that is produced from 
animal hides through processes involving physical and 
chemical treatments (tanning) (Kanagaraj et  al. 2015). 
The demand for natural leather has increased because of 
its beauty, durability and softness (Kanagaraj et al. 2015). 
Therefore, the increased demand for livestock has major 
impacts on the environment due to an increased demand 
for land to raise animals for their skin (Dopelt et al. 2019). 
Therefore, several studies have focused on the production 
of alternative forms of leather (Cerimi et al. 2019). Arti-
ficial forms of leather that are synthesized from polyvinyl 
chloride and polyurethane have been promoted as substi-
tutes for animal leather (Roh et al. 2013). However, these 
synthetic forms of leather also require the use of hazardous 
chemicals in the production processes (Roh et al. 2013). 
Furthermore, these materials also lack the characteristic 
of biodegradability and can increase environmental pollu-
tion as they are associated with the same limited end-of-life 
options as most plastics (Shah et al. 2008). Recently, other 
types of artificial leather have been produced as environ-
mentally safe materials from plants and fungal biomass 
(Cerimi et al. 2019). Fungal biomass is advantageous over 
plants in terms of its high availability, stability and yield, 
lower amounts of residues, and the ease with which it can 
be harvested (Meyer et al. 2020a, b). Fungal biomass forms 
a mat of mycelia containing chitinous biopolymers that 
resemble leather (Karana et al. 2018). This biomass can be 
obtained from both liquid and solid fermentation processes 
(Javadian et al. 2020; Vandelook et al. 2021). After harvest-
ing the fungal biomass, physical and chemical treatments 
are applied to improve the tissue density, tensile strength, 
and elastic properties (Vandelook et al. 2021). The produc-
tion of mycelium-based leather focuses on polypore fungal 
species in the genera Fomes, Ganoderma, Perenniporia, 
Pycnoporus and Trametes (Fig. 15) (Gandia et al. 2020; 
Stewart et al. 2020; Manan et al. 2021). Since 2019, many 
prototypical products such as handbags, shoes, watch bands, 
and wallets are made from mycelium-based leather available 
under a variety of trade names. These include Mylea™ from 
Mycotech PTE. LTD., Reishi™ from Mycoworks, Mylo™ 
from Bolt threads, and VTT mycelium leather from the VTT 
research team (Ross et al. 2018; Sun et al. 2019; Bentangan 
et al. 2020; Smith et al. 2020). However, there are noticeable 
variations in the mechanical and physical properties between 
the various mycelium-based leather brands (Sun et al. 2019; 
Attias et al. 2020; Vandelook et al. 2021).

Mycelium‑based construction

Rapid urbanization has increased the demand for construc-
tion materials such as bricks, cement and insulation pan-
els. The production of conventional construction materials 
translates to an even greater demand for large amount of 
energy which can have major impacts on the environment 
through harmful manufacturing methods (Madurwar et al. 
2013; Jones et al. 2020). Therefore, the increased demand 
for the development of innovative construction materials 
has become of significant interest to researchers. Bio-based 
materials are considered a promising resource for build-
ings in the twenty-first century due to their sustainability 
and versatility (Karana et al. 2018). They can be produced 
from agricultural, agro-industry and forestry waste (Karana 
et al. 2018). Bio-based materials have low energy needs, low 
production costs, and are considered safe and eco-friendly 
(Abhijith et al. 2018; Sandak et al. 2019). Mycelium-based 
materials have become increasingly popular over the last 
decade in the construction, structure, and design industry 
(Almpani-Lekka et al. 2021; Sydor et al. 2022). Mycelium-
based materials have the potential to be utilized in various 
applications such as alternative insulation materials for 
building and infrastructure development (Fig.  15). The 
production of mycelium-based construction materials has 
focused on producing alternative forms of bricks, blocks, 
boards, and panels made from various agricultural types of 
residues using the mycelia of Fomes fomentarius, G. lingzhi, 
G. lucidum, and Pleurotus ostreatus (Elsacker et al. 2021; 
Almpani–Lekka et al. 2021). Mycelium panels can serve 
as sound absorbers that can effectively reduce noise pollu-
tion (Pelletier et al. 2013). Ongpeng et al. (2020) found that 
mycelium-bricks possess better than average levels of com-
pressive strength, flexural strength, and midpoint displace-
ment, which can reduce the need for traditional construction 
materials. Many mycelium-based construction products are 
available from the Ecovative Company. However, there are 
problems associated with different mechanical applications, 
high water absorption properties, and a lack of standard 
methods for the production and testing of mycelium-based 
construction materials that need to be addressed in future 
studies (Javadian et al. 2020).

Mycelium‑based food

Fungi have been used as a source of food for humans 
throughout history (Hyde et al. 2019). The human con-
sumption of fungi has predominantly involved mushrooms 
that originate from both natural habitats and cultivation 
processes (Chang 2006; Li et al. 2021; Perez-Moreno et al. 
2021). The fruiting bodies of mushrooms can emerge in a 
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variety of shapes, tastes and textures (Hyde et al. 2020b; 
Bhunjun et al. 2022). Some mushrooms have been described 
as being meat-like, such as beefsteak fungus (Fistulina 
hepatica) and chicken of the woods (Laetiporus sulphureus), 
as well as the seafood-like abalone fungus (Pleurotus cystid-
iosus) and the lobster mushroom (Lactarius and Russula par-
asitized by the ascomycete Hypomyces lactifluorum) (Rahi 
and Malik 2016). The dry matter of an edible mushroom 
is generally composed of protein (15–35%), carbohydrates 
(35–70%), essential fatty acids (less than 5%), as well as 
traces of vitamins and minerals (Barros et al. 2008; Valverde 
et al. 2015; Niego et al. 2021a). They are also known to have 
antioxidant, antimicrobial, anticancer, and immunomodula-
tory properties (De Silva et al. 2012; Kaewnarin et al. 2016, 
2020; Valverde et al. 2015; Hyde et al. 2019). Traditionally, 
fungal mycelia have only been used as flavor and color modi-
fiers in fermented foods such as blue cheese, red mold rice, 
soy sauce and tempeh (Hyde et al. 2019; Ahmad et al. 2020). 
However, meat-like products or mycoproteins have been pro-
duced from fungal mycelium via liquid fermentation process 
(Moore and Chiu 2001). Over the last three decades, Fusar-
ium venenatum, has been used to produce mycoproteins on 
an industrial scale by Marlow Foods under the trade name 
Quorn™ (Finnigan 2011). Further, edible strains of filamen-
tous fungi, such as Aspergillus oryzae, Monascus purpureus, 
Paradendryphiella salina and Rhizopus oryzae have also 
been used to produce mycoprotein via submerged fermen-
tation or solid-state fermentation processes (Souza Filho 
et al. 2018; Reihani and Khosravi-Darani 2018; Landeta-
Salgado et al. 2021). Several meat-like products have also 
been developed by companies such as Mycorena (A. oryzae), 
Sustainable Bioproducts (F. oxysporum) and MycoTechnol-
ogy, using the basidiomycete Lentinula edodes (Meyer et al. 
2020a).

Mycoprotein products are available in different forms, 
for example beef burgers, beef steaks, chicken nuggets, fish 
sticks, meatballs, sausages, among others (Joshi and Kumar 
2015). Mycoprotein products from fungal mycelia are also 
available in the form of a bacon substitute by Atlast Food 
Co. under the trade name MyBacon™ (Meyer et al. 2020a). 
Mycoprotein is a widely accepted food and is approved for 
sale in all EU counties, as well as Australia, Canada, New 
Zealand, Norway, Switzerland, and the USA (Derbyshire 
2020). It has recently been approved for sale in Thailand 
(Derbyshire 2020). Mycoprotein is considered a good source 
of high-quality proteins as it contains a higher percentage of 
essential amino acids (approximately 45%) than most other 
commonly consumed plant-based proteins (approximately 
25%) (Finnigan et al. 2019). The consumption of mycopro-
teins can lead to the generation of slower and more sustained 
essential amino acids and branched chain amino acid levels 
when compared to milk (Finnigan et al. 2019; Dunlop et al. 
2017). Moreover, the high bioavailability and amino acid 
composition of mycoproteins can stimulate a greater rate of 
muscle protein synthesis compared to milk protein in healthy 
young men (Dunlop et al. 2017). Subsequently, mycopro-
teins show great promise as a source of dietary protein that 
has the potential to support skeletal muscle protein metabo-
lism (Coelho et al. 2021; Monteyne et al. 2020). Several 
studies have reported that mycoprotein consumption can 
change blood lipid levels by reducing plasma cholesterol 
and improving high-density lipoproteins (Turnbull et al. 
1992; Ishikawa 1994; Ruxton and McMilan 2010; Coelho 
et al. 2021). Mycoprotein consumption is also associated 
with reduced insulin levels, sustained hyperinsulinaemia and 
hyperaminoacidaemia, improved immune function, reduced 
tumour-associated symptoms and extended survival rates in 
lung cancer patients (Turnbull and Ward 1995; Bottin et al. 
2012; Fritz et al. 2015; Cherta-Murillo et al. 2020).

Fig. 16   a Production of morels in China from 2010 to 2019, b Morel production in different provinces of China in 2019. Data sources: http://​
bigda​ta.​cefa.​org.​cn/​index.​html (Accessed date: 21 Mar. 2022)

http://bigdata.cefa.org.cn/index.html
http://bigdata.cefa.org.cn/index.html
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Conclusion

Mycelium-based technology represents a unique and low-
cost method to recycle agricultural waste into sustainable 
biomaterials. Mycelium-based materials offer a lightweight 
and environmentally friendly alternative to synthetic foams, 
but there are several challenges related to large-scale produc-
tion. Despite rapid growth in our understanding of myce-
lium-based technology, there are crucial knowledge gaps. 
Therefore, future research is likely to focus on various fields 
including the standardization of the production processes. 
Only a small number of species have been used to develop 
mycelium-based materials and the study of a larger number 
of fungal species is likely to reveal multiple new applications 
in the furniture, agriculture, medicine, pharmacology, and 
cosmetics industries.

Growing morels in China

True morels (Morchella spp., Pezizales, Ascomycota) are 
highly sought after and prized edible mushrooms, renowned 
for their great economic and scientific value (Du and Yang 
2021; Loizides et al. 2022). Wild morels, mostly distributed 
in temperate regions of the Northern Hemisphere, have been 
reported to have a variety of ecological types, including sap-
rotrophic, pyrophilic, and ectomycorrhizal (Pilz et al. 2004; 
Tan et al. 2019; Hussain and Sher 2021). They are distin-
guished by honeycomb-appearance, and typically fruit for 
only a few weeks each spring, with the exception of some 
autumn species (Matočec et al. 2014; Taşkin et al. 2015). 
Morels have strong health promoting abilities, because they 
are rich in nutrients, and their fruiting bodies or metabolites 
have anti-tumor, anti-inflammatory, antioxidant, neuropro-
tective and immunomodulatory effects (Dissanayake et al. 
2021).

In light of morels subtle morphological features and high 
phenotypic plasticity, they are difficult to distinguish, and 
morphological species recognition of morels is question-
able (Du and Yang 2021; Loizides et al. 2022). Since 2010, 
genealogical concordance phylogenetic species recognition 
(GCPSR) based on multi-locus sequences (ITS, TEF, RPB1 
and RPB2) has become the most effective method for species 
identification within Morchella (O’Donnell et al. 2011; Du 
et al. 2012; Kuo et al. 2012). To date, over 80 species-level 
lineages of Morchella have been inferred by molecular phy-
logenetics, and they form three easily distinguishable evo-
lutionary clades, i.e., the basal Brunnea clade, the Esculenta 
clade, and the Elata clade (includes semifree capped morels) 
(O’Donnell et al. 2011; Du et al. 2012; Kuo et al. 2012). 
Morel collection is of economic value, which provides an 
economic source for rural communities in Asia (Raut et al. 
2019; Kakakhel 2020). In Nepal, 1.7 to 6.5 tons of dried 

morels are exported annually, mainly to Belgium, France, 
Germany, the Netherlands and Switzerland (Raut et  al. 
2019). Before 2011, wild morels dominated the Chinese 
market, despite their low output. Increasing market demand, 
short fruiting season, habitat fragmentation and excessive 
collection of wild resources have prompted the morel culti-
vation to become a hot spot in research at home and abroad 
(Du and Yang 2021; Zhao et al. 2021). With the explosive 
development of morel cultivation in China industry, from 
2011 to 2019, the cultivated area rapidly expanded from 
200 to 10,000 ha, and the output of fresh morels increased 
from ≤ 750 kg/ha to 15,000 kg/ha. The annual output in 2019 
reached more than 70,000 tons (Fig. 16). The harvest of 
morels is mainly in Sichuan, Gansu, Yunnan, and Henan 
Provinces of China, with output of 30,049.70 tons (41%), 
14,987.60 tons (21%), 6348.00 tons (9%), 5586.60 tons 
(8%) and 4360.60 tons (6%), respectively (Fig. 16). The 
international price of high-grade edible morels is about US 
$200–350/kg, the price of domestic artificially grown dried 
products is US $250–315/kg, and the price of wild dried 
products is even more expensive, about US $470-790/kg.

History of artificial morel cultivation

Due to the highly desirable flavour and short fruiting season 
of morels, the artificial cultivation industry of morels has 
maintained rapid growth to meet the commercial demand. 
The first report on the outdoor cultivation of morels came 
from France (Roze et al. 1882), and since then, many spe-
cialists have attempted various ways to cultivate morels. 
Successful cultivation of morels was reported in apple com-
post in 1904 (Stott al. 2004). Later, Ower (1982) published a 
short description of how to artificially grow morels, and then 
patents (US Patents 4594809, 4757640) were issued for cul-
tivation of morels that drew immediate attention in the world 
(Ower 1982; Ower et al. 1986, 1988). Their works were 
technology-centered (e.g., temperature, humidity and ven-
tilation), and nutrient regimes to grow and prepare sclerotia 
for controlled germination into fruiting bodies. Moreover, 
Ower emphasized the important role of sclerotia in fruiting 
body development (Ower et al. 1986, 1988). Although these 
cultivation techniques were based on “Morchella esculenta” 
that it was later presumed to be M. rufobrunnea based on 
photographs (Kuo 2008), their patents claimed that these 
methods were suitable for all Morchella species. Unfortu-
nately, it was difficult to apply these methods to the success-
ful large-scale indoor cultivation of morels.

In China, the earliest record of morel cultivation can be 
traced back to the 1950s. During the period of 1950–2010, 
some researchers and farmers explored the process of artifi-
cial cultivation of morels, and there were intermittent reports 
on morel cultivation and the successful acquisition of fruit-
ing bodies, but with no commercial morels in the market. 
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Since 2010, the morel cultivation industry has developed 
rapidly due to the breeding of several black morel varieties 
with improved fruiting yield and stability, and the develop-
ment and wide application of exogenous nutrient bags (Liu 

et al. 2017). With the development of these technologies, 
successful morel cultivation not only alleviated the short-
age of wild morels in the market, but also greatly promoted 
the local economic development (Liu et al. 2017, 2018; Tan 
et al. 2019). At present, morel cultivation covers almost all 
areas in China.

Morel species currently under cultivation

In China, at least eight phylogenetically distinct species 
have currently been cultivated artificially, i.e., Morchella 
eximia, M. exuberans, M. importuna, M. oweri, M. sexte-
lata, M. tomentosa, Mel-13 and Mel-21 (Du and Yang 2021). 
Among them, the main cultivated species are M. eximia, M. 
importuna and M. sextelata, which account for more than 
95% of the cultivated area, with high productivity and good 
stability (Zhao et al. 2021). Morchella tomentosa is only 
distributed in North America, and it is the basal species of 
the Elata Clade, corresponding to the phylogenetic species 
Mel-1 (Stefani et al. 2010; O’Donnell et al. 2011). Morchella 
exuberans, corresponding to Mel-9, has an intercontinental 
distribution range (Richard et al. 2015). These two species, 
as well as Mel-13 and Mel-21 (two undescribed phylogeneti-
cally distinct species) have been successfully domesticated 
and commercially developed in China. Only the cultivation 
of these morels is not carried out on a large scale.

Fig. 17   Morel spawn. a mother culture. b mother spawn. c, d final 
spawn with numerous sclerotia. e white stout mycelia of morels in the 
final spawn

Fig. 18   The morel cultivation protocol. a land preparation. b bedding and ditching. c, d spawning, casing, and watering. e exogenous nutrition 
aiding. f, g primordium. h nascent fruiting bodies. i, j mature fruiting bodies. k harvesting. l commercial morels



584	 Fungal Diversity (2022) 116:547–614

1 3

Morchella eximia Boud.

Morchella eximia corresponds to phylogenetic species 
Mel-7, although whether M. eximia and M. septimelata 
are conspecific has not yet been conclusively determined 
(Loizides et al. 2022). In China, M. eximia has a common 
name “Qimei Yangdujun”. Some patented methods have 
been shown to promote the production of primordium and 
improve its yield and quality (Zhao and Yang 2018, 2020). 
However, at present, the large-scale cultivation of M. eximia 
is still in the domestication and testing stage.

Morchella importuna M. Kuo, O’Donnell & T.J. Volk

The black morel, Morchella importuna, is an interconti-
nental species, which is widely distributed in Asia, Europe 
and North America. It is a kind of facultative fire-adapted 
species that corresponding to phylogenetic species Mel-10 
(O’Donnell et al. 2011; Kuo et al. 2012). In China, Zhao 
and Yang (2019a, 2019b) described the cultivation method 
of M. importuna. In their patents, they introduced in detail 
the strain production methods and the key technologies of 
field cultivation. In recent years, with the development and 
wide application of exogenous nutrient bags, the artificial 
cultivation of M. importuna was successful and the scale of 
cultivation was rapidly expanded in China.

Morchella oweri X.H. Du [as 'owneri']

Morchella oweri is morphologically similar to M. sextelata, 
M. exuberans, and M. importuna in distinctive capitate ele-
ments on the sterile ridges, darkening edges and a floccose 
stipe (Du et al. 2019b). However, it apparently does not 
have post-fire adaptability and is currently only distributed 

in northern China associated with Pinus at low altitudes. 
This species has also been domesticated and bred in China.

Morchella sextelata M. Kuo

Morchella sextelata, an obligate fire-adapted species, cor-
responds to the phylogenetic species Mel-6 in O’Donnell 
et al. (2011). At present, some varieties of M. sextelata have 
recently been popularized in China, including “Kunzhi 
morel No.1” and “Kunzhi morel No.2” selected and bred by 
Kunming Institute of Botany (KIB), Chinese Academy of 
Sciences; “Guiyun No. 58” and “Guiyun No. 105” selected 
by Guizhou Institute of Technology and KIB; and “G” 
series of Morchella sextelata selected and bred by associate 
researcher Fang-He Tan of Sichuan Academy of Forestry 
Sciences (Zhao et al. 2021).

Key techniques in the field cultivation of morels

At present, farmland and forest farming are the main morel 
cultivation methods. The cultivation protocol consists of 
spawn production, land preparation and spawning, an exog-
enous nutrition supply, fruiting management and harvesting 
(Liu et al. 2017, 2018; Zhao et al. 2021).

Spawn production

High quality morel spawn is the most critical factor in 
successful cultivation. Morel spawns are divided into 
three types, i.e., mother cultures (Fig. 17a), mother spawn 
(Fig. 17b), and final spawn (Fig. 17c, d, and e).

Land preparation

Growing morels in the field is easily affected by external 
factors, such as the temperature and humidity of air and 

Fig. 19   Symptoms of fungal 
disease on Morchella sextelata 
(b-d). Colony of fungal disease 
on PDA medium that isolated 
from infected morels (e-i). 
a Healthy fruiting bodies. b 
Diseased fruiting body infected 
Cladobotryum mycophilum. 
c, d Diseased fruiting body 
infected Diploöspora longis-
pora. e Diploöspora longispora. 
f Cladobotryum mycophilum. g 
Clonostachys rosea. h Fusarium 
sp. i Fusarium sambucinum 
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soil, light, water, the soil physicochemical property, and the 
soil microbial community. Normally, before cultivating, it 
is necessary to test the soil physicochemical properties and 
microflora. Besides, pesticides, herbicides and other chemi-
cal reagents also needs to be tested.

Spawning

Spawning is usually carried out when the local maximum 
temperature is ≤ 20 °C, and the soil moisture should be 
maintained at 50–60%. The amount of final spawn is about 
3000–4500 kg/ha (Fig. 18b). The soil is immediately cov-
ered after sowing, about 2–3 cm thick (Fig. 18c). The cov-
ered soil must be weed-free, stone-free, grainy, permeable, 
and retain moisture.

Exogenous nutrient bag addition

About 7–15 d after spawning, a vast expanse of “powdery 
mildew” appears on the surface of the mushroom bed, which 
is composed of mycelia and conidia of morels (Fig. 18d). 
At this time, exogenous nutrient bags can be added. The 
bags are 120 mm × 270 mm, net worth ≥ 300 g/bag, and the 
usage is 36,000–45,000 bags/ha. A mulch film is immedi-
ately added after placing exogenous nutrient bags (Fig. 18e).

Fruiting and harvesting

During the morel cultivation process, the humidity on the 
soil surface should be maintained at more than 50%. Primor-
dia and fruiting bodies form in large quantities 55–70 days 
and 70–120 days after spawning. When morels are mature, 
the fruiting bodies grow to 7–12 cm with an obvious ridge 
and sinus, and the color deepens, the fruiting bodies can be 
harvested (Fig. 18i–l). Fruiting bodies can be sold fresh or 
dried at low temperature for later sale.

Disease on cultivated morels

With the expansion of cultivation range and density of morel 
production, disease have become the main factor limiting its 
yield. Pileus rot disease (He et al. 2018a), stipe rot disease 
(Guo et al. 2016), white mold disease (He et al. 2017; Wang 
et al. 2020; Chen et al. 2021), and cobweb disease (Lan et al. 
2020) are currently considered to be the four most serious 
diseases in morel industry (Fig. 19). These fungal diseases 
occur to varying degrees in most cultivated areas at any time, 
threatening the production of morels and causes economic 
losses.

Pileus rot disease is caused by Diploöspora longispora, 
which leads to the malformed fruiting bodies (Fig. 19c, d). 

The infected morel tissues (mainly the pileus) are initially 
covered by white and velvety mycelia. Then, under the 
conditions of high temperature (≥ 25 ℃) and high relative 
humidity (≥ 90%), the disease spots quickly spread to the 
whole pileus and surrounding healthy fruit bodies, causing 
withering and decay (He et al. 2018a).

Cobweb disease is characterized by the rapid growth 
of cobweb-like mycelium over the affected mushrooms 
(Fletcher and Gaze 2007). This disease has become very 
common, and it is a serious cause of crop loss, causing great 
damage to various edible mushrooms including Agaricus 
bisporus (Back et al. 2010), Ganoderma sichuanensis (Zuo 
et al. 2016), Hypsizygus marmoreus (Back et al. 2012), 
Morchella importuna (Lan et al. 2020), Pleurotus ostreatus 
(Gea et al. 2019). Some species within Cladobotryum have 
historically been considered as the most common cause of 
cobweb disease (Fletcher and Gaze 2007). Lan et al. (2020) 
reported that Cladobotryum protrusum caused cobweb dis-
ease on cultivated M. importuna. The typical symptoms of 
this disease on morels are: white coarse mycelia appear on 
the soil surface and the base of stipe, which rapidly colonize 
and spread to the whole fruiting bodies. These symptoms 
can lead morels to wither and rot (Lan et al. 2020).

White mold disease is another major disease on morels 
that infected by Paecilomyces penicillatus. Once a morel 
farm is infected with white mold disease, 80% of morel pro-
duction will be lost because P. penicillatus spreads uncon-
trollably rapidly (Wang et al. 2020). Dual culture assays 
showed that certain contact-independent soluble compounds 
secreted by P. penicillatus can inhibit the mycelial growth 
of M. sextelata (Wang et al. 2020). Genomics data demon-
strated that P. penicillatus encodes a large number of fun-
gal cell wall degradation enzymes (Wang et al. 2020), and 
transcriptome analysis showed that the genes involved in 
diphthamide biosynthesis, aldehyde reductase, and NAD (P)
H-hydrate epimerase in P. penicillatus were up-regulated 
during the process of this fungus infection of M. importuna 
(Chen et al. 2021).

Stipe rot disease of Morchella importuna caused by 
Fusarium incarnatum–F. equiseti species complex (Guo 
et al. 2016). The symptoms mainly occur on the stipe of 
morels: at first, small, watery circular scars appear on the 
lower part of stipe; then the lesions develop into dark brown 
and sunken patches with sparse white hyphae on the sur-
face; finally, under the condition of high temperature and 
humidity, these lesions expand rapidly, leading to rotting 
and shrinking of morel fruiting bodies (Guo et al. 2016). In 
addition, other species within Fusarium, such as F. avena-
ceum, F. chlamydosporum, F. nematophilum, F. oxysporum 
and F. redolens, have been reported to cause morel disease 
and affect yield and quality.
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Conclusion

In recent ten years, gratifying progress has been made in 
the artificial cultivation of morels. Although various aspects 
related to morel cultivation have been studied, including 
their reproductive and trophic modes (Du et al. 2017; Du 
and Yang 2021), interspecific hybridization and breeding 
(Du et al. 2016, 2019a; He et al. 2020), cultivation con-
ditions (He et al. 2018b), and morel-associated microbial 
communities (Yu et al. 2022), there are still gaps between 
cultivation practices and basic knowledge of morel biology 
(Du and Yang 2021). In China, more than 70% of the grow-
ers cannot obtain stable profits in fact, and large-scale cul-
tivation of morels (contiguous farms ≥ 3 ha) is still a high-
risk project (Zhao et al. 2021). At present, the main morel 
cultivation methods are farmland farming and forest farm-
ing, morel yield and quality are great influenced by cultiva-
tion substrates (soil nutrients, microbial communities, and 
microbial metabolic components), and environment (light, 
temperature, water, humidity, and oxygen). In addition, the 
life histories and genetic characteristics of morels are still 
unclear, the cultivation mode is not standardized, and the 

management method is unscientific, which seriously limit 
the healthy and sustainable development of morel industry.

Facing the challenge of a "fast, scattered and chaotic" cul-
tivation of morels in China, a sustained and steadily devel-
oping morel industry is called for, which must be strength-
ened by scientific and technological support, standard policy, 
standardized development and orderly promotion. It is par-
ticularly important for government functional departments 
to intervene in the control of the qualification certification 
of strains and the standardization of industry management. 
Moreover, scientists should focus on solving the bottle-
necks encountered in the cultivation of morels, including: 
(1) designing an evaluation system for morel spawn quality; 
(2) breeding more cultivars; (3) systematically investigating 
the microbial diseases, and taking preventive and control 
measures and (4) improving, practicing and popularizing the 
industrialized cultivation of morels. Therefore, it is neces-
sary for government departments to guide individuals, sci-
entific research institutions and commercial organizations to 
jointly build a credible and authoritative third-party platform 
to supervise and guide the healthy development of morel 
industry.

Table 5   Global production rates of synthetic plastic polymers, and numbers of fungal genera capable of degrading them. Fungal genera shown to 
degrade each polymer are enumerated in Table 6

Polymers containing chlorine1 or nitrogen2 are unsuitable for bioenergy production (see text). Production rates of some minor polymers3 are only 
available by purchasing market reports

Polymer types Million tons /yr Fungal genera 
shown to 
degrade

Reference for polymer production rates

Bioplastics 2 54 https://​www.​europ​ean-​biopl​astics.​org/​global-​market-​for-​biopl​astics-​to-​
grow-​by-​20-​perce​nt/#:​~:​text=​The%​20glo​bal%​20bio​plast​ics%​20pro​
ducti​on%​20cap​acity%​20is%​20set%​20to,growth%​20in%​20the%​20fie​
ld%​20of%​20bio-​based%​2C%​20bio​degra​dable%​20pla​stics

Polyethylene 116 21 Danso et al. (2019)
Polypropylene 68 6 Danso et al. (2019)
Polyvinyl chloride1 38 19 Danso et al. (2019)
Polyethylene terephthalate 33 6 Danso et al. (2019)
Polyurethane 27 34 Danso et al. (2019)
Polystyrene 14 12 Danso et al. (2019)
Acrylonitrile Butadiene Styrene2 12 0 https://​www.​stati​sta.​com/​stati​stics/​856670/​acryl​onitr​ile-​butad​iene-​styre​

ne-​global-​produ​ction-​capac​ity/
Polycarbonate 8 6 Danso et al. (2019)
Polyaramids (nylon)2 8 2 Danso et al. (2019)
Polyvinyl acetate 7 8 http://​www.​polyv​inyla​cetate.​cn/​pvac-​news/​2019_​polyv​inyl_​aceta​te_​

market_​report.​html
Polyester 0.54 8 https://​www.​stati​sta.​com/​stati​stics/​912301/​polye​ster-​fiber-​produ​ction-​

world​wide/
Ethylene vinyl acetate  < 1? 0 Proprietary3

Polyacrylic acid  < 1? 2 Proprietary3

Polyacrylamide2  < 1? 2 Proprietary3

https://www.european-bioplastics.org/global-market-for-bioplastics-to-grow-by-20-percent/#:~:text=The%20global%20bioplastics%20production%20capacity%20is%20set%20to,growth%20in%20the%20field%20of%20bio-based%2C%20biodegradable%20plastics
https://www.european-bioplastics.org/global-market-for-bioplastics-to-grow-by-20-percent/#:~:text=The%20global%20bioplastics%20production%20capacity%20is%20set%20to,growth%20in%20the%20field%20of%20bio-based%2C%20biodegradable%20plastics
https://www.european-bioplastics.org/global-market-for-bioplastics-to-grow-by-20-percent/#:~:text=The%20global%20bioplastics%20production%20capacity%20is%20set%20to,growth%20in%20the%20field%20of%20bio-based%2C%20biodegradable%20plastics
https://www.european-bioplastics.org/global-market-for-bioplastics-to-grow-by-20-percent/#:~:text=The%20global%20bioplastics%20production%20capacity%20is%20set%20to,growth%20in%20the%20field%20of%20bio-based%2C%20biodegradable%20plastics
https://www.statista.com/statistics/856670/acrylonitrile-butadiene-styrene-global-production-capacity/
https://www.statista.com/statistics/856670/acrylonitrile-butadiene-styrene-global-production-capacity/
http://www.polyvinylacetate.cn/pvac-news/2019_polyvinyl_acetate_market_report.html
http://www.polyvinylacetate.cn/pvac-news/2019_polyvinyl_acetate_market_report.html
https://www.statista.com/statistics/912301/polyester-fiber-production-worldwide/
https://www.statista.com/statistics/912301/polyester-fiber-production-worldwide/
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Fungal genera degrading synthetic plastic 
polymers

The plastic wastes disposal problem

Global annual production of synthetic plastic polymers was 
380 million tons in 2015 (Geyer et al. 2017). This has been 
divided into chemical types by previous publications (e.g., 
Danso et al. 2019). But they typically leave out some petro-
leum-based types (e.g., polycarbonate and acrylonitrile buta-
diene styrene). They also have excluded sustainable (bio)
plastics derived from biomass (Zhu et al. 2016), and herein 
we add the amounts of those sources (Table 5), as available 
data allow.

Global fates of discarded synthetic plastic polymers

According to Geyer et al. (2017), by 2020, 8.2 billion tons 
of plastics would have been generated, with 6.4 discarded as 
waste, 1.4 burned, and 1 recycled. It is notable that nitrogen- 
and chlorine-containing plastic polymers are unsuitable for 
bioenergy because they produce toxic combustion byprod-
ucts (Shen et al. 2016; Datta and Włoch 2017). For land-
filled plastics, the absence of UV light (for photodecomposi-
tion) and oxygen (for biodegradation) results in persistence 
for centuries or longer (Glaser 2019). About 3% of plastic 
wastes escape to oceans (Jambeck et al. 2015).

Potential environmental damage from discarded synthetic 
plastic polymers have been examined for marine and terres-
trial environments (e.g., Bergmann et al. 2015; Pawar et al. 
2016; Iqbal et al. 2020; Rillig and Lehmann 2020; Rillig 
et al. 2021). While those are beyond our scope here, we 
stress that uncertainties remain large. Therefore, ways are 
being sought to minimize these amounts and risks.

Potential solutions provided by fungi

Fungi are capable of decomposing essentially all carbon-
containing polymers that nature or man has developed by 
means of extracellular enzymes (Tortella et al. 2005). The 
best natural example is decomposition of lignin (Floudas 
et al. 2012), a randomly ordered polymer second only to 
cellulose in global production, and far more than all plas-
tic polymers combined. It seems reasonable to suppose that 
no plastic polymer can avoid fungal decomposition under 
appropriate conditions.

Many fungal genera have been shown to decompose many 
plastic polymers. From citations in literature reviews (How-
ard 2011; Kale et al. 2015; Ahmed et al. 2018; Wierckx 
et al. 2018; Paço et al. 2019; Raddadi and Fava 2019; Ghatge 
et al. 2020; Lee and Liew 2020; Magnin et al. 2020; Ru et al. 

2020; Sánchez 2020; Inderthal et al. 2021; Kundungal et al. 
2021; Taghavi et al. 2021) and further literature searches 
with Microsoft Academic, we developed Table 6. The num-
ber of fungal genera degrading each plastic polymer type are 
also shown in Table 5, along with annual production rates 
where those have been disclosed.

Competence of fungi to degrade plastic polymers

Fifty-five fungal genera have been shown to degrade bio-
plastics, more than for any petroleum-derived polymers 
(Table 5). Demonstrated ranges of fungi degrading poly-
propylene, polyethylene terephthalate, acrylonitrile butadi-
ene styrene, and polyaramids seem low compared to their 
production rates (Table 5). We suppose this is more likely 
due to incomplete examination, than from non-degradable 
polymer chemical structures.

Genera of Ascomycota or Basidiomycota have been 
shown to be capable of degrading all petroleum-based 
plastic polymers except for acrylonitrile butadiene styrene 
(ABS) and ethylene vinyl acetate (EVA) (Table 6). ABS and 
EVA exceptions are more likely due to lack of examination, 
than from non-degradable chemical structures. Genera of 
Ascomycota or Basidiomycota are capable of degrading all 
biomass-based plastic (bio)polymers. Perhaps surprisingly, 
more genera of Ascomycota (75) than Basidiomycota (19) 
can degrade plastic polymers. In Ascomycota, Aspergillus, 
Fusarium and Penicillium degrade seven plastic types, with 
other genera having narrower ranges. In Basidiomycota, 
Phanerochaete can degrade ten plastic types, Pleurotus six, 
with other genera having narrower ranges. This capabil-
ity of Pleurotus, along with other genera containing edible 
mushrooms is interesting, as it raises the possibility that 
bioremediation of plastics might be combined with produc-
tion of edible sporocarps. This does not seem to have been 
researched. In Mucoromycota, four genera can degrade two 
or three types of plastic polymers (Table 6).

It is also important to note that cited studies examined 
polymers individually. Solving the global plastic-polymer 
waste problem requires developing systems (based on single 
microbes or consortia) that can degrade polymer mixtures, 
which will also include many other types of discarded mate-
rials. No study is apparent that explores fungal biodegrada-
tion of mixed wastes arriving at landfills. Such biodegra-
dation research has been aimed at publishable results, not 
solutions for real-world problems. Degradation rates of pure 
polymers are reported in some studies, but by varying tech-
niques that preclude comparisons. Most importantly, few 
attempts are made to optimize degradation rates, and mixed 
sources have never been examined.
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Products of fungal biodegradation of plastic 
polymers

Reverting plastic polymers to CO2 is the (generally 
unstated) goal, but uncaptured CO2 is not valuable. Revert-
ing these to useable hydrocarbon monomers would have 
value. Such research has been carried out with fungi, bac-
teria, and their derived enzymes acting on (some pure) 
polymer source streams and is outside our scope here. We 
can say at least that fungi show great potential to reduce 
accumulations of all types of plastic debris, and reduce 
harm that may result from them. Research into fungal deg-
radation of plastic polymers began decades ago, but 54% 
of references cited in Table 6 are from 2010 or are more 
recent.

Another interesting aspect is that some insects consume 
and degrade plastic polymers (Ali et al. 2021), with a few 
demonstrated to do so by way of gut fungi (Khan et al. 
2021). Most insects that have been examined were chosen 
because they are used as feed sources for fish and chickens. 
This could be ‘waste upcycling’ if it were commercialized 
(Khan et al. 2021).

Enzymes involved in degradation of plastic 
polymers

Fungi degrade plastic polymers with extracellular 
enzymes, and the breadth of such processes has been 
recently reviewed by Srikanth et al. (2022), Temporiti 
et  al. (2022) and Devi et  al. (2016). The summarized 
findings from those reviews are given in Table 7. Fungal 
extracellular enzyme roles in plastic polymer degradation 
remain poorly known, both in terms of ranges of capable 
fungi and their plastic polymer targets. Fungi can play a 
large role in addressing the plastics-waste problem, but 
substantial knowledge gaps remain.

Conclusion

Fungi can probably degrade all plastic polymers, however 
sourced, with CO2 as the end product (not always stated). 
Green (bio)plastics may be not dramatically more suscepti-
ble to fungal biodegradation than petroleum-based plastics, 
under optimized conditions. Precise conclusions are not pos-
sible because biodegradation studies have used varied meth-
ods. The use of single taxa or consortia in waste disposal 
treatments however has not been well-researched. This is an 
important area for future studies.
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Discussion

We have written about what we consider to be the ten most 
important decadal advances in fungal biology leading 
towards human well-being, but there are many more signifi-
cant discoveries, and we discuss a few below.

Fungal diversity

Over the past ten years there has been a colossal advance in 
the classification and description of novel species of fungi. 
This has mainly been due to the use of molecular tools, but 
also more research efforts being carried out in prosperous, 
previously developing nations, such as Brazil, China and 
Thailand (Hyde et al. 2018b, 2021; Boonmee et al. 2021; He 
and Zhao 2022). Publication outlets such as Fungal Diversity 
Notes (Hyde et al. 2020a; Yuan et al. 2020; Boonmee et al. 
2021), Fungal Planet (Crous et al. 2020a,b, 2021a; b) and 
Mycosphere notes (Pem et al. 2019; Hyde et al. 2021) have 
introduced more than 2000 novel taxa. The change from dual 

nomenclature to a single name for holomorphic genera and 
species has been pivotal. This has resulted from the realiza-
tion that molecular data can link taxa of different sexually 
(Karunarathna et al. 2017; Wanasinghe et al. 2017; Jayasiri 
et al. 2019; Phookamsak et al. 2019; Devadatha et al. 2020; 
Maharachchikumbura et al. 2021; Senanayake et al. 2022). 
It has also been realized that many plant pathogenic genera 
contain numerous species complexes with each compris-
ing numerous taxa which may infect different hosts (Bhun-
jun et al. 2020, 2021; Jayawardena et al. 2021a). The work 
towards the classification of the fungi (Maharachchikum-
bura et al. 2015; Thambugala et al. 2015; Tian et al. 2016; 
Daranagama et al. 2018; Senwanna et al. 2019; Dong et al. 
2021) culminated in the first outline of the Fungi and fun-
gus-like organisms (Wijayawardene et al. 2020, 2022) and 
more detailed classifications of various classes, including 
basal fungi (Hurdeal et al. 2021), basidiomycetes (He et al. 
2022), Dothideomycetes (Hongsanan et al. 2020), Sordario-
mycetes (Hongsanan et al. 2017; Hyde et al. 2020c) amongst 
others (Ekanayaka et al. 2019; Johnston et al. 2019). Jee-
won and Hyde (2016) provideded guidleines for describing 

Table 7   Enzyme classes and types known to degrade plastic polymers

Follows polymer types as in Table 6 and excludes those without enzyme information. Enzyme types include standard EC nomenclature

Polymer type Enzyme class Enzyme type Data sources

Bioplastics—poly(butylene succinate 
(PBS)

Hydrolytic Lipases (EC 3.1.1.3) Srikanth et al. (2022)

Bioplastics—poly(butylene succinate 
(PBS)

Hydrolytic Cutinases (EC 3.1.1.74) Devi et al. (2016)

Bioplastics -polybutylene succinate (PBS), 
polybutylene succinate-co-adipate 
(PBSA)

Hydrolytic Lipases (EC 3.1.1.3) Srikanth et al. (2022)

Bioplastics -polycaprolactone (PCL) Hydrolytic Lipases (EC 3.1.1.3) Srikanth et al. (2022), Devi et al. (2016)
Bioplastics -polycaprolactone (PCL) Hydrolytic Cutinases (EC 3.1.1.74) Devi et al. (2016)
Bioplastics -polylactic acid (PLA) Hydrolytic Esterases (EC 3.1.1.x) Srikanth et al. (2022)
Polyurethane (PUR) Hydrolytic Esterases (EC 3.1.1.x) Temporiti et al. (2022), Srikanth et al. 

(2022)
Hydrolytic Lipases (EC 3.1.1.3) Temporiti et al. (2022), Srikanth et al. 

(2022)
Hydrolytic Cutinases (EC 3.1.1.74) Temporiti et al. (2022)
Hydrolytic Urease (EC 3.5.1.5) Devi et al. (2016)
Hydrolytic Serine hydrolase (EC 3.4.16) Devi et al. (2016)

Polypethylene (PE) Oxidoreductase Laccase (EC 1.10.3.2) Srikanth et al. (2022), Devi et al. (2016)
Oxidoreductase Manganese peroxidase (EC 1.11.1.13) Srikanth et al. (2022), Devi et al. (2016)
Oxidoreductase Lignin peroxidase (EC 1.11.1.14) Srikanth et al. (2022)

Polyvinyl chloride (PVC) Oxidoreductase Peroxidase (EC 1.11.1.14) Temporiti et al. (2022)
Oxidoreductase Laccase (EC 1.10.3.2) Temporiti et al. (2022), Srikanth et al. 

(2022)
Polystyrene (PS) Hydrolytic Esterases (EC 3.1.1.x) Temporiti et al. (2022)
Polyethylene terephthalate (PET) Hydrolytic Cutinases (EC 3.1.1.74) Temporiti et al. (2022)

Hydrolytic Lipases (EC 3.1.1.3) Temporiti et al. (2022)
Hydrolytic Carboxylesterases (EC 3.1.1.1) Temporiti et al. (2022)
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a new species and the need for polyphyletic approaches was 
emphasised in the special issue, What is a species? (Boek-
hout et al. 2021; Cao et al. 2021a; Chethana et al. 2021b; 
Jayawardena et al. 2021b; Lücking et al. 2021; Maharach-
chikumbura et al. 2021; Manawasinghe et al. 2021; Pem 
et al. 2021; Voigt et al. 2021). The important repositories for 
taxa were developed earlier but in the last decades numerous 
new websites have been developed including sites on insect 
(Wei et al. 2022, https://​inver​tebra​tefun​gi.​org/​refer​ences.​
php), freshwater (Calabon et al. 2020, https://​fresh​water​
fungi.​org/) and marine fungi (https://​www.​marin​efungi.​
org/). There are also sites on fungi of the United Kingdom, 
the Greater Mekong Subregion (Chaiwan et al. 2021, https://​
www.​gmsmi​crofu​ngi.​org/) and Italian ascomycetes (Wijes-
inghe et al. 2021, https://​itali​anmic​rofun​gi.​org/) and sites on 
the Genera of fungi (Monkai et al. 2019, https://​funga​lgene​
ra.​org/) and Fungalpedia (https://​funga​lpedia.​org/).

Whole genome sequencing

Whole-genome sequencing has been carried out for numer-
ous species in the past decade. Advances made from these 
data mainly include phylogenomics for taxonomic organi-
zation, designing effective therapies against targeted fungal 
pathogens, and the development of new antibiotics, phar-
maceuticals and secondary metabolites necessary for indus-
trial applications, among many others. The use of whole-
genomes in phylogenomic studies provides sufficient data 
to elucidate relationships deeper in geological time, as well 
as to resolve relationships that evolved in short divergence 
times, which may lead to resolve problems in taxonomy 
(James et al. 2020). Further studies on these whole-genome 
sequences allow to perform functional genomic studies on 
the genes predicted from the whole genome sequences, thus 
providing new knowledge to predict their lifestyles (Gómez-
Pérez and Kemen 2021). The availability of genomic data 
also enables to assess micro- and macro variations within a 
species in a population to determine their genomic evolution. 
Furthermore, mining whole-genome sequences allows the 
identification of proteins responsible for host interactions 
and secondary metabolites for various applications. The 
knowledge produced from gene functions and their meta-
bolic pathways is important for designing therapies as an 
alternative to drugs (Guo and Wang 2014). Identification 
of genes involved in host interactions, specifically in plant 
pathogenic fungi, produces new knowledge required to pre-
dict the emergence of fungal diseases and the surveillance 
of plant health. This is not only limited to phytopathogenic 
fungi but also applies to fungal diseases in humans, where 
they detect and monitor the spread of the disease, determine 
the distribution of the pathogen, predict outbreaks, and their 
evolution during outbreaks (Cuomo 2017). Furthermore, 

information on endophytic fungal genomes facilitates the 
development of alternatives for pesticides and fertilizers. In 
addition, advances in whole-genome studies facilitate the 
genotyping of pathogenic species for diagnostic purposes. 
These diagnostics have been applied to both human and plant 
pathogens for their precise and rapid detection and identifi-
cation, which is crucial to managing the diseases effectively 
(Kidd et al. 2020; Hariharan and Prasannath 2021).

Biological control of pests

Biological control can be defined as the inhibition of growth, 
infection or reproduction of one organism using another 
organism (Cook 1993). This can involve the use of microbial 
inoculants to suppress a single type of plant disease as well 
as managing soil to promote the soil and plant-associated 
organism that can contribute to the general suppression 
of disease (Cook 1993). This method is environmentally 
friendly and sometimes the only option available (Barratt 
et al. 2018; Hyde et al. 2019). A comprehensive understand-
ing of the complex interactions among plants and the envi-
ronment is needed when implementing biological control. 
Biocontrol of the unwanted organisms can achieve through 
antibiosis, competition, metabolite production, and myco-
parasitism (Xu et al. 2011).

During the past decade, much research has been con-
ducted to identify potential fungal species that can be used 
as bio-control agents against plant diseases (Thambugala 
et al. 2020). Acremonium alternatum, Acrodontium crateri-
forme, Ampelomyces quisqualis, Cladosporium oxysporum 
and Trichoderma virens can hyperparasitize the powdery 
mildew pathogens (Milgroom and Cortesi 2004). Fungal 
epiphytes of banana namely Clonostachys byssicola, Cur-
vularia pallescens, Penicillium oxalicum and Trichoderma 
harzianum showed antagonistic activity against the banana 
crown-rot causing pathogens Thielaviopsis paradoxa, Colle-
totrichum musae, and Fusarium verticillioides significantly 
affected the mycelial growth and conidial germination of the 
pathogens (Alvindia and Natsuaki 2008). Endophytic fungi 
have been shown to have an antagonistic activity towards 
pathogenic fungi as well as influence the host resistance 
(Hyde et al. 2019).

So far, species of Trichoderma have proven to be the 
most effective biocontrol agents (Alvindia and Acda 2012). 
Trichoderma species are filamentous fungi, found in a vari-
ety of ecosystems (Jayawardena et al. 2019a, b) and use 
mycoparasitism to attack the host and with various enzymes 
degrading the target cell (Benítez et al. 2004; Sood et al. 
2020). Secondary metabolites produced by this group of 
fungi have antibiotic properties (Vinale et al. 2014) which 
helps the plants to fight against diseases. Trichoderma spe-
cies can be used as nematicidal agents (T. asperellum, T. 

https://invertebratefungi.org/references.php
https://invertebratefungi.org/references.php
https://freshwaterfungi.org/
https://freshwaterfungi.org/
https://www.marinefungi.org/
https://www.marinefungi.org/
https://www.gmsmicrofungi.org/
https://www.gmsmicrofungi.org/
https://italianmicrofungi.org/
https://fungalgenera.org/
https://fungalgenera.org/
https://fungalpedia.org/
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brevicompactum, T. citrinoviride, T. harzianum and T. vir-
ide), insecticides (T. longibrachiatum) and as fungicides (T. 
asperellum, T. viride, T. harzianum, T. koningii, T. longi-
brachiatum) (Ferreira and Musumeci 2021; Poveda 2021).

Recently there has been a renewed interest in fungal 
pathogens of insects due to their potential as biocontrol 
agents. More than 750 species of fungi have been identi-
fied to be pathogenic to insects offering a great potential 
for pest management (Sharma and Sharma 2021; Poveda 
2021). Beauveria bassiana, B. brongniartii, Cladosporium 
oxysporium, Metarhizium anisopliae, Hirsutella thompsonii, 
Isaria fumosorosea and Lecanicillium spp., are among the 
species that are already used in formulated mycoinsecticides 
(Maina et al. 2018). Another successful application of fungi 
can be seen in the application of Beauveria bassiana for the 
control of pine moths (Dendrolimus spp.) in China (Kovač 
et al. 2020). Beauveria bassiana (strain Bb-147) is used as 
a registered product in Europe to control the European corn 
borer (Ostrinia nubilalis) and the Asiatic corn borer (O. fur-
nacalis) (Batool et al. 2020).

Beneficial use of a toxin: gliotoxin

Another interesting decadal advance lies in gliotoxin, 
although this may never be taken up by pharmaceutical 
companies as they already have a swathe of drugs to treat 
acquired immunodeficiency syndrome (AIDS). However, it 
does show the potential of fungi.

AIDS is a well-known sexually or blood-transmitted viral 
disease which, despite improved antiviral medication, still 
causes half a million deaths each year. Upon infection, the 
human immunodeficiency virus (HIV) enters and kills the 
T-helper (CD4+) immune cell in the process of replicating. 
With this impaired adaptive immunity, the patient becomes 
susceptible to a plethora of pathogenic and opportunistic 
microorganisms. Current and very successful treatment 
is a combination of inhibitors of HIV integrase, reverse 
transcriptase and proteases known as c-ART (combination 
AntiRetroviral Therapy). This has effectively reduced the 
burden of disease in Western countries, to such an extent 
that patients can live with the infection for decades, and in 
this part of the world AIDS is no longer seen as a threat, but 
rather HIV infection has become a chronic disease. How-
ever, the death toll outside the industrialized world where 
access to medication is limited is still unacceptably high. In 
addition, the disease is suppressed rather than eradicated, 
because the virus remains dormant in a small reservoir of 
infected cells, a process known as latency. Much research has 
therefore been devoted to get the virus out of the cells, using 
latency reversal agents (LRAs). The virus then becomes in 
reach for elimination by the immune system and presence 
of c-ART therapy prevents new rounds of infection. Numer-
ous compounds have been proposed, but most of these were 
either toxic, or insufficiently effective and have failed thus 
far to make a significant impact on the latent HIV reservoir 
or lead to cure (reviewed in Stoszko et al. 2019).

Fig. 20   Proposed model of gliotoxin disruption of 7SK snRNP, caus-
ing release of P-TEFb and activation of the latent HIV-1 LTR via 
release of CDK9 from the 7SK snRNP complex. Free P-TEFb is then 
recruited to the HIV-1 Tat-TAR axis, leading to phosphorylation of 
RNA Pol II and subsequent stimulation of transcription elongation. 
CDK9 cyclin-dependent kinase 9; DSIF 5,6-dichloro-1-beta-d-ribo-
furanosylbenzimidazole sensitivity inducing factor, CTB non-toxic 

B-subunit of cholera toxin, HEXIM hexamethylene bis-acetamide 
inducible 1; LARP La ribonucleoprotein domain family, LTR latency 
reversal, MEPCE methylphosphate capping enzyme, NELF negative 
elongation factor, Pol polymerase, snRNP small nuclear ribonucleic 
protein, TAR​ trans-activation response, Tat trans-activation of tran-
scription, TEF transcription elongation factor; Modified after Stoszko 
et al. (2020)
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Fungi produce a wide diversity of bioactive compounds 
that is largely unexplored. With this in in mind, Stoszko 
et al. (2020) conducted a study in search of novel LRAs. 
The authors screened a large diversity of fungi: 115 species 
belonging to 28 orders (43 families) dispersed over the fun-
gal kingdom were included. Low and medium throughput 
screening systems of crude extracts of supernatants were 
dissected by orthogonal fractionation and mass spectrom-
etry (MS) coupled to nuclear magnetic resonance (NMR). 
Extracts were stepwise tested in HIV latency reversal bioas-
says. Out of tens of thousands of compounds, finally glio-
toxin (GTX) was identified as a novel LRA. Gliotoxin is a 
fungal extralite which is produced by Aspergillus fumiga-
tus and some other species. The mechanism of action of 
GTX in reversal of latency in HIV-infected CD4+ T-cells 
is by disrupting 7SK snRNP, a complex that sequesters 
the positive transcription elongation complex (PTEFb), 
which is required for efficient HIV gene expression. When 
released from 7SK snRNP, PTEFb is then recruited to the 
HIV promoter by the viral Tat protein and phosphorylates 
RNA Pol II CTD, leading to increased HIV transcription 
(Fig. 20). Stoszko et al. (2020) employed several biochemi-
cal assays and transcriptome analyses to unravel the steps 
targeted by GTX to reverse latency. Also, the efficacy of 
synergistic combinations of GTX with other known LRAs 
was analyzed, and synergistic effects of caffeic phenethyl 
ester (CAPE), pyrimethamine (PYR) and macrolactams with 
gliotoxin were assessed. Activity and toxicity of GTX was 
further determined using model systems of HIV-1 latency 
using cells obtained from HIV-1 positive patients under 
c-ART therapy, and it was found that GTX latency reversal 
is reached at very low, non-toxic concentrations of GTX. 
Potential pleiotropic effects on other immune cells, such as 
CD8+ T-cells responsible for eliminating the infected CD4+ 
T-cells, remained absent.

Gliotoxin is a secondary metabolite of the diketopipera-
zines class. It is a well-known mycotoxin produced by spe-
cies of Aspergillus, Penicillium, Fusarium and Trichoderma, 
fungi which are eutrophic and reside in nutrient-rich habi-
tats such as composting debris. In these microbe-rich envi-
ronments they have to compete for survival against a large 
diversity of fungi and bacteria by rapid growth and produc-
tion of toxic metabolites Toxic effects of GTX against fungi 
(Carberry et al. 2012) and bacteria (Esteban et al. 2021) 
are due to redox-cycling of a disulphide-bridge. Among 
the toxic effects are expression of proteins, disturbance 
of enzymes, and leakage of mitochondrial membranes. In 
humans, it has immunomodulatory functions by interfer-
ence with neutrophils and macrophages and impairs T-cell 
activation. This may contribute to the fact that several of 
the above saprobes also frequently occur as opportunistic 
pathogens (de Hoog et al. 2020). The action of GTX as LRA 
is achieved at concentrations far below the level of toxicity. 

Stoszko et al. (2020) convincingly showed that GTX pro-
vides a promising novel treatment option, which for in a 
pharmacological combination for HIV therapy, may move 
towards a cure rather than just suppression of the disease.
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