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Abstract

Climate change enforces the implementation of sustainable industrial produc-

tion with a special focus on pollution reduction, resource management, and

energy savings. These goals are addressed by designing advanced control meth-

ods using the solution of an adequately formulated optimization problem. Heat

exchangers represent particularly energy-demanding plants that are challenging

from the advanced controller design point of view. Model predictive control

(MPC) is a suitable control strategy to address the relevant control tasks. The

complexity of the real-time implementation of MPC directly depends on the

number of inequality constraints in the corresponding optimization problem.

Therefore, the real-time computational effort can be reduced by removing in-

active constraints. Since removing inactive constraints does not change the

optimal solution, it is desirable to detect inactive constraints corresponding to

the current system state measurement and remove them from the formulation

of the MPC problem before running the optimization solver. However, external

⋆Support by the Alexander von Humboldt Foundation research group linkage cooperation
program is gratefully acknowledged. This paper is funded by the European Union’s Horizon
Europe under grant no. 101079342 (Fostering Opportunities Towards Slovak Excellence in
Advanced Control for Smart Industries) MH, PB, JO gratefully acknowledge the contribution
of the Slovak Research and Development Agency under the project APVV-20-0261, and the
Scientific Grant Agency of the Slovak Republic under the grants 1/0297/22, 1/0545/20. RD,
MM gratefully acknowledge support by the German Federal Ministry for Economic Affairs
and Energy under grant 0324125C and by the Deutsche Forschungsgemeinschaft (DFG) under
grant MO 1086/15-1.
♢ These authors contributed equally to this work.

Preprint submitted to Journal of Applied Thermal Engineering March 24, 2023



disturbances, parametric uncertainties, and setpoint changes often impact real

plants, limiting the application range of the conventional constraint removal

MPC approach. In this paper, we propose a modification of the conventional

constraint removal approach to address this issue. The modified constraint

removal approach achieves the robustness required for a practical application

to a laboratory-scaled heat exchanger. The control performance of the heat

exchanger is analyzed from the industrial perspective considering the computa-

tional time and energy consumption by implementing the control approach on

a 32-bit microcontroller.

Keywords: Heat Exchanger, Model Predictive Control, Constraint Removal,

Energy Consumption, Microcontroller.

1. Introduction

Efficient energy supply plays a crucial role in achieving important goals, such

as the health of economies in the presence of sustainable industry. Nowadays,

approximately 80% of energy utilization involves some form of heat transfer

[1]. Heat exchangers are present in most industrial operations and are thus

involved in the energy-intensive part of the operation. As the consequence, the

operation of heat exchangers has a strong impact on the economic efficiency

of their operation [2]. Therefore, the importance of heat transfer technologies,

modeling, and integration are significant. An overview of current advancements

in applied thermal engineering is presented, e.g., in [3].

One of the areas with a promising potential for improvement is the design

and application of optimal control algorithms for heat exchangers. Thus, the

improved operation of heat exchangers can be directly associated with the im-

plementation of advanced control strategies.

In recent years, advanced optimization-based control methods like model

predictive control (MPC) gained popularity [4]. MPC is a control method based

on periodically solving a constrained optimal control problem (OCP) in every

time step to evaluate the optimal input signal. From the control perspective,
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the implementation of MPC outperforms any proportional-integral-derivative

(PID) controller by its nature, as MPC evaluates the control actions by solv-

ing the optimization problem taking into account a wide class of technological

constraints and quality criteria. In [5], several case studies comparing MPC

with PID control point out the superiority of the optimization-based MPC. A

possibility of how to avoid online optimizations while preserving competing re-

sults such as an optimal operation was investigated in [6], underlining the wish

to profit from the benefits coming with optimization-based control approaches.

In, e.g., [7], the aforementioned advantages of MPC, together with the possi-

bility to naturally control systems with multiple inputs and outputs, have been

shown to enhance both, the control performance and its robustness compared

to the existing PID controller of a heat exchanger processed in a South-East

Asian facility. Besides this, further work has dealt with the control of heat

exchangers using MPC. In [8], MPC was proposed for the intermittent oper-

ation of a solar-assisted ground source heat pump system. Predictive control

methods were also considered to control a network of heat exchangers in [9].

In [10], a so-called neural network predictive controller combined with an aux-

iliary fuzzy controller was successfully applied to a heat exchanger to reduce

energy consumption. Compared to conventional APC controller design, the

proposed method introduces two main benefits: first, we preserve the optimal

evaluation of the control actions by a simultaneous reduction of the computa-

tional burden. Secondly, as a consequence, the decreased computational effort

leads to reduced energy requirements on the controller-side. Admittedly, MPC

comes at a higher implementation cost than APC, but it is evident that more

sophisticated control methods, e.g. MPC, may achieve better control perfor-

mance. Therefore the MPC based methods also affect the energy aspect of the

controlled device itself not only the implementation cost.

In MPC, the complexity of the OCP depends on the complexity of the con-

trolled plant, the associated prediction model, and the number of considered

physical constraints. The solution of the underlying optimization problem can

be computationally intensive. Therefore, extensive research has been devoted
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to reducing the complexity of the corresponding OCP and to speeding up the

solution process [11].

Some well-known methods, e.g., move blocking, decrease the computational

effort by reducing the degrees of freedom, see, e.g., [12] for a review of move

blocking methods. However, the resulting control action is no longer optimal.

From an energy-saving point of view, MPC design methods that preserve the

optimality and, simultaneously, minimize the computational burden by exploit-

ing the structure of the OCP (see, e.g., [13, 14]) are more relevant. Explicit

MPC (see [15, 16]) avoids real-time optimization by precomputing the explicit

solution map considering the whole set of admissible initial conditions. How-

ever, even for linear MPC, the multi-parametric optimization problem of the

explicit MPC may be intractably complex, or the constructed explicit solution

exceeds the memory limits of industrial hardware for immediate online use.

Several methods have been proposed for complexity reduction, e.g., exploiting

the geometry of explicit MPC solutions [17], using bilevel optimization [18], or

introducing the reachability analysis [19].

Yet another class of approaches detects and removes inactive constraints

before delegating the optimization problem to the solver, see [20, 21, 22, 23].

These methods aim at preserving the optimal solution while reducing the com-

putational complexity.

The MPC design method proposed in this paper originates from [23], and

its nonlinear MPC variant is presented in [24]. The main idea is to evaluate a

characteristic number associated with a cost function value that is assigned to

each constraint of the OCP. The characteristic values (the σ-bounds introduced

in Sec. 3) are calculated offline, i.e., before the runtime of the controller. Online,

i.e., during runtime, the assigned values serve as an indicator to determine if the

corresponding constraint is inactive in the current and all subsequent control

steps. The offline calculation of the characteristic values results in additional

optimization problems but does not affect the real-time feasibility. Technically,

the characteristic value for every constraint represents a bound corresponding to

the minimum value that the cost function attains if the corresponding constraint
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is active. From a theoretical point of view, the cost function is guaranteed to

be non-increasing along the control steps, which originates in the asymptotic

stability condition of the designed MPC (see, e.g., [25]). As a consequence, once

the cost function value decreases below the precomputed characteristic bound,

the corresponding inactive constraint is removed for all subsequent time steps.

The method does not only remove redundant constraints but progressively re-

duces the number of constraints during the runtime of the controller. However,

the described technique needs to be adopted if an increase in the optimal cost

function value can no longer be avoided. This may be the case, for example,

due to a disturbance.

The main contribution of this paper is the application of MPC with con-

straint removal for the setpoint tracking problem of a laboratory plate heat

exchanger. To the best of the authors’ knowledge, this work presents the first

experimental implementation of MPC with constraint removal on a real plant.

When controlling a real device, disturbances and plant-model mismatch are

inevitable. To eliminate steady-state errors, we will therefore introduce an inte-

grator part to our model. This can lead, however, to an increase of the optimal

cost function value over time. Thus we modify the characteristic bounds as-

signed to every constraint of the OCP to avoid removing constraints that could

become active for a later time step due to the step change of the setpoint.

Specifically, we determine conservative values of the original σ-bounds de-

pending on the maximum impact of the setpoint changes on the closed-loop

optimal cost function value. Based on the conservative values of the original

σ-bounds, inactive constraints in the OCP are detected and removed. Due to

the fact that the removed constraints are not active, the control performance is

not affected. To confirm this, the control performance of MPC was evaluated by

comparing MPC with and without applying the constraint removal approach.

To demonstrate the constraint removal approach’s practical benefits, the OCP

was also implemented and solved on a 32-bit microcontroller. The computa-

tional time and energy efficiency of the microcontroller were again evaluated for

MPC with and without constraint removal.
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In this paper, we focus on the energy efficiency of the microcontroller, there-

fore the energy aspect of the controlled device itself is beyond its scope. The

energy consumption on the side of the controller, however, is often overlooked,

but highly relevant to be considered from the authors perspective.

The paper is organized as follows. We introduce the control problem in

Section 2. The constraint removal approach is described in detail in Section 3.

The considered laboratory plate heat exchanger is introduced in Section 4, and

Section 4.3 treats the necessary modifications on the considered constraint re-

moval method. The extensive experimental case study of the heat exchanger

control is analyzed in Section 5.1, followed by an evaluation of energy reduction

considering a microcontroller in Section 5.2. Section 6 concludes the paper and

gives an outlook on future work.

2. Problem statement and Notation

Throughout this paper, we consider linear discrete-time systems of the form

x(k + 1) = Ax(k) +Bu(k), (1a)

y(k) = Cx(k), (1b)

k ≥ 0, with states x(k) ∈ Rn, inputs u(k) ∈ Rm, and outputs y(k) ∈ Rp, and

matrices A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n. We assume (A,B) to be

stabilizable. States and inputs are subject to lower and upper bounds

xi,min ≤ xi(k) ≤ xi,max, (2a)

uj,min ≤ uj(k) ≤ uj,max, (2b)

for all k and with i = 1, ..., n, j = 1, ...,m. The objective of the MPC design

is to regulate the system state (1a) to the origin by periodically solving the
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optimization problem

min
X,U

x(N)⊤Px(N) +

N−1∑
k=0

x(k)⊤Qx(k) + u(k)⊤Ru(k) (3a)

s.t. x(0) = x0, (3b)

x(k + 1) = Ax(k) +Bu(k), k = 0, ..., N − 1, (3c)

x(k) ∈ X , k = 0, ..., N − 1, (3d)

u(k) ∈ U , k = 0, ..., N − 1, (3e)

x(N) ∈ T , (3f)

on a receding prediction horizon N for the current state x(0). The state and

input constraints (2) are stated as compact and convex sets X and U , respec-

tively. The decision variables are summarized by X = (x(1)⊤, ..., x(N)⊤)⊤ and

U = (u(0)⊤, ..., u(N − 1)⊤)⊤, and the weighting matrices P , Q, R have the

obvious dimensions. We assume Q to be positive semi-definite and P and R to

be positive definite. The terminal set T ⊆ X , which appears as a constraint on

the last state along the prediction horizon N , is assumed to contain the origin

in its interior.

By substituting the dynamics of system (1a) into (3), the optimal control

problem (3) is rewritten as a quadratic program (QP) of the form

min
U

V (x(0), U)

s.t. GU ≤ w + Ex(0),

(4)

where V (x(0), U) =
1

2
x(0)⊤Y x(0) + x(0)⊤FU +

1

2
U⊤HU , Y ∈ Rn×n, F ∈

Rn×mN , H ∈ RmN×mN , H ≻ 0, and G ∈ Rq×mN , w ∈ Rq, E ∈ Rq×n, with q

denoting the number of constraints (see, e.g., [23] and the references therein).

Since H ≻ 0, the solution to (4) is unique, if it exists.

After solving (4) for an optimal input trajectory U⋆, we apply the first el-

ement, i.e., u⋆(0) to the system. In the next time step, we solve problem (4)

again for the receding horizon N and the updated system state, such that a

closed-loop control scheme results (see, e.g., [4, 25] for a further introduction).
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Note that, since the system described by equations (1a-b) serves as the predic-

tion model used for the MPC design and the optimization problem described

by equations (3a-f) does not implement a robust variant of MPC, uncertainties

arising in the real plant are not considered in equations (1a-b) explicitly.

Notation

Let F refer to the set of states x ∈ X for which (4) has a solution, and

let U⋆(x(0)), for any x(0) ∈ F , refer to the sequence that optimizes (4).

We often write U⋆, U⋆(x), V (x, U⋆), V (x, U⋆(x)), etc., as short for U⋆(x(0)),

V (x(0), U⋆(x(0))), etc. Let Q = {1, . . . , q} collect all constraint indices. The

constraint with index i ∈ Q is called active for x(0) ∈ F if GiU
⋆−wi−Eix(0) =

0, and inactive if GiU
⋆ −wi −Eix(0) < 0. Let A(x(0)) and I(x(0)) be defined

as the set of indices of all active and inactive constraints for x(0), respectively.

For a matrix G and an ordered set Σ ⊂ Q, let GΣ refer to the submatrix of G

with the rows indicated by indices Σ.

3. MPC with constraint removal

In this Section, we introduce the constraint removal method presented in [23]

as needed in the present paper. Later, in Section 4.3, we show the modifica-

tions necessary to adopt this method for an application to the laboratory heat

exchanger.

Inactive constraints have no influence on the optimal solution. Thus the

optimal input sequence U⋆(x) resulting from solving (4) does not change if some

or all inactive constraints are removed from the original OCP. This observation

is stated concisely in the following proposition.

Proposition 1. [23] Let x0 ∈ F be arbitrary and let Ĩ ⊂ I be an arbitrary

subset of the inactive constraints. Consider the reduced optimization problem

min
Û

V (x0, Û)

s.t. GQ\ĨÛ ⩽ wQ\Ĩ + EQ\Ĩx0.

(5)
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Then (5) has a unique solution, which we denote by Û⋆. This solution is equal

to the solution obtained from (4), i.e., Û⋆ = U⋆ and V (x0, Û
⋆) = V (x0, U

⋆).

We use precalculated characteristic bounds on the optimal cost function to de-

tect inactive constraints as proposed in [23]. Hereafter, we denote these bounds

σi, i = 1, . . . , q, with index i corresponding to a constraint of problem (4) and

thus a certain line of G, w, and E. Such a bound σi is equal to the minimum

value the cost function attains such that constraint i ∈ A, and will be used as

a lower bound on the optimal cost function in (4).

Definition 1. Let i ∈ Q be arbitrary. If there exists an x ∈ Rn such that

min
x,U

V (x, U)

s.t. GiU − wi − Eix = 0,

GQ\iU − wQ\i − EQ\ix ⩽ 0

(6)

has a solution, set σi to the minimum that results for (6), i.e., σi := V (x⋆, U⋆).

Otherwise, let σi =∞.

Note that σi =∞ implies constraint i can never be active. Since we need to find

the configuration of initial state and input trajectory resulting in the smallest

cost function value V ⋆, the initial state x is an additional degree of freedom

in (6), while it is a fixed parameter in (5). The properties of the bounds σi can

be summarized as follows.

Lemma 1. [23] Let i be arbitrary and consider the QP (6). The following

statements hold:

(i) If QP (6) is feasible, it has a unique solution.

(ii) If (6) is feasible, then 0 < σi <∞.

(iii) If (6) is infeasible, then constraint i is always inactive in (4), or equiva-

lently, i ∈ I(x) for all x ∈ X .

Proposition 2 is based on Proposition 6 and Corollary 7 in [23] and summarizes

how to use the bounds σi to detect and remove inactive constraints with respect

to problem (4).
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Proposition 2. [23] Let i ∈ Q and x ∈ F be arbitrary, and assume σi as

defined in (6) has been determined. If V (x, U⋆(x)) < σi, then constraint i is

inactive at the optimal solution of (4) for x(0) = x. Furthermore,

V (x(k0), U
⋆(x(k0))) < σi implies i ∈ I(x(k)) for all k > k0.

The second statement of Proposition 2 holds if the closed-loop optimal cost

function is a Lyapunov function and thus nonincreasing. While constraint re-

moval was designed under these conditions in [23], we will see from the results

in Section 5 that further modifications are necessary. These are summarized in

Section 4.3.

Algorithm 1 summarizes MPC with constraint removal according to Propo-

sition 2. We use the cost trajectory of a hypothetical example depicted in

Figure 1 to explain the steps of Algorithm 1. Let the optimal cost function

value V (x(k), U⋆(x(k))) be denoted by V ⋆ for short, and let R denote the set of

indices corresponding to the constraints that have not been removed and thus

can be active or inactive. Assume that, after initially solving the optimization

problem in time step k = 1, constraint i = 1 of this hypothetical example can be

detected to be inactive for all future time steps (steps 3 and 4 in Alg. 1). There-

fore, this constraint is removed from the QP (4) (step 7 in Alg. 1 and topmost

dashed line in Fig. 1). The same happens to constraints i = 7 and i = 4 in time

step k = 2, and later for k = 4 and constraint i = 19. Note that the enumeration

of the constraints and corresponding bounds σi, i ∈ Q = {1, ..., q} results from

the order of the constraints in (4). This order can be chosen arbitrarily but has

to be fixed.
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σ19

σ7

1 3 5 7 9
time steps

V ⋆

Figure 1: Optimal cost function trajectory V ⋆ over discrete time steps for a hypothetical

example.

Algorithm 1 MPC with constraint removal (see [23]).

1: Input: V ⋆, x+, R = Q \ Ĩ, σi, i ∈ R.

2: for all i ∈ R do

3: if V ⋆ < σi then

4: ith constraint will remain inactive: Ĩ ← Ĩ ∪ {i}.

5: end if

6: end for

7: Remove inactive constraints: R ← R \ Ĩ

8: Solve reduced optimization problem in (4) for x(0) = x+ and reduced set of

constraints R.

9: Output: Updated U⋆, V ⋆, x+, R.

4. Control of the heat exchanger plant

The proposed constraint removal approach is used to simplify the control

of a laboratory liquid-liquid plate heat exchanger. The considered plate heat

exchanger, manufactured by Armfield, is shown in Figure 2.

The three-stage counter-current liquid-liquid plate heat exchanger (Figure 2,

device (I)) can serve to cool or heat the liquids. These three stages are separated,

but interconnected at the same time. MPC was applied to the heating part here.
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Figure 2: The controlled plant – plate heat exchanger (I), tanks for cold medium (II), tank for

hot medium with heating system (III), peristaltic pump used for cold medium (IV), peristaltic

pump used for hot medium (V).

The heat exchanger’s dimensions are as follows: outer width, length, and height

are 90mm, 103mm, and 160mm.

The cold medium (cold water) is stored in the retention tanks (Figure 2, de-

vice (II)). As the device works in laboratory conditions, after the cold medium

exits the heat exchanger it is not used for any other operation. The hot medium

(hot water) is pre-heated to the desired temperature Thot = 70◦ C using a heat-

ing coil inside a retention tank (Figure 2, device (III)). After the heating medium

exits the heat exchanger it enters the heating tank again. The temperature of

the hot medium Thot is controlled by an auxiliary PID controller. Both media

are fed to the device by two peristaltic pumps (Figure 2, devices (IV) and (V)).

The main objective of the controller design is to heat the cold medium, and,

simultaneously, to ensure the offset-free setpoint tracking of the reference tem-

perature Ts. The control output is the outlet temperature of the cold medium

T . The value of the temperature mainly depends on the volumetric flow rate
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Figure 3: The detailed scheme of the controlled heat exchanger [27].

of the hot medium V̇ , as the temperature of the hot medium is constant with

Thot = 70◦ C. Hence, the control input is the flow rate of the hot medium. The

actuator is the peristaltic pump that feeds the hot medium into the plate heat

exchanger (Figure 2, device (V)). The peristaltic pumps have flexible silicon

rubber tubing with wall thickness of 1.6mm and inner diameter of 3.2mm.

The inlet temperature of the cold medium is also constant at the temperature

T0 = 20◦ C. The control output is measured with a K-type thermocouple

with operation range 0 − 150◦C. The detailed scheme of the controlled heat

exchanger is presented in Figure 3, where (I) is the plate heat exchanger, (II) is

the peristaltic pump for cold liquid, (III) is the peristaltic pump for hot liquid,

(IV) is the retention tank for cold liquid, (V) is the tank with heating coil, (T1

– T5) are the temperature sensors, (L1, L2) are the level sensors, (S1 – S5) are

the solenoid valves, and (W) is the heating coil (see [26] for further information

on the plant).

4.1. Mathematical model of the plate heat exchanger

The prediction model for the MPC design purposes was obtained as the

nominal model of the intervals bounded by minimum and maximum values for

each system parameter, i.e., the gains, and the time constants. These bound-
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ary values were evaluated by a set of experimentally collected data generated

by a set of laboratory experiments. Then, the step-response-based method of

identification was used, see, e.g., [28]. Figure 4 shows the set of measured and

normalized step responses serving for the identification of the parameters of the

mathematical model. These were collected by investigating the extensive set of

laboratory experiments. The step response of the identified nominal mathemat-

ical model is depicted by the black dashed line. The most important property of

the mathematical model for controller design purposes, i.e., its ability to track

the initial dynamics of the controlled system, is fulfilled by the identified model.

A time delay is not considered as its value is insignificant. Using the min-

imum and maximum values of the system parameters, a nominal system is

created and transformed into a state-space model in the discrete-time domain

as defined in (1). Further technical details about the identification of the heat

exchanger can be found in [29].

For the MPC design, the input, state, and output variables of the system

in (1) were defined in the form of deviation variables

u(k) = V̇ (k)− V̇s, (7a)

x(k) = T (k)− Ts, (7b)

y(k) = T (k)− Ts, (7c)

where Ts is the operating point of controlled temperature and V̇s is the operating

point of the flow rate.

In industrial applications, controllers are often expected to ensure offset-free

setpoint tracking. To remove the steady-state error, the state-space model from

(1) is augmented by a term adding the integral action to the controller design.

The considered augmented vector of the system states x̂ is thus defined in the

form

x̂(k) =

 x(k)∑k
j=0 e(j)

 , (8)

with e(j) = Ts−T (j) = −x(j) the control error, and the negative sign resulting

from the laboratory setup.
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Figure 4: The set of measured and normalized step responses serves for the identification of

the parameters of the mathematical model. The step response of the nominal mathematical

model is depicted in the black dashed line.
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The matrices of the state-space model considering the augmented vector of

states from (8) are defined as

Â =

 A 0

−tsC I

 , B̂ =

 B

0

 , Ĉ =
[
C 0

]
, (9)

where ts is the sampling time resulting from discretization. Thus the augmented

state-space model of the plant has again a structure as in (1)

x̂(k + 1) = Âx̂(k) + B̂u(k), (10a)

y(k) = Ĉx̂(k). (10b)

State, input, and output matrices read

Â =

 0.8736 0

−2 1

 , B̂ =

 0.5562

0

 , Ĉ =
[
1 0

]
, (11)

respectively. The augmentation of the states only serves to remove the steady-

state control error, its influence on the applied constraint removal method will

be discussed in Section 4.3. Further technical details regarding the experimental

identification of the plant are discussed in [29].

4.2. Control setup

In this experimental case study, the offset-free setpoint tracking of the plant

was ensured. The prediction horizon was N = 7, and the penalty matrices P ,

Q, and R were set to

P =

[
0.1479 −0.0217

−0.0217 0.0053

]
, Q =

[
0.001 0

0 0.001

]
, R = 0.1. (12)

Both, the terminal penalty matrix P and the terminal set T in (3) were deter-

mined using the Multi-Parametric Toolbox [30] by solving the Riccati equation.

The sampling time considered for the laboratory experiments was ts = 2 s. The

weighting matrices Q and R in (3) were systematically tuned. First, we ob-

served the control performance by fixing one of the penalty factors, and, simul-

taneously, by increasing/decreasing the values of the elements of the remaining
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weighting matrix. Then, we analyzed the impact of the further increase/decrease

of the penalty factor. Finally, we investigated the impact of the other weight-

ing matrix, until a satisfactory control performance was ensured. Real-time

control was implemented with MATLAB/Simulink R2019b on a PC with an

i5 CPU (2.7GHz) and 8GB RAM. The optimization problems were solved us-

ing the MATLAB programming environment [31], and the communication with

the plate heat exchanger was implemented with the Wifi-based eLab Manager

toolbox [32].

The control input of the plant, i.e., the volumetric flow rate of the hot

medium, was constrained to the interval [0, 11.5]ml s−1 representing the physical

constraints. This range was normalized so that the operating point corresponded

to V̇s. Therefore, the constraints considered on the control input in the deviation

form were chosen as

−5.75ml s−1 ≤ u(k) ≤ 5.75 ml s−1. (13)

The outlet temperature T of the cold medium was constrained to the interval

[25, 65] ◦C (i.e. [298.15, 338.15] K). The state variable x was normalized so that

the temperature Ts corresponds to the operating point or the reference tem-

perature. The normalized constraints of the elements of the augmented vector

in (8) were defined as  −20

−100

 ≤ x̂(k) ≤

 20

100

 . (14)

The augmented state defined in (8) is an incremental value of the state x and

it does not have any operating point.

4.3. Necessary modification of the bounds

The constraint removal method was originally designed from a theoretical

point of view assuming a non-increasing optimal cost function value along time

steps k. However, to overcome challenges such as measurement noise and plant-

model mismatch, the integrator state as described in Section 4.1 was introduced.
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σ̃4
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(b)

Figure 5: Modification of the applied constraint removal approach for the hypothetical ex-

ample from Sec. 3. (a) MPC with increasing cost (red) and maximum increase Ṽ ⋆. If V ⋆

increases due to the integrator state after a setpoint change, constraints previously detected

to be inactive can become active again. (b) Modification of the hypothetical bounds to more

conservative values (blue) based on the maximum increase in V ⋆.

While this ensures the offset-free tracking of the setpoint value, the integrator

state leads to a different development of the closed-loop optimal cost function

value. As can be seen in Section 5, a change in the setpoint value Ts in (7b)

does not only lead to an increase of V ⋆ due to the new value for the initial state

x(0) = T (0)−Ts (in this case a simple restart with all constraints added back to

the original optimization problem would be possible). However, the integration

of the error (see x2(k) in (8)) will result in a further increase before approaching

the new setpoint and thus depends on the new setpoint itself.

To make sure constraints that may become active again after the setpoint

change are not removed, we present a heuristics to modify the bounds σi

straightforwardly based on existing experimental data. For ease of presenta-

tion, we use the same hypothetical example as in Section 3, augmented by an

increase of V ⋆, in Figure 5 (red curve).

Every bound σi, as the minimum value of the optimal cost function such

that constraint i is active, was originally determined assuming a closed-loop cost
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function trajectory as shown in Figure 5, green curve. Since the green curve

is non-increasing, we can ensure that the corresponding constraint will remain

inactive once it was detected to be inactive. However, the setpoint change will

lead to a trajectory as shown in Figure 5, red curve, i.e., the integrator state

will lead to a temporary increase of the optimal cost function value V ⋆ for some

time steps k. For bound σ4 corresponding to a hypothetical constraint, e.g., the

value of V ⋆ crosses the bound again from below, such that we cannot ensure that

constraint i = 4 will never become active again. To compensate for this increase,

such that the removed constraints will still be inactive despite the increase of

V ⋆, we choose the bounds to be more conservative and thus compensate for the

expected increase of the cost function value.

From the set of experimentally collected data generated for the step changes

of the setpoint value, we evaluate the maximum increase in V ⋆ caused by the

setpoint changes (Ṽ ⋆ in Figure 5 (a)). Then we determine sufficiently conser-

vative bounds by reducing their value by the maximum increase in the optimal

cost function value V ⋆, i.e., the value Ṽ ⋆. This is illustrated in Figure 5 (b),

where the reduced bounds σ̃i are shown in comparison to the original σ-bounds.

While constraint i = 4 was removed in time step k = 2 for the original values

of the bounds, this constraint is now removed in time step k = 4. The conser-

vative bound σ̃4 takes into account the level of the maximum increase in the

original cost function V ⋆, and thus constraint i = 4 is not removed too early.

This prevents removing a constraint that could become active again later during

closed-loop control. Obviously, if some σ-bounds are reduced to negative values,

they cannot be removed. Therefore, such constraints can be omitted from the

evaluation of Algorithm 1, see, e.g., σ̃19 in Figure 5 (b). However, constraint

removal is efficient also for a subset Σ ⊆ Q of all constraints.

For the laboratory case study, we performed an extensive experimental in-

vestigation with a conventional MPC to determine the maximum influence of

the expected setpoint step changes. Throughout the experiments, we logged the

sequences of the closed-loop optimal cost function value. The result is presented

in Section 5.1, where two representative control setups were selected.
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We stress that this procedure does not give a guarantee that no constraints

are removed too early if the conservativeness of the bound on V ⋆ was not ap-

propriately determined during the experiments, similar to the ill-defined level of

uncertainty for a robust MPC design. Also, if the setpoints are changing more

often or in a different way than expected during the modification process of the

σ-bounds, further data evaluation and modification may be necessary. However,

we will demonstrate in Section 5.1 that no constraints have been violated when

applying MPC combined with the modified constraint removal approach to the

laboratory plate heat exchanger. Possible benefits of this approach in terms of

energy savings are presented in Section 5.2.

To summarize the steps described so far, the overall process on how to op-

erate MPC with constraint removal on a real plant is sketched in Figure 6 and

can be divided into an offline and an online phase. The offline phase contains

the necessary preparations that apply once and before the actual control of the

system. It starts with the design of the MPC problem (3), such as deriving a

prediction model or tuning the weighting matrices. Once the MPC problem is

defined, the sigma bounds need to be computed by solving problem (6) once for

each constraint. The last offline step is the modification of the bounds as de-

scribed in Section 4.3, i.e., by using experiments with expected reference values

or existing data of formerly performed experiments. During the online phase,

i.e., for the actual control of the plant, the constraints that may become active

have to be reset for a new initial state first, i.e., the constraints are made part

of problem (3) again. Then, Algorithm 1 applies to control the system state to

its reference. Both steps of the online phase can at least be repeated as long as

the initial states and reference values fit the data used during the preparatory

offline phase.

5. Experimental results

This section provides two extensive experimental case studies. First, we

investigate the control performance of MPC with constraint removal designed
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Design MPC
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Compute

bounds σi by

solving (6)

Modify

bounds σi as

in Sect. 4.3

Reset all

constraints

in (3)

Run MPC

Alg. 1

Figure 6: Workflow of operating MPC with constraint removal on a real plant.

for the laboratory plate heat exchanger. Then, we analyze the energy savings

achieved by the proposed control method considering an embedded platform

suitable for industrial control.

5.1. Experimental validation using the plate heat exchanger

Multiple setpoint step changes were performed and analyzed to demonstrate

the efficiency of the proposed acceleration by the constraint removal approach.

The closed-loop control trajectories, cost function value V ⋆, and number of

considered constraints c for MPC with constraint removal are depicted in Fig-

ure 7(a) and Figure 8(a) for two representative setpoint changes, respectively.
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(a) Results generated by MPC with constraint removal.

(b) Results generated by MPC without constraint removal.

Figure 7: Experimental results for MPC with (see (a)) and without (see (b)) constraint

removal and setpoint step change 50◦C → 45◦C (323.15K → 318.15K): measured control

output (solid green), setpoint (dashed red), control input (solid blue), constraint (dashed

black), cost function value (solid black), number of considered constraints (solid red).
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(a) Results generated by MPC with constraint removal.

(b) Results generated by MPC without constraint removal.

Figure 8: Experimental results for MPC with (see (a)) and without (see (b)) constraint

removal and setpoint step change 40◦C → 45◦C (313.15K → 318.15K): measured control

output (solid green), setpoint (dashed red), control input (solid blue), constraint (dashed

black), cost function value (solid black), number of considered constraints (solid red).

23



The constraint removal strategy (and thus Alg. 1) started at the same time

instance as the setpoint step change, i.e., at t = 50 seconds. In all scenarios,

the number of considered constraints immediately decreased.

The associated control trajectories and cost function value for the same

setpoint changes generated by MPC without constraint removal are depicted

in Figure 7(b)–Figure 8(b). These experimentally collected results demon-

strate that implementing the proposed constraint-removal-based acceleration

technique does not decrease the control performance. Obviously, the control

performance in Figure 7(a)–Figure 8(a) can slightly differ from the performance

depicted in Figure 7(b)–Figure 8(b) as the presented results are experimentally

collected and it is not possible to fully replicate the real plant behavior due to

the random impact of disturbances and measurement noise.

For the modification of the bounds as described in Section 4.3, the val-

ues of the maximum increase Ṽ ⋆ were evaluated based on the results shown

in Figure 7(b)– Figure 8(b). By analyzing these sequences, we determined the

maximum increase Ṽ ⋆ to the value Ṽ ⋆ = 19.06. The corresponding value of each

modified bound σi, i ∈ {1, . . . , q} is depicted in Figure 9. In total, 12 out of all

48 constraints were detected to be redundant, i.e., they will never be active as

there exist different, more restrictive constraints. For these 12 redundant con-

straints, according to Definition 1, σi = ∞ holds (see the constraints depicted

on the far right in Figure 9). They can be removed completely before running

the controller. All constraints with bounds below a value of zero will not be

removed, as the MPC cost function value is non-negative by definition.

The experimental results in Figure 7(a)–Figure 8(a) show that the designed

MPC controller with constraint removal ensured setpoint tracking within 2 min-

utes. Simultaneously, the computed values of the control input respected the

given physical constraints in (13)–(14) even though some of the constraints

were removed from the optimization problem by the applied constraint removal

method.

At the beginning of the experiment, 48 constraints were considered, and

at the end of the time span, only 20 and 18 constraints remained considered in
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Figure 9: Values of the modified bounds evaluated for the 48 constraints of the MPC problem,

sorted for increasing values. Note that the enumeration here does not reflect the order of the

constraints.

Figure 7(a) and Figure 8(a), respectively. Thus, in the experimentally evaluated

control scenarios, the MPC cost function value decreased enough to remove at

least 28 constraints. Although the first state variable reached the origin, the

MPC cost function value depicted in Figures 7 – 8 is not decreasing to zero,

but stays slightly above. Measurement noise and especially the value of the

integrator state x2 kept the cost from decreasing further and inhibited removing

more than 28 constraints. Also, due to the modification of the bounds, some of

the σ̃i attain negative values as described in Section 4.3 and will thus never be

removed.

In conclusion, despite using the conservative bounds σ̃i, between around

58% and 62.5% of all constraints were removed from the original OCP without

affecting the control performance negatively.
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5.2. Experimental evaluation of energy savings

We demonstrate non-negligible energy savings result with the proposed con-

troller. Here, the practical benefits of the applied method were analyzed by

evaluating the energy amount consumed by the control unit during its opera-

tion.

In practice, control units equipped with a 32-bit microprocessor are gaining

more prominence, as they provide sufficient computing power for a wide range of

industrial applications. We show that the energy consumption of such a control

unit can be reduced considering the presented acceleration method.

In this second case study, the following steps were performed using the mi-

crocontroller:

� implementation of a QP solver on a 32-bit microcontroller

� simulation of the control steps

� evaluation of computation time and the corresponding energy consump-

tion by the control unit

The ESP32 DevKit V4 microcontroller platform was used as a control unit. This

platform is equipped with a 32-bit microprocessor with 4MB of Flash memory,

which is sufficient to handle the library necessary for solving OCPs having the

form of a QP. This library was generated using the CVXGEN tool [33], which

created a tailored solver dedicated to solving QP-representable convex opti-

mization problems. The generated solver was exported in C-code, which is

compatible with the control unit.

In this case study, the data measured during the experiments was used to

simulate the control of the heat exchanger plant using the embedded control

unit. Specifically, two sets of data were used: (i) control using MPC without

constraint removal, see Figure 8(b), and (ii) control using MPC with constraint

removal, depicted in Figure 8(a). Both data sets refer to the step change from

40◦C (313.15 K) to 45◦C (318.15 K). Figure 8(a) shows that considering the

constraint removal approach, the number of constraints dropped only once, i.e.,
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from 48 to 20 constraints. Therefore, using this observation, the computational

time and the corresponding energy consumption necessary to solve the QP on a

microcontroller were compared considering 48 and 20 constraints, respectively.

We used the system states measured during the experiments on the heat

exchanger in Section 5.1 as initial conditions for the solution of the online QP

implemented on the microcontroller at each sampling instant. Then the associ-

ated control input was evaluated, simulating the real-time control of the plant.

Within the simulated closed-loop control, it is possible to determine the time

required to evaluate the optimal control action by solving the associated QP.

The corresponding experimentally generated results are depicted in Figure 10.

We could assume that solving an optimization problem that considers a

smaller number of constraints will consume a less portion of time. However, the

procedure of the constraint removal approach also introduces additional oper-

ations necessary to evaluate the comparison of the bounds σi with the current

cost function value V ⋆ to detect the constraints to be removed. To make the

results more comparable, the closed-loop control considering 20 constraints also

included the operations necessary to identify inactive constraints. Therefore,

at each sampling time, the microcontroller compared the bounds σi for each

considered constraint with the current cost function value V ⋆.

Simulation of the closed-loop control showed that the total time required to

resolve all QPs throughout the whole time of the operation was significantly

lower using the proposed constraint removal approach. Table 1 summarizes the

evaluated computational time, where the criterion tavg represents an average

computational time evaluated for each control step. This criterion was computed

considering the total number of 160 control steps. The criterion tsol represents

the total time necessary to solve the QP in each sampling time during the

simulation period. As can be seen, the proposed method reduced the total

solver time tsol by around 68%.

The energy consumption of the control unit depends on whether calculations

are in progress or not. Therefore, the reduced computation time tsol corresponds

to the energy savings, i.e., the saved electric power. Within the operation and
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Figure 10: Time necessary for solving a QP at each sampling instance using the modified

constraint removal method (orange) and conventional MPC (blue).

Table 1: Comparison of the average and total solver time for conventional MPC and MPC

with constraint removal.

MPC method tavg [s] tsol [s]

Conventional MPC 0.133 21.295

MPC with constraint removal 0.0433 6.921

control of the laboratory plant, we can divide the activities of the control unit

into three main groups:

1. The first group is routine operations such as the application of a control

action to a controlled process and the acquisition of measured values from

sensors.

2. The second group includes the evaluation of optimal control action, e.g.,

operations associated with the constraint removal approach and the solu-

tion of the QP.

3. The last group is the sleep mode, which fills the time until the end of a

given sampling period.
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Figure 11: The timeline of the operations within one sampling instance.

Analogously to the case study presented in Section 5.1, we also considered a

sampling period of 2 s here. Figure 11 illustrates the individual stages of the

operation within one sampling instance.

The measured results shown in Figure 11 demonstrate that, depending on

the applied control strategy, a sampling instance is split differently into the

three groups mentioned above. The electric current drawn by the microcon-

troller amounts to Icomp = 61.3 mA when a QP is solved. On the other hand,

during the sleep mode, the value is Isleep = 3.92 mA. Therefore, the decisive

factor is the time needed for the solution. The time difference multiplied by the

measured current and the set voltage represents the consumed electric power

and is calculated by

Ets = (Icomp − Isleep)Us tavg, (15)

where Ets is the energy consumed within one sampling period, and Us is the

supply voltage of the control unit set to Us = 5V. The energy was computed for

the MPC with and without constraint removal. The results are summarized in

Table 2. As can be seen, when considering MPC with constraint removal, also

the energy consumption is reduced by around 68% compared to the conventional

MPC.
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Table 2: Comparison of the energy consumption for conventional MPC and MPC with con-

straint removal within one sampling period.

MPC method Ets [×10−3 J]

Conventional MPC 38

MPC with constraint removal 12

The energy consumption saved per hour of operation is then computed as

Eh =
3600

ts
∆Ets = 41.222 J , (16)

where ∆Ets is the difference between energy consumption Ets computed for con-

ventional MPC and for MPC with constraint removal, see Table 2. Subsequently,

it is quite straightforward to calculate the saved annual energy consumption of

one control unit per year, Ey = 361.1 kJ. Such an amount of energy is equiva-

lent to 20 Ah. The presented results can reflect, e.g., the significantly increased

battery life supplying the controller platform.

6. Conclusion

We applied MPC with a constraint removal approach to a laboratory plate

heat exchanger. By detecting and removing inactive constraints before solving

the underlying optimization problem, this variant of MPC reduces the compu-

tational effort associated with solving the optimization problem. The bounds

indicating the inactive constraints were modified to overcome the challenges

arising in the control setup. In this paper, two experimental case studies were

investigated to analyze the properties of the proposed control method—control

of the laboratory heat exchanger plant, and the implementation on a microcon-

troller.

In the real-time experiments on the laboratory plant, the constraint removal

approach was able to reduce the number of constraints to be considered in the

optimization problem by up to 60% compared to conventional MPC. The results

further confirmed that the approach does not affect the control performance in
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terms of performance losses, resulting in comparable trajectories of the control

inputs.

Based on the experimental data, we further implemented and solved the

optimization problems corresponding to MPC with constraint removal and to

conventional MPC on a 32-bit microcontroller. Both, the computation time and

the associated energy consumption decreased by approximately 68% for MPC

with constraint removal in contrast to the conventional variant of MPC.

Future research will be focused on the application of nonlinear MPC with

constraint removal for the control of the heat exchanger plant and modifications

towards robust MPC.
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Nomenclature

Symbols

A,B,C state-space system

Â, B̂, Ĉ augmented state-space system

A, I, Ĩ active set, inactive set, subset

e control error

Eh, Ey energy consumption per hour, year

Ets ,∆Ets energy consumed within one sampling period, difference

F , T ,R feasible set, terminal set, set of remaining constraints

G,w,E constraint matrices of the quadratic program

Icomp, Isleep electric current consumed during solving, sleep mode

k time step

m,n, p, q number of inputs, states, outputs, constraints

N horizon length

P,Q,R weighting matrix for terminal state, states, inputs

Q,Σ constraint set, subset

T, Thot, Ts temperature of the cold medium, hot medium, setpoint

tsol, tavg total, average solver time

u, y system input, output

umin, umax lower, upper bound on inputs

U,X input, state prediction

U ,X constraint set for inputs, states

Us supply voltage of the control unit

V, Ṽ ⋆ cost function, maximum increase in V ⋆

V̇ , V̇s volumetric flow rate of the hot medium, operating point

x, x+, x0, x̂ system state, subsequent state, initial state, augmented system state

xmin, xmax lower, upper bound on states

Y, F,H matrices of the cost function of the quadratic program
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Greek letters

σi bound corresponding to constraint i

Abbreviations

MPC model predictive control

OCP optimal control problem

PID proportional integral derivative controller

QP quadratic program
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[20] M. Jost, M. Mönnigmann, Accelerating model predictive control by online

constraint removal, in: Proc. of the 52nd IEEE Conference on Decision and

Control, 2013, pp. 5764–5769.
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[28] J. Mikleš, M. Fikar, Process Modelling, Identification, and Control,

Springer Verlag, Berlin Heidelberg, 2007.

36

https://www.uiam.sk/assets/publication_info.php?id_pub=2003
https://www.uiam.sk/assets/publication_info.php?id_pub=2003
http://dx.doi.org/10.1016/j.energy.2019.05.093
https://www.uiam.sk/assets/publication_info.php?id_pub=2003
https://www.uiam.sk/assets/publication_info.php?id_pub=2003
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