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We should study sea ice because
it’s sensitive to climate change.

Poles are very sensitive to climate change.
Sea ice variables are a good measure of this change.

Processes affecting sea ice are complex.
And sea ice is a key player in GCMs.

Models are morally good/bad in the same places at
high enough resolution. (Bouchat et al., 2022)

We need new ways of studying/parametrizing sea ice.
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Different aspects of sea ice
can be studied.

Annual/monthly
averages

Seasonal with
daily averages

Snapshots and
scale protractor

Ice thickness, concentration, velocity

Deformation statistics

Angles of fracture
Linear Kinematic Features
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Linear Kinematic Features (LKFs)
are lines of high deformation.

shear
divergence
damage
healing

Credit: Nasa Worldview
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LKFs are an important place for
atmosphere–ocean interactions.

salt fluxes
heat fluxes
moisture
fluxes

Credit: Nasa Worldview
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Study of LKFs deformations statistics
is the "new" way of characterising models.

The shape of probability density functions
is important for the overall distribution of deformations.

The spatiotemporal scaling laws of LKFs
need to be reproduced for accurate simulations.

The multifractality of sea ice
is critical for the localization/intermittency of LKFs.
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Models have various success rate in these metrics,
what parametrizations permit that?

Damage/dilation?

Memory of past deformations?

Consideration of elastic deformations?

Non-normal flow rule?
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The goals of this project are to:

Develop a sub-grid scale parametrization for
damage.
This is combined with higher resolution models as a first
step towards better simulations.

Disentangle the elastic response from the damage
response in sea ice models.
Some models have both, and it’s unclear which is responsible
for their success.
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McGill sea ice model

The original model
Damage
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The McGill sea ice model is
a viscous-plastic (VP) model.
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We would like to modify
the ice strength P.

P = P(h,A) −→ P = P(h,A, d)
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Damage comes from
rock mechanics.

It has been adapted in Maxwell-Elasto-Brittle
(MEB) models (Dansereau et al, 2016; Plante et al., 2020).
Damage is computed as the stress overshoot.

Damage is coupled to the elastic stiffness and
viscosity,
and evolves via a continuity equation.

∂

∂t
d =

(1 − Ψ)(1 − d)
td

− 1

th
, σf = Ψσ′
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We have developed damage
for viscous-plastic model.
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Maximal damage is reached in plastic regime.
It is reached almost instantly.

Damage is coupled to the ice strength P
in the same way that it is done in MEB.
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P = P∗h exp {−C(1 −A)} (1 − d)
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But what is damage?
What does it mean to be dammaged?

Here, damage is a scalar field,
similar to A or h.

Damage encompasses all processes that lead to
plastic deformation
like microcracks, microvoids, creep cracks, etc.

Damage is a big box where we put everything,
but future work could include refinements of our definition.
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The model is first spun-up,
then we do our simulations.

Spin-up is done to find good initial conditions.
We started with a 1 m thickness, and a 100% concentration.

Shuffling the year list prevents biases from
low-frequency variability.
Like the Arctic Oscillations or Arctic Ocean Oscillations

Simulations are for January 2002 at a 10 km
resolution.
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Deformation products
from RGPS are used.

We use the three-day gridded data set (Kwok et al., 1997).
So our minimal temporal resolution is 3 days.

The observations are on a 12.5 km × 12.5 km grid.

The tracking error is around 100 m (Lindsay and Stern, 2003).
We won’t use deformations under

��5 × 10−3
�� day−1.
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Methods and Results

Simulated Deformation Fields
Probability Density Functions (PDFs)
Spatiotemporal Scaling Laws
Multifractality
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The mask80 is used in
every computations.

The mask is
obtained via the
80% temporal
presence in the
observations.
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Simulated deformation fields
are computed from velocities derivatives.

Divergence

Maximum shear
strain rate

Total
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Snapshots for January 29–31, 2002
for total deformation.
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PDFs used to differentiate simulated and
observed distribution of deformation.

PDFs of shear strain, divergence, and convergence.
Not splitting absolute divergence leads to errors.

Difference between PDFs of observation and
simulations (Bouchat et al., 2022)

will be used as a metric to evaluate models’ performances.
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Convergence and divergence are linked,
but you cannot have both at the same time.

The bottom
numbers are the
models’
performance
(lower is
better).
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Spatiotemporal scaling laws are assumed
to follow a power law.

We do a coarse-graining procedure (Marsan et al., 2004)

we take the mean in each cell.

We compare the slopes of simulations and
observation.
This tells us the space-time localization of deformations.

⟨¤εtot(L, T )⟩ ∼ L−β(T )

⟨¤εtot(L, T )⟩ ∼ T−α(L)
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Augmenting P∗ brings the curves down
with a slope in agreement with obs.

Note how
damage
increases the
mean
deformations.
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Multifractality to identify
how scaling changes.

The scaling exponents are functions of the moment.
We fit the data for the three parameters.

Evaluates sparseness C1, degree of multifractality
ν, and localization H.
Theory says 0 ⩽ ν ⩽ 2.

α(q),β(q) = q(1−H)+K(q) = C1

ν − 1
qν+

(
1 −H − C1

ν − 1

)
q

K(q) prescribes the distribution of singularities (or
points of non-smoothness) across different scales.
It is the moment scaling function exponent.
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Spatial multifractality is sensitive to n

only for high th.

Note the new
root in the
yellow line.
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Temporal multifractality is sensitive to n

only for high th.

Note the new
root in the
yellow line.
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Conclusions
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Damage in VP models is an easy-to-implement,
powerful tuning knob to adjust deformation statistics.

Optimal values

Effect on
statistics

Multifractal
theory

Quantity of
memory

n = 5, th = 30

Damage corrects spatial deformation statistics without the
need to change the shape of the yield curve.

Changing the ellipse ratio or augmenting P∗ unveils
multifractal behavior that does not fit the theory.

Adding this parametrization doesn’t make the ice brittle, but
the memory of past deformation is still encoded.
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Thank you!
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